Foundations of Relational Query Languages

Relational Model

- Many ad hoc models before 1970
 - Hard to work with
 - Hard to reason about

- 1970: Relational Model by Edgar Frank Codd
 - Data are stored in relations (or tables)
 - Queried using a declarative language
 - DBMS converts declarative queries into procedural queries that are optimized and executed
- Key Advantages
 - Simple and clean mathematical model (based on logic)
 - Separation of declarative and procedural

Relational Databases

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	os

Constants

VIE, LHR, ...

BA, U2, ...

Vienna, London, ...

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

Relational Databases

Airport

codecityVIEVienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

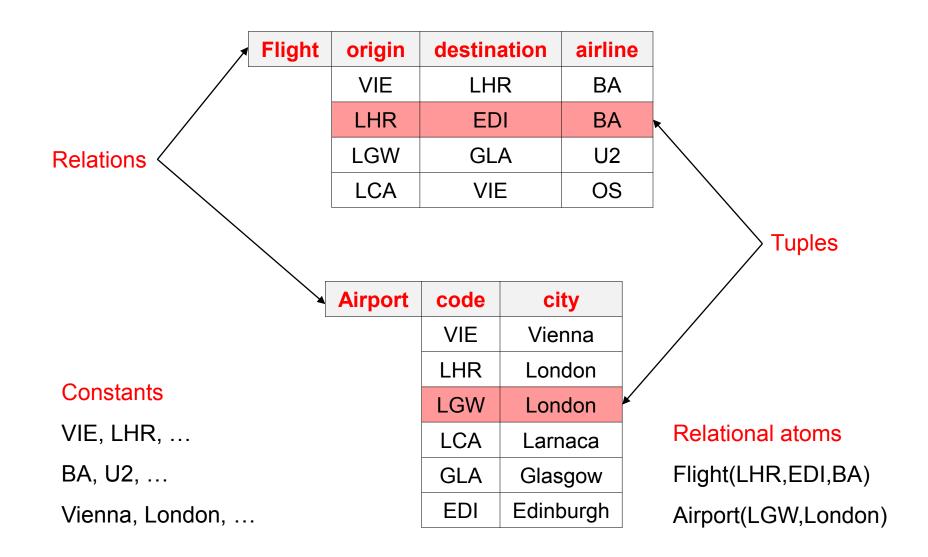
Constants

VIE, LHR, ...

BA, U2, ...

Vienna, London, ...

Relational Databases



List all the airlines

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

List all the airlines

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

{BA, U2, OS}

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

 π_{airline} Flight

List the codes of the airports in London

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

List the codes of the airports in London

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

 π_{airline} ((Flight $\bowtie_{\text{origin=code}}$ ($\sigma_{\text{city='London'}}$ Airport)) $\bowtie_{\text{destination=code}}$ ($\sigma_{\text{city='Glasgow'}}$ Airport))

List the airlines that fly directly from London to Glasgow

Aux	origin	destination	airline	code	city	code	city
	LGW	GLA	U2	LGW	London	GLA	Glasgow

$$\pi_{\text{airline}}$$
 ((Flight $\bowtie_{\text{origin=code}}$ ($\sigma_{\text{city='London'}}$ Airport)) $\bowtie_{\text{destination=code}}$ ($\sigma_{\text{city='Glasgow'}}$ Airport))

defines the auxiliary relation Aux

Relational Algebra

- Selection: σ
- Projection: π
- Cross product: \times
- Natural join: ⋈
- Rename: ρ
- **Difference:** in bold are the primitive operators
- Union: ∪
- Intersection: ∩

Formal definitions can be found in any database textbook

List all the airlines

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

List all the airlines

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	os

{BA, U2, OS}

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

 $\{z \mid \exists x \exists y \ \mathsf{Flight}(x,y,z)\}$

List the codes of the airports in London

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

List the codes of the airports in London

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

 $\{x \mid \exists y \ Airport(x,y) \land y = London\}$

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	os

{U2}

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

 $\{z \mid \exists x \exists y \exists u \exists v \ Airport(x,u) \land u = London \land Airport(y,v) \land v = Glasgow \land Flight(x,y,z)\}$

Domain Relational Calculus

But, we can express "problematic" queries, i.e., depend on the domain

$$\{x \mid \forall y \ R(x,y)\}\ \{x \mid \neg R(x)\}\ \{x,y \mid R(x) \lor R(y)\}$$

...thus, we adopt the active domain semantics – quantified variables range over the active domain, i.e., the constants occurring in the input database

Algebra = Calculus

A fundamental theorem (assuming the active domain semantics):

Theorem: The following query languages are equally expressive

- Relational Algebra (RA)
- Domain Relational Calculus (DRC)
- Tuple Relational Calculus (TRC)

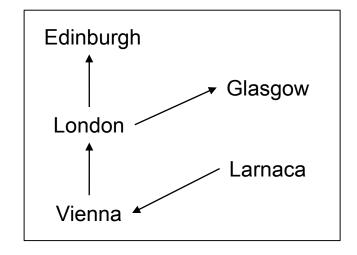
Note: Tuple relational calculus is the declarative language introduce by Codd. Domain relational calculus has been introduced later as a formalism closer to first-order logic

Quiz!

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	os

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh



Recursive query – not expressible in **RA/DRC/TRC**

(unless we bound the number of intermediate stops)

Complexity of Query Languages

- The goal is to understand the complexity of evaluating a query over a database
- Our main technical tool is complexity theory
- What to measure? Queries may have a large output, and it would be unfair to count the output as "complexity"
- We therefore consider the following decision problems:
 - Query Output Tuple (QOT)
 - Boolean Query Evaluation (BQE)

A Crash Course on Complexity Theory

we are going to recall some fundamental notions from complexity theory that will be heavily used in the context of this course – details can be found in the standard textbooks

Deterministic Turing Machine (DTM)

$$M = (S, \Lambda, \Gamma, \delta, s_0, s_{accept}, s_{reject})$$

- S is the set of states
- Λ is the input alphabet, not containing the blank symbol \sqcup
- Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Lambda \subseteq \Gamma$
- $\delta: S \times \Gamma \rightarrow S \times \Gamma \times \{L,R\}$
- s₀ is the initial state
- s_{accept} is the accept state
- s_{reject} is the reject state, where s_{accept} ≠ s_{reject}

Deterministic Turing Machine (DTM)

$$M = (S, \Lambda, \Gamma, \delta, s_0, s_{accept}, s_{reject})$$

$$\delta(s_1, \alpha) = (s_2, \beta, R)$$

IF at some time instant τ the machine is in sate s_1 , the cursor points to cell κ , and this cell contains α

THEN at instant τ +1 the machine is in state s_2 , cell κ contains β , and the cursor points to cell κ +1

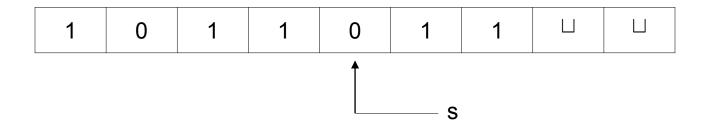
Nondeterministic Turing Machine (NTM)

$$M = (S, \Lambda, \Gamma, \delta, s_0, s_{accept}, s_{reject})$$

- S is the set of states
- Λ is the input alphabet, not containing the blank symbol \sqcup
- Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Lambda \subseteq \Gamma$
- $\delta: S \times \Gamma \rightarrow 2^{S \times \Gamma \times \{L,R\}}$
- s₀ is the initial state
- s_{accept} is the accept state
- s_{reject} is the reject state, where s_{accept} ≠ s_{reject}

Turing Machine Configuration

A perfect description of the machine at a certain point in the computation

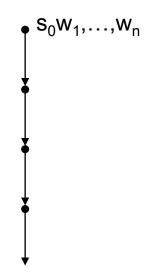


is represented as a string: 1011s011

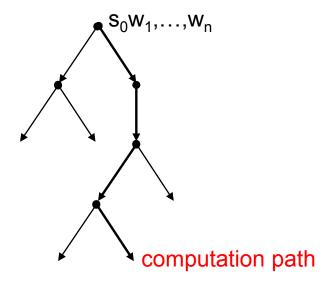
- Initial configuration on input w₁,...,w_n s₀w₁,...,w_n
- Accepting configuration u₁,...,u_ks_{accept}u_{k+1},...,u_{k+m}
- Rejecting configuration $-u_1,...,u_k s_{reject} u_{k+1},...,u_{k+m}$

Turing Machine Computation

Deterministic



Nondeterministic



the next configuration is unique

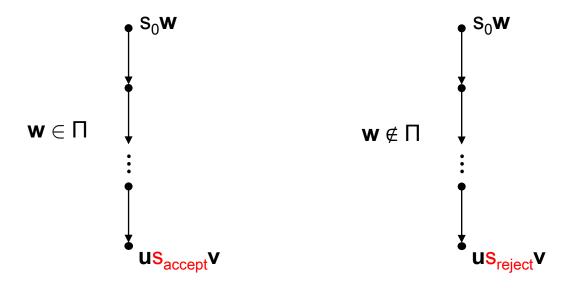
computation tree

Deciding a Problem

(recall that an instance of a decision problem Π is encoded as a word over a certain alphabet Λ – thus, Π is a set of words over Λ , i.e., $\Pi \subseteq \Lambda^*$)

A DTM $M = (S, \Lambda, \Gamma, \delta, s_0, s_{accept}, s_{reject})$ decides a problem Π if, for every $\mathbf{w} \in \Lambda^*$:

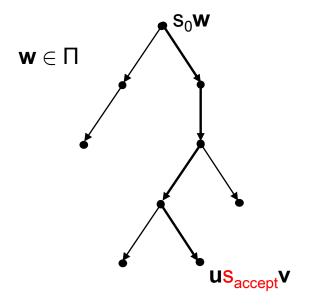
- M on input \mathbf{w} halts in $\mathbf{s}_{\mathsf{accept}}$ if $\mathbf{w} \in \Pi$
- M on input w halts in s_{reject} if w ∉ Π

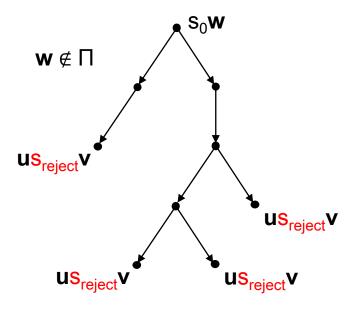


Deciding a Problem

A NTM M = (S, Λ , Γ , δ , s_0 , s_{accept} , s_{reject}) decides a problem Π if, for every $\mathbf{w} \in \Lambda^*$:

- The computation tree of M on input w is finite
- There exists at least one accepting computation path if w ∈ Π
- There is no accepting computation path if w ∉ Π





Complexity Classes

Consider a function $f: N \rightarrow N$

```
TIME(f(n)) = \{\Pi \mid \Pi \text{ is decided by some DTM in time } O(f(n))\}

NTIME(f(n)) = \{\Pi \mid \Pi \text{ is decided by some NTM in time } O(f(n))\}

SPACE(f(n)) = \{\Pi \mid \Pi \text{ is decided by some DTM using space } O(f(n))\}

NSPACE(f(n)) = \{\Pi \mid \Pi \text{ is decided by some NTM using space } O(f(n))\}
```

Complexity Classes

We can now recall the standard time and space complexity classes:

```
\cup_{k>0} TIME(n<sup>k</sup>)
       PTIME
                    = \bigcup_{k>0} NTIME(n<sup>k</sup>)
            NP
                    = \bigcup_{k>0} \mathsf{TIME}(2^{n^k})
    EXPTIME
                        \cup_{k>0} NTIME(2^{n^k})
  NEXPTIME
 LOGSPACE
                          SPACE(log n)
                                                      these definitions are relying on
                                                      two-tape Turing machines with a
                         NSPACE(log n)
NLOGSPACE
                                                      read-only and a read/write tape
                    = \cup_{k>0} SPACE(n^k)
     PSPACE
                    = \cup_{k>0} SPACE(2^{n^k})
  EXPSPACE
```

For every complexity class C we can define its complementary class

$$coC = \{\Lambda^* \setminus \Pi \mid \Pi \in C\}$$

An Alternative Definition for NP

Theorem: Consider a problem $\Pi \subseteq \Lambda^*$. The following are equivalent:

- $\Pi \in \mathsf{NP}$
- There is a relation $R \subseteq \Lambda^* \times \Lambda^*$ that is polynomially decidable such that

 $\Pi = \{u \mid \text{there exists } \textbf{w} \text{ such that } |\textbf{w}| \leq |\textbf{u}|^k \text{ and } (\textbf{u},\textbf{w}) \in R\}$ witness or certificate $\{\textbf{x}\textbf{y} \in \Lambda^* \mid (\textbf{x},\textbf{y}) \in R \} \in \text{PTIME}$

Example:

3SAT = $\{\phi \mid \phi \text{ is a 3CNF formula that is satisfiable}\}$ = $\{\phi \mid \phi \text{ is a 3CNF for which } \exists \text{ assignment } \alpha \text{ such that } |\alpha| \leq |\phi| \text{ and } (\phi,\alpha) \in R\}$

where R = $\{(\phi,\alpha) \mid \alpha \text{ is a satisfying assignment for } \phi\} \in \mathsf{PTIME}$

Relationship Among Complexity Classes

```
\mathsf{LOGSPACE} \subseteq \mathsf{NLOGSPACE} \subseteq \mathsf{PTIME} \subseteq \mathsf{NP}, \mathsf{coNP} \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME} \subseteq \mathsf{NEXPTIME}, \mathsf{coNEXPTIME} \subseteq ...
```

Some useful notes:

- For a deterministic complexity class C, coC = C
- coNLOGSPACE = NLOGSPACE
- It is generally believed that PTIME ≠ NP, but we don't know
- PTIME ⊂ EXPTIME ⇒ at least one containment between them is strict
- PSPACE = NPSPACE, EXPSPACE = NEXPSPACE, etc.
- But, we don't know whether LOGSPACE = NLOGSPACE

Complete Problems

- These are the hardest problems in a complexity class
- A problem that is complete for a class C, it is unlikely to belong in a lower class
- A problem Π is complete for a complexity class C, or simply C-complete, if:
 - 1. $\Pi \in C$
 - 2. Π is C-hard, i.e., every problem $\Pi' \in C$ can be efficiently reduced to Π

there exists a polynomial time algorithm (resp., logspace algorithm) that computes a function f such that $\mathbf{w} \in \Pi' \Leftrightarrow f(\mathbf{w}) \in \Pi$ – in this case we write $\Pi' \leq_P \Pi$ (resp., $\Pi' \leq_L \Pi$)

• To show that Π is C-hard it suffices to reduce some C-hard problem Π to it

Some Complete Problems

NP-complete

- SAT (satisfiability of propositional formulas)
- Many graph-theoretic problems (e.g., 3-colorability)
- Traveling salesman
- etc.

PSPACE-complete

- Quantified SAT (or simply QSAT)
- Equivalence of two regular expressions
- Many games (e.g., Geography)
- etc.

Back to Query Languages

- The goal is to understand the complexity of evaluating a query over a database
- Our main technical tool is complexity theory
- What to measure? Queries may have a large output, and it would be unfair to count the output as "complexity"
- We therefore consider the following decision problems:
 - Query Output Tuple (QOT)
 - Boolean Query Evaluation (BQE)

Some useful notation:

- Given a database D, and a query Q, Q(D) is the answer to Q over D
- adom(D) is the active domain of D, i.e., the constants occurring in D
- We write Q/k for the fact that the arity of Q is $k \ge 0$

L is some query language; for example, **RA**, **DRC**, etc. – we will see several query languages in the context of this course

QOT(L)

Input: a database D, a query $Q/k \in L$, a tuple of constants $t \in adom(D)^k$

Question: $t \in Q(D)$?

Some useful notation:

- Given a database D, and a query \mathbb{Q} , $\mathbb{Q}(D)$ is the answer to \mathbb{Q} over D
- adom(D) is the active domain of D, i.e., the constants occurring in D
- We write Q/k for the fact that the arity of Q is $k \ge 0$

L is some query language; for example, **RA**, **DRC**, etc. – we will see several query languages in the context of this course

BQE(L)

Input: a database D, a Boolean query $Q/0 \in L$

Question: $Q(D) \neq \emptyset$? (i.e., does *D* satisfies *Q*?)

QOT(L)

Input: a database D, a query $Q/k \in L$, a tuple of constants $t \in adom(D)^k$

Question: $t \in Q(D)$?

BQE(L)

Input: a database D, a Boolean query $Q/0 \in L$

Question: $Q(D) \neq \emptyset$? (i.e., does *D* satisfies *Q*?)

Theorem: $QOT(L) \equiv_{L} BQE(L)$, where $L \in \{RA, DRC, TRC\}$

 $(\equiv_{l} means logspace-equivalent)$

(let us show this for domain relational calculus)

Theorem: $QOT(DRC) \equiv_{L} BQE(DRC)$

Proof: (\leq_L) Consider a database D, a k-ary query $Q = \{x_1, ..., x_k \mid \phi\}$, and a tuple $(t_1, ..., t_k)$

Let
$$Q_{\text{bool}} = \{ | \phi \wedge x_1 = t_1 \wedge x_2 = t_2 \wedge ... \wedge x_k = t_k \}$$

Clearly,
$$(t_1,...,t_k) \in \mathbb{Q}(D)$$
 iff $\mathbb{Q}_{bool}(D) \neq \emptyset$

 (\geq_1) Trivial – a Boolean domain RC query is a domain RC query

...henceforth, we focus on the Boolean Query Evaluation problem

Complexity Measures

Combined complexity – both D and Q are part of the input

Query complexity – fixed D, input Q

BQE[D](L)

Input: a Boolean query Q ∈ L

Question: $Q(D) \neq \emptyset$?

Data complexity – input D, fixed Q

BQE[Q](L)

Input: a database *D*

Question: $Q(D) \neq \emptyset$?

Complexity of RA, DRC, TRC

Theorem: For $L \in \{RA, DRC, TRC\}$ the following hold:

- BQE(L) is PSPACE-complete (combined complexity)
- BQE[D](L) is PSPACE-complete, for a fixed database D (query complexity)
- BQE[Q](L) is in LOGSPACE, for a fixed query Q ∈ L (data complexity)

Proof hints:

- Recursive algorithm that uses polynomial space in Q and logarithmic space in D
- Reduction from QSAT (a standard PSPACE-hard problem)

Evaluating (Boolean) DRC Queries

Eval (D, φ) – for brevity we write φ instead of $\{ | \varphi \}$

- If $\varphi = R(t_1,...,t_k)$, then YES iff $R(t_1,...,t_k) \in D$
- If $\varphi = \psi_1 \wedge \psi_2$, then YES iff Eval $(D, \psi_1) = YES$ and Eval $(D, \psi_2) = YES$
- If $\varphi = \neg \psi$, then NO iff Eval $(D, \psi) = YES$
- If $\varphi = \exists x \psi(x)$, then YES iff for some $t \in adom(D)$, Eval $(D, \psi(t)) = YES$

Lemma: It holds that

- Eval (D, φ) always terminates in fact, this is trivial
- Eval (D, φ) = YES iff $Q(D) \neq \emptyset$, where $Q = \{ | \varphi \}$
- Eval (D, φ) uses $O(|\varphi| \cdot \log |\varphi| + |\varphi|^2 \cdot \log |D|)$ space

Complexity of RA, DRC, TRC

Theorem: For each $L \in \{RA, DRC, TRC\}$ the following holds:

- BQE(L) is PSPACE-complete (combined complexity)
- BQE[D](L) is PSPACE-complete, for a fixed database D (query complexity)
- BQE[Q](L) is in LOGSPACE, for a fixed query Q ∈ L (data complexity)

Proof hints:

- Recursive algorithm that uses polynomial space in Q and logarithmic space in D
- Reduction from QSAT (a standard PSPACE-hard problem)
- Actually, BQE[Q](L) is in AC₀ ⊂ LOGSPACE (a highly parallelizable complexity class defined using Boolean circuits)

SAT(L)

Input: a query $Q \in L$

Question: is there a (finite) database D such that $Q(D) \neq \emptyset$?

EQUIV(L)

Input: two queries $Q_1 \in L$ and $Q_2 \in L$

Question: $Q_1 \equiv Q_2$? (i.e., $Q_1(D) = Q_2(D)$ for every (finite) database D?)

CONT(L)

Input: two queries $Q_1 \in L$ and $Q_2 \in L$

Question: $Q_1 \subseteq Q_2$? (i.e., $Q_1(D) \subseteq Q_2(D)$ for every (finite) database D?)

SAT(L)

Input: a query Q ∈ L

Question: is there a (finite) database *D* such that $Q(D) \neq \emptyset$?

EQUIV(L)

Input: two

Question:

these problems are important

for optimization purposes

tabase *D*?)

CONT(L)

Input: two queries $Q_1 \in L$ and $Q_2 \in L$

Question: $Q_1 \subseteq Q_2$? (i.e., $Q_1(D) \subseteq Q_2(D)$ for every (finite) database D?)

SAT(L)

Input: a query $Q \in L$

Question: is there a (finite) database *D* such that $Q(D) \neq \emptyset$?

- If the answer is no, then the input query Q makes no sense
- Query evaluation becomes trivial the answer is always NO!

EQUIV(L)

Input: two queries $Q_1 \in L$ and $Q_2 \in L$

Question: $Q_1 \equiv Q_2$? (i.e., $Q_1(D) = Q_2(D)$ for every (finite) database D?)

- Replace a query Q_1 with a query Q_2 that is easier to evaluate
- But, we have to be sure that $Q_1(D) = Q_2(D)$ for every database D

CONT(L)

Input: two queries $Q_1 \in L$ and $Q_2 \in L$

Question: $Q_1 \subseteq Q_2$? (i.e., $Q_1(D) \subseteq Q_2(D)$ for every (finite) database D?)

- Approximate a query Q_1 with a query Q_2 that is easier to evaluate
- But, we have to be sure that $Q_2(D) \subseteq Q_1(D)$ for every database D

SAT is Undecidable

Theorem: For $L \in \{RA, DRC, TRC\}$, SAT(L) is undecidable

Proof hint: By reduction from the halting problem.

Given a Turing machine M, we can construct a query $Q_M \in \mathbf{L}$ such that:

M halts on the empty string \Leftrightarrow there exists a database D such that $Q(D) \neq \emptyset$

Note: Actually, this result goes back to the 1950 when Boris A. Trakhtenbrot proved that the problem of deciding whether a first-order sentence has a finite model is undecidable

EQUIV and **CONT** are Undecidable

An easy consequence of the fact that SAT is undecidable is that:

Theorem: For $L \in \{RA, DRC, TRC\}$, EQUIV(L) and CONT(L) are undecidable

Proof: By reduction from the complement of SAT(L)

- Consider a query Q ∈ L i.e., an instance of SAT(L)
- Let Q_{\perp} be a query that is trivially unsatisfiable, i.e., $Q_{\perp}(D) = \emptyset$ for every D
- For example, when L = DRC, Q_{\perp} can be the query $\{ \mid \exists x \ R(x) \land \neg R(x) \}$
- Clearly, \mathbb{Q} is unsatisfiable $\Leftrightarrow \mathbb{Q} \equiv \mathbb{Q}_{\perp}$ (or even $\mathbb{Q} \subseteq \mathbb{Q}_{\perp}$)

Recap

- The main languages for querying relational databases are:
 - Relational Algebra (RA)
 - Domain Relational Calcuclus (DRC)
 - Tuple Relational Calculus (TRC)

$$RA = DRC = TRC$$

(under the active domain semantics)

- Evaluation is decidable, and highly tractable in data complexity
 - Foundations of the database industry
 - The core of SQL is equally expressive to RA/DRC/TRC

- Satisfiability, equivalence and containment are undecidable
 - Perfect query optimization is impossible

A Crucial Question

Are there interesting sublanguages of **RA/DRC/TRC** for which satisfiability, equivalence and containment are decidable?

Conjunctive Queries

- = $\{\sigma, \pi, \bowtie\}$ -fragment of relational algebra
- = relational calculus without \neg , \forall , \vee
- = simple SELECT-FROM-WHERE SQL queries (only AND and equality in the WHERE clause)

Syntax of Conjunctive Queries (CQ)

$$Q(\mathbf{x}) := \exists \mathbf{y} (R_1(\mathbf{v_1}) \land \dots \land R_m(\mathbf{v_m}))$$

- R_i (1 \leq i \leq m) are relations
- \mathbf{x} , \mathbf{y} , \mathbf{v}_1 , ..., \mathbf{v}_m are tuples of variables
- each variable mentioned in v_i (1 ≤ i ≤ m) appears either in x or y
- the variables in **x** are free called distinguished variables

It is very convenient to see conjunctive queries as rule-based queries of the form

$$Q(\mathbf{x}) := R_1(\mathbf{v_1}), \dots, R_m(\mathbf{v_m})$$

this is called the body of Q that can be seen as a set of atoms

List all the airlines

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	os

{BA, U2, OS}

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

 $\pi_{\text{airline}} \ \, \text{Flight}$

Q(z):- Flight(x,y,z)

 $\{z \mid \exists x \exists y \ Flight(x,y,z)\}\$

List the codes of the airports in London

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city	
	VIE	Vienna	
	LHR	London	
	LGW	London	
	LCA	Larnaca	
	GLA	Glasgow	
	EDI	Edinburgh	

$$\pi_{code}$$
 ($\sigma_{city='London'}$ Airport)

$$\{x \mid \exists y \ Airport(x, London) \land y = London\}$$

Q(x):- Airport(x,y), y = London

List the codes of the airports in London

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city	
	VIE	Vienna	
	LHR	London	
	LGW	London	
	LCA	Larnaca	
	GLA	Glasgow	
	EDI	Edinburgh	



 π_{code} ($\sigma_{city='London'}$ Airport)

 $\{x \mid \exists y \ Airport(x,London) \land y = London\}$

Q(x) :- Airport(x,London)

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	os

{U2}

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

 $\pi_{\text{airline}} \ \ ((\text{Flight} \ \bowtie_{\text{origin=code}} \ (\sigma_{\text{city='London'}} \ \ \text{Airport})) \bowtie_{\text{destination=code}} \ (\sigma_{\text{city='Glasgow'}} \ \ \text{Airport}))$

 $\{z \mid \exists x \exists y \exists u \exists v \ Airport(x,u) \land u = London \land Airport(y,v) \land v = Glasgow \land Flight(x,y,z)\}$

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	os

{U2}

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Homomorphism

- Semantics of conjunctive queries via the key notion of homomorphism
- A substitution from a set of symbols S to a set of symbols T is a function h : S →T
 i.e., h is a set of mappings of the form s → t, where s ∈ S and t ∈ T
- A homomorphism from a set of atoms A to a set of atoms B is a substitution
 h: terms(A) → terms(B) such that:
 - 1. t is a constant \Rightarrow h(t) = t
 - 2. $R(t_1,...,t_k) \in \mathbf{A} \Rightarrow h(R(t_1,...,t_k)) = R(h(t_1),...,h(t_k)) \in \mathbf{B}$

 $(\text{terms}(\mathbf{A}) = \{t \mid t \text{ is a variable or constant that occurs in } \mathbf{A}\})$

Exercise: Find the Homomorphisms

$$S_1 = \{P(x,y), P(y,z), P(z,x)\}$$
 X
 $S_2 = \{P(x,x)\}$
 X

$$\mathbf{S}_{3} = \{P(x,y), P(y,x), P(y,y)\}\$$
 $\mathbf{S}_{4} = \{P(x,y), P(y,x)\}\$
 $\mathbf{X} \longleftrightarrow \mathbf{Y}$

$$S_5 = \{P(x,y), P(y,z), P(z,w)\}\$$

$$x \longrightarrow y \longrightarrow z \longrightarrow w$$

Exercise: Find the Homomorphisms

$$S_{5} = \{P(x,y), P(y,z), P(z,w)\}$$

$$x \longrightarrow y \longrightarrow z \longrightarrow w$$

$$\{x \rightarrow x, y \rightarrow y, z \rightarrow z, w \rightarrow x\}$$

$$\{x \rightarrow x, y \rightarrow y, z \rightarrow x, w \rightarrow y\}$$

$$S_{1} = \{P(x,y), P(y,z), P(z,x)\}$$

$$x \longleftarrow y$$

$$\{x \rightarrow x, y \rightarrow y, z \rightarrow x, w \rightarrow y\}$$

$$\{x \rightarrow x, y \rightarrow y, z \rightarrow x, w \rightarrow y\}$$

$$\{x \rightarrow x, y \rightarrow y, z \rightarrow x, w \rightarrow y\}$$

$$\{x \rightarrow x, y \rightarrow y, z \rightarrow x, w \rightarrow y\}$$

$$\{x \rightarrow x, y \rightarrow y, z \rightarrow x, w \rightarrow y\}$$

$$\{x \rightarrow x, y \rightarrow y, z \rightarrow x, w \rightarrow y\}$$

$$\{x \rightarrow x, y \rightarrow y, z \rightarrow x, w \rightarrow y\}$$

$$\{x \rightarrow x, y \rightarrow y, z \rightarrow x, w \rightarrow y\}$$

$$\{x \rightarrow x, y \rightarrow y, z \rightarrow x, w \rightarrow y\}$$

$$\{x \rightarrow x, y \rightarrow y, z \rightarrow x, w \rightarrow y\}$$

Semantics of Conjunctive Queries

A match of a conjunctive query Q(x₁,...,x_k) :- body in a database D is a homomorphism h such that h(body) ⊆ D

• The answer to $Q(x_1,...,x_k)$:- body over D is the set of k-tuples $Q(D) := \{(h(x_1),...,h(x_k)) \mid h \text{ is a match of } Q \text{ in } D\}$

The answer consists of the witnesses for the distinguished variables of Q

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline		Airport	code	city
	VIE	LHR	BA			VIE	Vienna
	LHR	EDI	BA			LHR	London
	LGW	GLA	U2		_	LGW	London
	LCA	VIE	OS			LCA	Larnaca
	1						Glasgow
	EDI Edinburgh						
{x →	$\{x \to LGW, y \to GLA, z \to U2\}$						

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Complexity of CQ

Theorem: It holds that:

- BQE(CQ) is NP-complete (combined complexity)
- BQE[D](CQ) is NP-complete, for a fixed database D (query complexity)
- BQE[Q](CQ) is in LOGSPACE, for a fixed query Q ∈ CQ (data complexity)

Proof:

```
(NP-membership) Consider a database D, and a Boolean CQ \mathbb{Q}:- body Guess a substitution h: terms(body) \to terms(D)

Verify that h is a match of \mathbb{Q} in D, i.e., h(body) \subseteq D
```

(NP-hardness) Reduction from 3-colorability

(LOGSPACE-membership) Inherited from BQE[Q](DRC) – in fact, in AC₀

NP-hardness

(NP-hardness) Reduction from 3-colorability

3COL

Input: an undirected graph G = (V,E)

Question: is there a function c : {Red,Green,Blue} → V such that

 $(v,u) \in E \Rightarrow c(v) \neq c(u)$?

Lemma: G is 3-colorable \Leftrightarrow **G** can be mapped to **K**₃, i.e., **G** $\xrightarrow{\text{hom}}$

therefore, **G** is 3-colorable \Leftrightarrow there is a match of Q_G in $D = \{E(x,y), E(y,z), E(z,x)\}$ $\Leftrightarrow Q_G(D) \neq \emptyset$

the Boolean CQ that represents G

Complexity of CQ

Theorem: It holds that:

- BQE(CQ) is NP-complete (combined complexity)
- BQE[D](CQ) is NP-complete, for a fixed database D (query complexity)
- BQE[Q](CQ) is in LOGSPACE, for a fixed query Q ∈ CQ (data complexity)

Proof:

```
(NP-membership) Consider a database D, and a Boolean CQ \mathbb{Q}:- body Guess a substitution h: terms(body) \to terms(D)

Verify that h is a match of \mathbb{Q} in D, i.e., h(body) \subseteq D
```

(NP-hardness) Reduction from 3-colorability

(LOGSPACE-membership) Inherited from BQE[Q](DRC) – in fact, in AC₀

What About Optimization of CQs?

SAT(CQ)

Input: a query **Q** ∈ **CQ**

Question: is there a (finite) database D such that $Q(D) \neq \emptyset$?

EQUIV(CQ)

Input: two queries $Q_1 \in CQ$ and $Q_2 \in CQ$

Question: $Q_1 \equiv Q_2$? (i.e., $Q_1(D) = Q_2(D)$ for every (finite) database D?)

CONT(CQ)

Input: two queries $Q_1 \in CQ$ and $Q_2 \in CQ$

Question: $Q_1 \subseteq Q_2$? (i.e., $Q_1(D) \subseteq Q_2(D)$ for every (finite) database D?)

Canonical Database

Convert a conjunctive query Q into a database D[Q] – the canonical database of Q

• Given a conjunctive query of the form Q(x):- body, D[Q] is obtained from body by replacing each variable x with a new constant c(x) = x

• E.g., given Q(x,y) := R(x,y), P(y,z,w), R(z,x), then $D[Q] = \{R(\underline{x},\underline{y}), P(\underline{y},\underline{z},\underline{w}), R(\underline{z},\underline{x})\}$

• **Note:** The mapping c : {variables in body} \rightarrow {new constants} is a bijection, where c(body) = D[Q] and $c^{-1}(D[Q]) = body$

Satisfiability of CQs

SAT(CQ)

Input: a query $Q \in CQ$

Question: is there a (finite) database D such that $Q(D) \neq \emptyset$?

Theorem: A query $\mathbf{Q} \in \mathbf{CQ}$ is always satisfiable; thus, $SAT(\mathbf{CQ}) \in O(1)$ -time

Proof: Due to its canonical database $-Q(D[Q]) \neq \emptyset$

Equivalence and Containment of CQs

EQUIV(CQ)

Input: two queries $Q_1 \in CQ$ and $Q_2 \in CQ$

Question: $Q_1 \equiv Q_2$? (i.e., $Q_1(D) = Q_2(D)$ for every (finite) database D?)

CONT(CQ)

Input: two queries $Q_1 \in CQ$ and $Q_2 \in CQ$

Question: $Q_1 \subseteq Q_2$? (i.e., $Q_1(D) \subseteq Q_2(D)$ for every (finite) database D?)

$$Q_1 \equiv Q_2 \Leftrightarrow Q_1 \subseteq Q_2 \text{ and } Q_2 \subseteq Q_1$$

 $Q_1 \subseteq Q_2 \Leftrightarrow Q_1 \equiv (Q_1 \land Q_2)$

...thus, we can safely focus on CONT(CQ)

Homomorphism Theorem

A query homomorphism from $Q_1(x_1,...,x_k)$:- body₁ to $Q_2(y_1,...,y_k)$:- body₂ is a substitution h: terms(body₁) \rightarrow terms(body₂) such that:

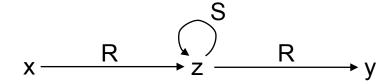
- 1. h is a homomorphism from body₁ to body₂
- 2. $(h(x_1),...,h(x_k)) = (y_1,...,y_k)$

Homomorphism Theorem: Let Q_1 and Q_2 be conjunctive queries. It holds that:

 $Q_1 \subseteq Q_2 \Leftrightarrow$ there exists a query homomorphism from Q_2 to Q_1

Homomorphism Theorem: Example

$$Q_1(x,y) := R(x,z), S(z,z), R(z,y)$$



$$Q_2(a,b) := R(a,c), S(c,d), R(d,b)$$

$$a \xrightarrow{R} c \xrightarrow{S} d \xrightarrow{R} b$$

We expect that $Q_1 \subseteq Q_2$. Why?

Homomorphism Theorem: Example

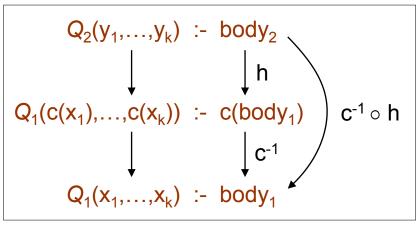
- h is a query homomorphism from Q₂ to Q₁ ⇒ Q₁ ⊆ Q₂
- But, there is no homomorphism from Q₁ to Q₂ ⇒ Q₁ ⊂ Q₂

Homomorphism Theorem: Proof

Assume that $Q_1(x_1,...,x_k)$:- body₁ and $Q_2(y_1,...,y_k)$:- body₂

 (\Rightarrow) $Q_1 \subseteq Q_2 \Rightarrow$ there exists a query homomorphism from Q_2 to Q_1

- Clearly, $(c(x_1),...,c(x_k)) \in Q_1(D[Q_1])$ recall that $D[Q_1] = c(body_1)$
- Since $Q_1 \subseteq Q_2$, we conclude that $(c(x_1),...,c(x_k)) \in Q_2(D[Q_1])$
- Therefore, there exists a homomorphism h such that $h(body_2) \subseteq D[Q_1] = c(body_1)$ and $h((y_1,...,y_k)) = (c(x_1),...,c(x_k))$
- By construction, $c^{-1}(c(body_1)) = body_1$ and $c^{-1}((c(x_1),...,c(x_k))) = (x_1,...,x_k)$
- Therefore, c⁻¹ ∘ h is a
 query homomorphism from Q₂ to Q₁

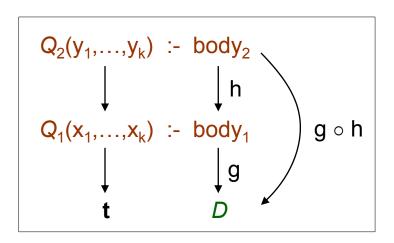


Homomorphism Theorem: Proof

Assume that $Q_1(x_1,...,x_k)$:- body₁ and $Q_2(y_1,...,y_k)$:- body₂

 (\Leftarrow) $Q_1 \subseteq Q_2 \Leftarrow$ there exists a query homomorphism from Q_2 to Q_1

- Consider a database D, and a tuple \mathbf{t} such that $\mathbf{t} \in \mathbf{Q}_1(D)$
- We need to show that $\mathbf{t} \in \mathbb{Q}_2(D)$
- Clearly, there exists a homomorphism g such that $g(body_1) \subseteq D$ and $g((x_1,...,x_k)) = \mathbf{t}$
- By hypothesis, there exists a query homomorphism h from Q₂ to Q₁
- Therefore, g(h(body₂)) ⊆ D and g(h((y₁,...,yk))) = t, which implies that t ∈ Q₂(D)



Existence of a Query Homomorphism

Theorem: Let Q_1 and Q_2 be conjunctive queries. The problem of deciding whether there exists a query homomorphism from Q_2 to Q_1 is NP-complete

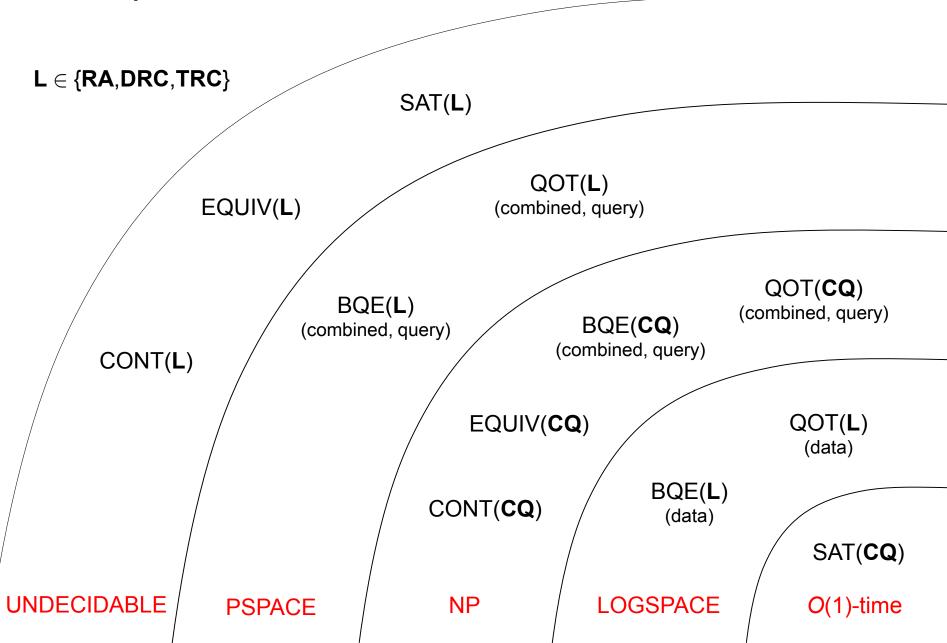
Proof:

(NP-membership) Guess a substitution, and verify that is a query homomorphism (NP-hardness) Straightforward reduction from BQE(CQ)

By applying the homomorphism theorem we get that:

Corollary: EQUIV(CQ) and CONT(CQ) are NP-complete

Recap



Minimizing Conjunctive Queries

Goal: minimize the number of joins in a query

- A conjunctive query Q_1 is minimal if there is no conjunctive query Q_2 such that:
 - 1. $Q_1 \equiv Q_2$
 - 2. Q_2 has fewer atoms than Q_1

 The task of CQ minimization is, given a conjunctive query Q, to compute a minimal one that is equivalent to Q

Minimization by Deletion

By exploiting the homomorphism theorem we can show the following:

Theorem: Consider a conjunctive query $Q_1(x_1,...,x_k)$:- body₁. If Q_1 is equivalent to a conjunctive query $Q_2(y_1,...,y_k)$:- body₂, where $|body_2| < |body_1|$, then Q_1 is equivalent to a query $Q_1(x_1,...,x_k)$:- body₃ such that body₃ \subseteq body₁

The above theorem says that to minimize a conjunctive query $Q_1(\mathbf{x})$:- body we simply need to remove some atoms from body

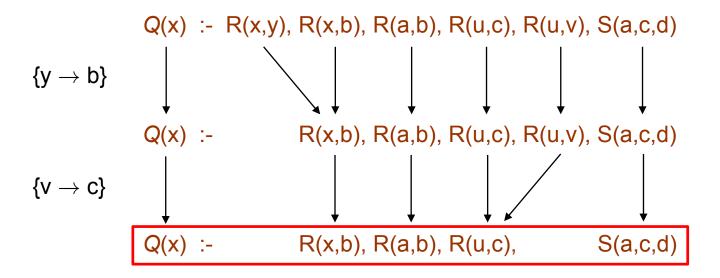
Minimization Procedure

```
\label{eq:minimization} \begin{tabular}{ll} Minimization($Q(x)$ :-- body) \\ Repeat until no change \\ choose an atom $\alpha \in body \\ if there is a query homomorphism from $Q(x)$ :-- body to $Q(x)$ :-- body \ {$\alpha$} \\ then body := body \ {$\alpha$} \\ Return $Q(x)$ :-- body \\ \end{tabular}
```

Note: if there is a query homomorphism from $Q(\mathbf{x})$:- body to $Q(\mathbf{x})$:- body \ { α }, then the two queries are equivalent since there is trivially a query homomorphism from the latter to the former query

Minimization Procedure: Example

(a,b,c,d are constants)



minimal query

Note: the mapping $x \rightarrow a$ is not valid since x is a distinguished variable

Uniqueness of Minimal Queries

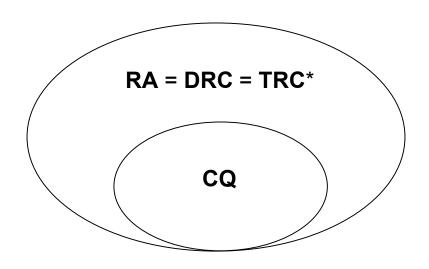
Natural question: does the order in which we remove atoms from the body of the input conjunctive query matter?

Theorem: Consider a conjunctive query Q. Let Q_1 and Q_2 be minimal conjunctive queries such that $Q_1 \equiv Q$ and $Q_2 \equiv Q$. Then, Q_1 and Q_2 are isomorphic (i.e., they are the same up to variable renaming)

Therefore, given a conjunctive query Q, the result of Minimization(Q) is unique (up to variable renaming) and is called the core of Q

Wrap-Up

- The main relational query languages RA/DRC/TRC
 - Evaluation is decidable foundations of the database industry
 - Perfect query optimization is impossible
- Conjunctive queries an important query language
 - All the relevant algorithmic problems are decidable
 - Query minimization



*under the active domain semantics

Associated Papers

 Ashok K. Chandra, Philip M. Merlin: Optimal Implementation of Conjunctive Queries in Relational Data Bases. STOC 1977: 77-90

Criterion for CQ containment/equivalence

 Martin Grohe: From polynomial time queries to graph structure theory. Commun. ACM 54(6): 104-112 (2011)

A general account of connections between structural properties of databases and languages that capture efficient queries over them

 Martin Grohe: Fixed-point definability and polynomial time on graphs with excluded minors. Journal of the ACM 59(5): 27 (2012)

We can capture PTIME on databases that satisfy certain structural (graph-theoretic) restrictions

Associated Papers

 Neil Immerman: Languages that Capture Complexity Classes. SIAM J. Comput. 16(4): 760-778 (1987)

Query languages that correspond to complexity classes

 Phokion G. Kolaitis, Moshe Y. Vardi: Conjunctive-Query Containment and Constraint Satisfaction. J. Comput. Syst. Sci. 61(2): 302-332 (2000)

A connection between CQs and a central AI problem of constraint satisfaction

 Leonid Libkin: The finite model theory toolbox of a database theoretician. PODS 2009: 65-76

A toolbox for reasoning about expressivity and complexity of query languages

Associated Papers

Leonid Libkin: Expressive power of SQL. Theor. Comput. Sci. 296(3): 379-404 (2003)

A specific application of the above toolbox for SQL

Moshe Y. Vardi: The Complexity of Relational Query Languages (Extended Abstract).
 STOC 1982: 137-146

Different types of complexity of database queries

 Christos H. Papadimitriou, Mihalis Yannakakis: On the Complexity of Database Queries. J. Comput. Syst. Sci. 58(3): 407-427 (1999)

A finer way of measuring complexity, between data and combined