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1. Naive Bayes Classifier; Decision Boundary

Classification Boundary: log p(c = 1|x∗) > log p(c = 0|x∗)

After the definition of the classifier and using the binary encoding xi ∈ {0, 1}, we get:∑
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~xT ~w + b > 0 , where w defines a hyperplane in the x space.

2. Derivative of the Log Likelihood
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Note that σ′(y) = (1− σ(y))σ(y)y′
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3. Linearly Separable

The hyperplane b̃ + w̃T ~x = λ b + λ ~wT ~x ⇒ λ(b + ~wT ~x) = 0 is geometrically the same as
b + ~wT ~x = 0

If the data is linearly separable, the weights will continue to increase during the maximum
likelihood training, and the classifications will become extreme.

4. Finding Hyperplanes

~wT ~x + b = εµ forms a linear system with P equations and P unknowns since ~w and b can be
expressed with P variables (in a N -dimensional space, ~w has N − 1 dimensions). If all xµ,
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µ ∈ {1, ..., P}, are linearly independent, then this system has an unique solution. In other
words, the matrix XT , defined as a matrix where the rows are the xµ, is invertible if all xµ,
µ ∈ {1, ..., P}, are linearly independent (solution of the equation XT ~w = εµ − b).

By considering additional ε terms for each data point, we are effectively considering what
happens if each data point moves towards the decision boundary by some amount. The
classification still must be correct in these circumstances, or it will penalise the likelihood.
Hence including these terms acts as a form of regulariser.

For interest only: This approach can be used in combination with a perceptron-like classifier
to obtain alternative error measures. For example in the case where we require all epsilon
values to be greater than some value, then we obtain a support vector classifier. If we presume
instead that the ε are sampled from a Gaussian, then we obtain a Probit model etc.
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