Foundations of Relational Query Languages

Advanced Topics in Foundations of Databases, University of Edinburgh, 2016/17

Relational Model

 Many ad hoc models before 1970
— Hard to work with -

— Hard to reason about

* 1970: Relational Model by Edgar Frank Codd

— Data are stored in relations (or tables)
— Queried using a declarative language
— DBMS converts declarative queries into procedural queries that are

optimized and executed

« Key Advantages

- Simple and clean mathematical model (based on logic)

— Separation of declarative and procedural

Relational Databases

Flight origin destination | airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS
Airport | code city
VIE Vienna
LHR London
Constants LGW | London
VIE, LHR, ... LCA Larnaca
BA, U2, ... GLA Glasgow
Vienna, London, ... EDI | Edinburgh

Relational Databases

Flight | origin | destination | airline
VIE LHR BA
LHR EDI BA
Relations LGW GLA U2
LCA VIE OS
Airport | code city
VIE Vienna
LHR London
Constants LGW | London
VIE, LHR, ... LCA Larnaca
BA, U2, ... GLA Glasgow
Vienna, London, ... EDI | Edinburgh

Relational Databases

Flight | origin | destination | airline
VIE LHR BA
LHR EDI BA
Relations LGW GLA U2
LCA VIE OS
Airport | code city
VIE Vienna
LHR London
Constants LGW | London
VIE, LHR, ... LCA Larnaca
BA, U2, ... GLA Glasgow
Vienna, London, ... EDI | Edinburgh

Tuples

Relational atoms
Flight(LHR,EDI,BA)
Airport(LGW,London)

Querying: Relational Algebra

List all the airlines

Flight origin destination | airline Airport | code city
VIE LHR BA VIE Vienna
LHR EDI BA LHR London
LGW GLA U2 LGW London
LCA VIE OS LCA Larnaca
GLA | Glasgow
EDI | Edinburgh

Querying: Relational Algebra

List all the airlines

Flight origin destination | airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS
{
{BA, U2, OS}

Trairline F”ght

Airport | code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA | Glasgow
EDI | Edinburgh

Querying: Relational Algebra

List the codes of the airports in London

Flight origin destination | airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Airport | code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA | Glasgow
EDI | Edinburgh

Querying: Relational Algebra

List the codes of the airports in London

Flight origin destination | airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Airport | code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA | Glasgow
EDI | Edinburgh
U
{LHR, LGW}

Meode (Ocity:‘London’ Ai rport)

Querying: Relational Algebra

List the airlines that fly directly from London to Glasgow

Flight origin destination | airline Airport | code city
VIE LHR BA VIE Vienna
LHR EDI BA LHR London
LGW GLA U2 LGW London
LCA VIE OS LCA Larnaca
GLA | Glasgow
EDI | Edinburgh

Querying: Relational Algebra

List the airlines that fly directly from London to Glasgow

Flight origin destination | airline Airport | code city
VIE LHR BA VIE Vienna
LHR EDI BA LHR London
LGW GLA U2 LGW London
LCA VIE OS LCA Larnaca
GLA | Glasgow
EDI | Edinburgh

Mairline ((F“ght Norigin=code (Ocity=‘London’ Airport)) ™ destination=code (Gcity=‘GIasgow’ Airport))

Querying: Relational Algebra

List the airlines that fly directly from London to Glasgow

Aux | origin | destination | airline | code city code city
LGW GLA U2 LGW | London | GLA | Glasgow
{U2}

Mairline ((F“ght Morigin=code (Ocity=‘London’ Airport)) ™ destination=code (Gcity=‘GIasgow’ Airport))

- /
hd

defines the auxiliary relation Aux

Relational Algebra

« Selection: o

* Projection: r

* Cross product: x

* Natural join: x

« Rename: p

- Difference: — in bold are the primitive operators
* Union: U

* |ntersection: N

Formal definitions can be found in any database textbook

Querying: Domain Relational Calculus

List all the airlines

Flight origin destination | airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Airport | code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA | Glasgow
EDI | Edinburgh

Querying: Domain Relational Calculus

List all the airlines

Flight origin destination | airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS
{
{BA, U2, OS}

Airport | code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA | Glasgow
EDI | Edinburgh

{z | Ix3y Flight(x,y,z)}

Querying: Domain Relational Calculus

List the codes of the airports in London

Flight origin destination | airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Airport | code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA | Glasgow
EDI | Edinburgh

Querying: Domain Relational Calculus

List the codes of the airports in London

Flight origin destination | airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Airport | code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA | Glasgow
EDI | Edinburgh
U
{LHR, LGW}

{x | Jy Airport(x,y) A y = London}

Querying: Domain Relational Calculus

List the airlines that fly directly from London to Glasgow

Flight origin destination | airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Airport | code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA | Glasgow
EDI | Edinburgh

Querying: Domain Relational Calculus

List the airlines that fly directly from London to Glasgow

Flight origin destination | airline Airport | code city
VIE LHR BA VIE Vienna
LHR EDI BA LHR London
LGW GLA U2 LGW London
LCA VIE OS LCA Larnaca
GLA | Glasgow
@ EDI | Edinburgh

U2}

{z | xdydudv Airport(x,u) A u = London A Airport(y,v) A v = Glasgow A Flight(x,y,z)}

Domain Relational Calculus

Xy X | @}

\

first-order formula with

free variables {x,,...,X.}

But, we can express “problematic” queries, i.e., depend on the domain
{x [vy R(xy)} {x [=R(x)} {xy | R(x) vV R(y)}

...thus, we adopt the active domain semantics — quantified variables range over

the active domain, i.e., the constants occurring in the input database

Algebra = Calculus

A fundamental theorem (assuming the active domain semantics):

Theorem: The following query langauges are equally expressive
» Relational Algebra (RA)
* Domain Relational Calculus (DRC)
» Tuple Relational Calculus (TRC)

Note: Tuple relational calculus is the declarative language introduce by Codd. Domain

relational calculus has been introduced later as a formalism closer to first-order logic

Quiz!

Is Glasgow reachable from Vienna?

Flight origin destination | airline Airport | code city
VIE LHR BA VIE Vienna
LHR EDI BA LHR London
LGW GLA U2 LGW London
LCA VIE OS LCA Larnaca
GLA | Glasgow
Edinburgh EDI | Edinburgh
Glasgow
London / Recursive query — not expressible in RA/DRC/TRC

1 (unless we bound the number of intermediate stops)

/ Larnaca

Vienna

Complexity of Query Languages

« The goal is to understand the complexity of evaluating a query over a database
* Our main technical tool is complexity theory

* What to measure? Queries may have a large output, and it would be unfair to

count the output as “complexity”

» We therefore consider the following decision problems:
— Query Output Tuple (QOT)
— Boolean Query Evaluation (BQE)

A Crash Course on Complexity Theory

we are going to recall some fundamental notions from complexity theory that will be

heavily used in the context of this course — details can be found in the standard textbooks

Deterministic Turing Machine (DTM)

M = (S, /\, r, 6, So» Saccept’ Sreject)

« Sis the set of states

* Ais the input alphabet, not containing the blank symbol L
[isthe tape alphabet, where LU el andAC T

e 0:SxI —» SxIx{LR}

* sy is the initial state

* S

accept is the accept state

* Sreject is the reject state, where s, # Sreject

Deterministic Turing Machine (DTM)

M = (S,\,T,0, s s S

accepts reject)

O(s4, a) = (sy, B, R)

IF at some time instant 1 the machine is in sate s,, the cursor
points to cell K, and this cell contains a
THEN at instant 1+1 the machine is in state s,, cell k contains J3,

and the cursor points to cell k+1

Nondeterministic Turing Machine (NTM)

M = (S, /\, r, 6, So» Saccept’ Sreject)

« Sis the set of states

* Ais the input alphabet, not containing the blank symbol L
[isthe tape alphabet, where LU el andAC T

° a:sxr_)Zle'x{L,R}

* sy is the initial state

* S

accept is the accept state

* Sreject is the reject state, where s, # Sreject

Turing Machine Configuration

A perfect description of the machine at a certain point in the computation

1 0 1 1 0 1 1 - =

-

is represented as a string: 1011s011

« Initial configuration on input w,,...,w,, — SgW4,...,W,
* Accepting configuration — Uy,...,US,cceptUkets- s Ukem

* Rejecting configuration — uy,...,U S iectUie1s--sUkem

Turing Machine Computation

Deterministic Nondeterministic

SoW1, ..., W, SoW1,. .-, Wi,

computation path

the next configuration is unique computation tree

Deciding a Problem

(recall that an instance of a decision problem 1 is encoded as a word over a certain

alphabet A — thus, I is a set of words over A, i.e., [1 C A¥)

ADTM M = (S, A, T, B, Sp, Saceepts Sreject) dECIdES @ problem T if, for every w € A™

* Moninputw haltsin s, ifw €Tl

* Moninputw haltsin s if w &I
® SOW ® Sow
b 4) 4
® ®

w c [l

usacceptv usrejectv

Deciding a Problem

ANTM M = (S, A\, T, B, Sy, Saccept: Sreject) dECIdES @ problem T if, for every w € A™

The computation tree of M on input w is finite

There exists at least one accepting computation path if w € I

There is no accepting computation path if w & I

SoW SoW
w <[l w & [

u Srejectv
u Srejectv

u Sacc:eptv u SrejectV u Srejectv

Complexity Classes

Consider a functionf: N — N

TIME(f(n))

{M | Mis decided by some DTM in time O(f(n))}

NTIME(f(n)) = {1 |is decided by some NTM in time O(f(n))}

SPACE(f(n)) = {ll]is decided by some DTM using space O(f(n))}

NSPACE(f(n)) = {I1|is decided by some NTM using space O(f(n))}

Complexity Classes

« We can now recall the standard time and space complexity classes:

PTIME = Ueo TIME(nY)
NP = Ueo NTIME(nK)
EXPTIME = Uko TIME2™)
NEXPTIME = Ueo NTIME(2™)
LOGSPACE = SPACE(log n) } these definitions are relying on
two-tape Turing machines with a
NLOGSPACE = NSPACE(log n) read-only and a read/write tape
PSPACE = Uwo SPACE(nY)
EXPSPACE = Ueo SPACE(2™)

» For every complexity class C we can define its complementary class

coC = {A*\ N[N € C}

An Alternative Definition for NP

Theorem: Consider a problem 1 C A*. The following are equivalent:
 [1eNP
« There is a relation R C A* x A* that is polynomially decidable such that

M = {u | there exists w such that [w| < |u|kand (u,w) € R}

/

witness or certificate {xy e A*| (x,y) € R} € PTIME

Example:
3SAT ={o | ¢ is a 3CNF formula that is satisfiable}
={op | ¢ is a 3CNF for which 3 assignment a such that |a| < |¢| and (¢,a) € R}

where R = {(¢,0) | a is a satisfying assignment for ¢} € PTIME

Relationship Among Complexity Classes

LOGSPACE C NLOGSPACE C PTIME C NP, coNP C

PSPACE C EXPTIME C NEXPTIME, coNEXPTIME C ...

Some useful notes:

* For a deterministic complexity class C, coC =C

« coNLOGSPACE = NLOGSPACE

* Itis generally believed that PTIME # NP, but we don’t know

« PTIME c EXPTIME = at least one containment between them is strict
« PSPACE = NPSPACE, EXPSPACE = NEXPSPACE, etc.

* But, we don’t know whether LOGSPACE = NLOGSPACE

Complete Problems

* These are the hardest problems in a complexity class

« A problem that is complete for a class C, it is unlikely to belong in a lower class

A problem I'lis complete for a complexity class C, or simply C-complete, if:
1. MeC
2. llis C-hard, i.e., every problem [T € C can be efficiently reduced to I

/

there exists a polynomial time algorithm (resp., logspace algorithm)

that computes a function f such that w € [T < f(w) € I'1 —in this

case we write [T" <, N (resp., I <, N)

 To show that Il is C-hard it suffices to reduce some C-hard problem I to it

Some Complete Problems

 NP-complete
— SAT (satisfiability of propositional formulas)
— Many graph-theoretic problems (e.g., 3-colorability)
— Traveling salesman

— eftc.

« PSPACE-complete
— Quantified SAT (or simply QSAT)
— Equivalence of two regular expressions
— Many games (e.g., Geography)

— etc.

Back to Query Languages

Complexity of Query Languages

« The goal is to understand the complexity of evaluating a query over a database
* Our main technical tool is complexity theory

* What to measure? Queries may have a large output, and it would be unfair to

count the output as “complexity”

» We therefore consider the following decision problems:
— Query Output Tuple (QOT)
— Boolean Query Evaluation (BQE)

Complexity of Query Languages

Some useful notation:

« Given a database D, and a query Q, Q(D) is the answer to Q over D
« adom(D) is the active domain of D, i.e., the constants occurring in D
« We write Q/k for the fact that the arity of Qis k > 0

L is some query language; for example, RA, DRC, etc. — we will see several query

languages in the context of this course

QOT(L)
Input: a database D, a query Q/k € L, a tuple of constants t € adom(D)k
Question: t ¢ Q(D)?

Complexity of Query Languages

Some useful notation:

« Given a database D, and a query Q, Q(D) is the answer to Q over D
« adom(D) is the active domain of D, i.e., the constants occurring in D
« We write Q/k for the fact that the arity of Qis k > 0

L is some query language; for example, RA, DRC, etc. — we will see several query

languages in the context of this course

BQE(L)
Input: a database D, a Boolean query Q/0 € L
Question: Q(D) # 0? (i.e., does D satisfies Q7?)

Complexity of Query Languages

QOT(L)
Input: a database D, a query Q/k € L, a tuple of constants t € adom(D)k
Question: t ¢ Q(D)?

BQE(L)
Input: a database D, a Boolean query Q/0 € L
Question: Q(D) # 0? (i.e., does D satisfies Q7?)

Theorem: QOT(L) =, BQE(L), where L € {RA, DRC, TRC}

(=_means logspace-equivalent)

Complexity of Query Languages

(let us show this for domain relational calculus)

Theorem: QOT(DRC) =, BQE(DRC)
Proof: (<) Consider a database D, a k-ary query Q = {x,,...,x, | ®}, and a tuple (t,,....t,)
Let Quooi ={ @A X =t AX = A AXE)

Clearly, (t,,...,t,) € Q(D) iff Q.. (D)#0

(>,) Trivial — a Boolean domain RC query is a domain RC query

...henceforth, we focus on the Boolean Query Evaluation problem

Complexity Measures

Combined complexity — both D and Q are part of the input

Query complexity — fixed D, input Q

Data complexity — input D, fixed Q

BQE[D](L)
Input: a Boolean query Q € L
Question: Q(D) # (?

BQE[Q](L)
Input: a database D
Question: Q(D) # 0?

Complexity of RA, DRC, TRC

Theorem: For L € {RA, DRC, TRC} the following hold:
« BQE(L) is PSPACE-complete (combined complexity)
« BQE[D](L) is PSPACE-complete, for a fixed database D (query complexity)
« BQE[Q](L) is in LOGSPACE, for a fixed query Q € L (data complexity)

Proof hints:
» Recursive algorithm that uses polynomial space in Q and logarithmic space in D
* Reduction from QSAT (a standard PSPACE-hard problem)

Evaluating (Boolean) DRC Queries

Eval(D,¢) — for brevity we write ¢ instead of { | ¢}

. If9=R(,...t), then YES iff R(t,,....t;) €D

 Ifo=y,; ANy, then YES iff Eval(D,y,) = YES and Eval(D,y,) =YES

 If o = -y, then NO iff Eval(D,p)=YES

« If o = Ix y(x), then YES iff for some t € adom(D), Eval(D,y(t)) = YES

Lemma: It holds that
« Eval(D,9) always terminates — in fact, this is trivial
- Eval(D,p) =YES iff Q(D)# (), where Q ={| ¢}
* Eval(D,9) uses O(|9| - log |9 + |9|*- log |D|) space

Complexity of RA, DRC, TRC

Theorem: For each L € {RA, DRC, TRC} the following holds:
« BQE(L) is PSPACE-complete (combined complexity)
« BQE[D](L) is PSPACE-complete, for a fixed database D (query complexity)
« BQE[Q](L) is in LOGSPACE, for a fixed query Q € L (data complexity)

Proof hints:

» Recursive algorithm that uses polynomial space in Q and logarithmic space in D
* Reduction from QSAT (a standard PSPACE-hard problem)

« Actually, BQE[Q](L) is in AC, C LOGSPACE (a highly parallelizable complexity

class defined using Boolean circuits)

Other Important Algorithmic Problems

SAT(L)
Input: a query Q € L
Question: is there a (finite) database D such that Q(D) # 0?

EQUIV(L)
Input: two queries Q, e Land Q, € L
Question: Q, = Q,? (i.e., Q,(D) = Q,(D) for every (finite) database D?)

CONT(L)
Input: two queries Q, e Land Q, € L
Question: Q, C Q,? (i.e., Q(D) C Q,(D) for every (finite) database D?)

Other Important Algorithmic Problems

these problems are important

for optimization purposes

Other Important Algorithmic Problems

SAT(L)
Input: aquery Q €L
Question: is there a (finite) database D such that Q(D) # 0?

» If the answer is no, then the input query Q makes no sense

* Query evaluation becomes trivial — the answer is always NO!

Other Important Algorithmic Problems

EQUIV(L)
Input: two queries Q, e Land Q, € L
Question: Q, = Q,? (i.e., Q,(D) = Q,(D) for every (finite) database D?)

Replace a query Q, with a query Q, that is easier to evaluate

« But, we have to be sure that Q,(D) = Q,(D) for every database D

Other Important Algorithmic Problems

CONT(L)
Input: two queries Q, e Land Q, € L
Question: Q, C Q,? (i.e., Q,(D) C Q,(D) for every (finite) database D?)

Approximate a query Q, with a query Q, that is easier to evaluate

« But, we have to be sure that Q,(D) C Q,(D) for every database D

SAT is Undecidable

Theorem: For L € {RA, DRC, TRC}, SAT(L) is undecidable

Proof hint: By reduction from the halting problem.

Given a Turing machine M, we can construct a query Q,, € L such that:

M halts on the empty string < there exists a database D such that Q(D) # ()

Note: Actually, this result goes back to the 1950 when

Boris A. Trakhtenbrot proved that the problem of deciding

whether a first-order sentence has a finite model is undecidable

EQUIV and CONT are Undecidable

An easy consequence of the fact that SAT is undecidable is that:

Theorem: For L € {RA, DRC, TRC}, EQUIV(L) and CONT(L) are undecidable

Proof: By reduction from the complement of SAT(L)

« Consider a query Q € L —i.e., an instance of SAT(L)
« Let Q, be a query that is trivially unsatisfiable, i.e., Q,(D) = () for every D
« For example, when L = DRC, Q, can be the query { | 3x R(x) A =R(x)}

« Clearly, Q is unsatisfiable & Q= Q, (oreven Q C Q)

Recap

« The main languages for querying relational databases are:
— Relational Algebra (RA)
— Domain Relational Calcuclus (DRC) RA =DRC =TRC

— Tuple Relational Calculus (TRC) (under the active domain semantics)

« Evaluation is decidable, and highly tractable in data complexity
— Foundations of the database industry
— The core of SQL is equally expressive to RA/DRC/TRC

« Satisfiability, equivalence and containment are undecidable

— Perfect query optimization is impossible

A Crucial Question

Are there interesting sublanguages of RA/DRC/TRC for which

satisfiability, equivalence and containment are decidable?

Conjunctive Queries
= {o,m,x}-fragment of relational algebra

= relational calculus without —, V, Vv

= simple SELECT-FROM-WHERE SQL queries
(only AND and equality in the WHERE clause)

Syntax of Conjunctive Queries (CQ)

Q(x) = 3y (Ry(V4) A - A Ry(Vn))

« R, (1 <i<m)are relations
* X,Y, Vy, ..., V,, are tuples of variables
« each variable mentioned in v; (1 <i < m) appears eitherin x ory

« the variables in x are free called distinguished variables

It is very convenient to see conjunctive queries as rule-based queries of the form

Q(X) - R1(V1)a e 1Rm(vm)

- /
e

this is called the body of Q that can be seen as a set of atoms

Conjunctive Queries: Example 1

List all the airlines

Flight origin destination | airline Airport | code city

VIE LHR BA VIE Vienna

LHR EDI BA LHR London

LGW GLA U2 LGW London

LCA VIE OS LCA Larnaca

GLA | Glasgow
@ EDI | Edinburgh

{BA, U2, OS}
Trairline F“ght

{z | 3x3y Flight(x,y,z)}

Q(z) :- Flight(x,y,z)

Conjunctive Queries: Example 2

List the codes of the airports in London

Flight origin destination | airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Meode (Gcity:‘London’ Alrport)

{x | Ay Airport(x,London) A y = London}

Airport | code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA | Glasgow
EDI | Edinburgh

@

{LHR, LGW}

Q(x) :- Airport(x,y), y = London

Conjunctive Queries: Example 2

List the codes of the airports in London

Flight origin destination | airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Meode (Ocity:‘London’ Alrport)

{x | Ay Airport(x,London) A y = London}

Airport | code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA | Glasgow
EDI | Edinburgh
U
{LHR, LGW}

Q(x) :- Airport(x,London)

Conjunctive Queries: Example 3

List the airlines that fly directly from London to Glasgow

Flight origin destination | airline Airport | code city
VIE LHR BA VIE Vienna
LHR EDI BA LHR London
LGW GLA U2 LGW London
LCA VIE OS LCA Larnaca
GLA | Glasgow
@ EDI | Edinburgh

U2}

Mairline ((F“ght l>qorigin:code (Ocity:‘London’ Alrport)) ™ destination=code (Gcity:‘GIasgow’ AIFpOI’t))

{z | Ixdydu3v Airport(x,u) A u = London A Airport(y,v) A v = Glasgow A Flight(x,y,z)}

Conjunctive Queries: Example 3

List the airlines that fly directly from London to Glasgow

Flight origin destination | airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS
U
{U2}

Airport | code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA | Glasgow
EDI | Edinburgh

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Homomorphism

Semantics of conjunctive queries via the key notion of homomorphism

A substitution from a set of symbols S to a set of symbols T is a function h : S —T

i.e., his a set of mappings of the forms — t, wheres € Sandte T

A homomorphism from a set of atoms A to a set of atoms B is a substitution
h : terms(A) — terms(B) such that:

1. tisaconstant = h(t) =t

2. R(t4,....t) € A = h(R(,,...,t,)) = R(h(t,),...,h(t,)) € B

(terms(A) = {t | t is a variable or constant that occurs in A})

Exercise: Find the Homomorphisms

S1 = {P(X’y)’ P(y,Z), P(Z’X)} Y SZ

AN

X

wn
w
|

i)

S; = {Pxy), P(y,2), P(zw);

{P(x.x)} XD

{P(x,y), P(y,x), P(y.y)} Sy = {PXy), P(y:x)}

X >y

Exercise: Find the Homomorphisms

SS = {P(X’y)’ P(y,Z), P(Z’W)}

X >y > 7 > W

{x—>x,y—>y,z—>z,W—iy\{x_)x,yay,zex,wey}

S1 = {P(X’y)’ P(y,Z), P(Z’X)} Y S4 = {P(X,y), P(y,X)}

/\ X -y

X Z

{X%y,y%X,ZMX’y_)y}

SZ = {P(X’X)} X — S3 = {P(X’y)’ P(y’X)’ P(y’y)}

{x >y} ¥ < =yi>
{X—>X,y—>x}

Semantics of Conjunctive Queries

« A match of a conjunctive query Q(x,,...,X,) - body in a database D is a

homomorphism h such that h(body) C D

 The answer to Q(x4,...,X,) - body over D is the set of k-tuples
Q(D) = {(h(X4),..., h(x,)) | h is a match of Q in D}

« The answer consists of the witnesses for the distinguished variables of Q

Conjunctive Queries: Example

List the airlines that fly directly from London to Glasgow

Flight origin destination | airline Airport | code city
VIE LHR BA VIE Vienna
LHR EDI BA LHR London
LGW GLA U2 LGW London
LCA VIE OS LCA Larnaca
GLA | Glasgow
EDI | Edinburgh

{x—>LGW,y > GLA, z > U2}

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Complexity of CQ

Theorem: It holds that:
« BQE(CQ) is NP-complete (combined complexity)
 BQE[D](CQ) is NP-complete, for a fixed database D (query complexity)
« BQE[Q](CQ) is in LOGSPACE, for a fixed query Q € CQ (data complexity)

Proof:
(NP-membership) Consider a database D, and a Boolean CQ Q :- body

Guess a substitution h : terms(body) — terms(D)
Verify that h is a match of Q in D, i.e., h(body) C D

(NP-hardness) Reduction from 3-colorability

(LOGSPACE-membership) Inherited from BQE[Q](DRC) — in fact, in AC,

NP-hardness

(NP-hardness) Reduction from 3-colorability

3COL
Input: an undirected graph G = (V,E)
Question: is there a function c : {Red,Green,Blue} — V such that

(v,u) € E = c(v) # c(u)?

h
Lemma: G is 3-colorable < G can be mappedto K, i.e., G SN

therefore, G is 3-colorable < there is a match of Qg in D = {E(x,y),E(y,z),E(z,x)}

o Qg(D)#0 \

the Boolean CQ that represents G

Complexity of CQ

Theorem: It holds that:
« BQE(CQ) is NP-complete (combined complexity)
 BQE[D](CQ) is NP-complete, for a fixed database D (query complexity)
« BQE[Q](CQ) is in LOGSPACE, for a fixed query Q € CQ (data complexity)

Proof:
(NP-membership) Consider a database D, and a Boolean CQ Q :- body

Guess a substitution h : terms(body) — terms(D)
Verify that h is a match of Q in D, i.e., h(body) C D

(NP-hardness) Reduction from 3-colorability

(LOGSPACE-membership) Inherited from BQE[Q](DRC) — in fact, in AC,

What About Optimization of CQs?

SAT(CQ)
Input: a query Q € CQ
Question: is there a (finite) database D such that Q(D) # 0?

EQUIV(CQ)
Input: two queries Q, € CQand Q, € CQ
Question: Q, = Q,? (i.e., Q,(D) = Q,(D) for every (finite) database D?)

CONT(CQ)
Input: two queries Q, € CQ and Q, € CQ
Question: Q, C Q,? (i.e., Q(D) C Q,(D) for every (finite) database D?)

Canonical Database

Convert a conjunctive query Q into a database D[Q] — the canonical database of Q

Given a conjunctive query of the form Q(x) :- body, D[Q] is obtained from body by

replacing each variable x with a new constant c(x) = x

E.g., given Q(x,y) :- R(x,y), P(y,z,w), R(z,x), then D[Q] = {R(x,Y), P(v,z,w), R(z,x)}

Note: The mapping c : {variables in body} — {new constants} is a bijection, where
c(body) = D[Q] and ¢c'(D[Q]) = body

Satisfiability of CQs

SAT(CQ)
Input: a query Q € CQ
Question: is there a (finite) database D such that Q(D) # (?

Theorem: A query Q € CQ is always satisfiable; thus, SAT(CQ) € O(1)-time

Proof: Due to its canonical database — Q(D[Q]) # ()

Equivalence and Containment of CQs

EQUIV(CQ)
Input: two queries Q, € CQand Q, € CQ
Question: Q, = Q,? (i.e., Q,(D) = Q,(D) for every (finite) database D?)

CONT(CQ)
Input: two queries Q, € CQ and Q, € CQ
Question: Q, C Q,? (i.e., Q,(D) C Q,(D) for every (finite) database D?)

Q1EQ2 = Q1§Q2 and ngQ']
QCQ & Q=(QAQ)

...thus, we can safely focus on CONT(CQ)

Homomorphism Theorem

A query homomorphism from Q,(x4,...,x,) :- body, to Q,(y4,...,y,) :- body, is a

substitution h : terms(body,) — terms(body,) such that:

1. his a homomorphism from body, to body,

2. (h(xq),-..h(x)) = (¥1,---.¥)

Homomorphism Theorem: Let Q, and Q, be conjunctive queries. It holds that:

Q, € Q, < there exists a query homomorphism from Q, to Q,

Homomorphism Theorem: Example

Q(xy) - R(x,2), S(z,z), R(z,y)

We expect that Q; C Q,. Why?

Homomorphism Theorem: Example

Q4(x,y) - R(x,2), S(z,z), R(z,y)

A

Q,(a,b) :- R(a,c), S(c,d), R(d,b)

A

A

A

A

A

A

h={a—>x,b>y,c—>zd->2z}

h is a query homomorphism from Q,to Q, = Q, C Q,

But, there is no homomorphism from Q,to Q, = Q, C Q,

Homomorphism Theorem: Proof

Assume that Q,(x,,...,x,) :- body, and Q,(y4,...,y,) - body,

(=) Q, € Q, = there exists a query homomorphism from Q, to Q,
« Clearly, (c(xq),...,c(xy)) € Q(D[Q,]) — recall that D[Q,] = c(body,)
« Since Q, C Q,, we conclude that (c(x,),...,c(x,)) € Q,(D[Q,])

« Therefore, there exists a homomorphism h such that h(body,) C D[Q,] = c(body,)
and h((yy---,Yx)) = (c(Xq),---,C(X))

« By construction, c-'(c(body,)) = body, Qx(Y1,---,¥i) - body,
and c'((c(Xq),..-,c(X,))) = (Xq5---,%) ! | h

- Therefore,c’ohis a Q4(c(X4),...,c(%)) :- c(bodyy) | cloh
query homomorphism from Q, to Q, ! ! c’
Q4 (Xq,...,X,) :- body,

Homomorphism Theorem: Proof

Assume that Q,(x,,...,x,) :- body, and Q,(y4,...,y,) - body,

(<) Q, € Q, <« there exists a query homomorphism from Q, to Q,

« Consider a database D, and a tuple t such thatt € Q,(D)

* We need to show that t € Q,(D)

« Clearly, there exists a homomorphism g such that g(body,) C D and g((x4,...,X,)) = t
* By hypothesis, there exists a query homomorphism h from Q, to Q,

« Therefore, g(h(body,)) C D and

g(h((yy,...,yJ))) = t, which implies that Qx(Y1,---»¥x) - body,
t € QD) | | h
Q4(X4,...,%) - body, goh
g
¢ D

Existence of a Query Homomorphism

Theorem: Let Q, and Q, be conjunctive queries. The problem of deciding whether

there exists a query homomorphism from Q, to Q, is NP-complete

Proof:

(NP-membership) Guess a substitution, and verify that is a query homomorphism
(NP-hardness) Straightforward reduction from BQE(CQ)

By applying the homomorphism theorem we get that:

Corollary: EQUIV(CQ) and CONT(CQ) are NP-complete

Recap

L < {RA,DRC,TRC}

SAT(L)

QOT(L)

(combined, query)

EQUIV(L)

QOT(CQ)
BQE(L) (combined, query)
(combined, query)

BQE(CQ)
(combined, query)

EQUIV(CQ) QOT(L)

(data)

BQE(L)

SAT(CQ)

UNDECIDABLE NP LOGSPACE

PSPACE O(1)-time

Minimizing Conjunctive Queries

Goal: minimize the number of joins in a query

A conjunctive query Q, is minimal if there is no conjunctive query Q, such that:
1. Q1 = Qz

2. Q, has fewer atoms than Q,

The task of CQ minimization is, given a conjunctive query Q, to compute a minimal

one that is equivalent to Q

Minimization by Deletion

By exploiting the homomorphism theorem we can show the following:

Theorem: Consider a conjunctive query Q,(x,,...,%,) :- body,.
If Q,is equivalent to a conjunctive query Q,(y,,...,yy) :- body,, where |body,| < |body,|,
then Q, is equivalent to a query Q,(x4,...,x,) :- body,;such that body; C body,

The above theorem says that to minimize a conjunctive query Q,(x) :- body we simply

need to remove some atoms from body

Minimization Procedure

Minimization(Q(x) :- body)
Repeat until no change
choose an atom a € body
if there is a query homomorphism from Q(x) :- body to Q(x) :- body \ {a}

then body := body \ {a}

Return Q(x) :- body

Note: if there is a query homomorphism from Q(x) :- body to Q(x) :- body \ {a},
then the two queries are equivalent since there is trivially a query homomorphism

from the latter to the former query

Minimization Procedure: Example

(a,b,c,d are constants)

Q(x) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

{y — b} J J
(x) R(x‘:b), R(a‘,’b), R(u‘:c), R(u,v), S(a,;,d)

{v — c} /

R(x,b), R(a,b), R(u,c), S(a,c,d)

®

2
=

minimal query

Note: the mapping x — a is not valid since x is a distinguished variable

Uniqueness of Minimal Queries

Natural question: does the order in which we remove atoms from the body of the

input conjunctive query matter?

Theorem: Consider a conjunctive query Q. Let Q, and Q, be minimal conjunctive
queries such that Q, = Q and Q,= Q. Then, Q, and Q, are isomorphic (i.e., they are

the same up to variable renaming)

Therefore, given a conjunctive query Q, the result of Minimization(Q) is unique (up

to variable renaming) and is called the core of Q

Wrap-Up

« The main relational query languages — RA/DRC/TRC
— Evaluation is decidable — foundations of the database industry

— Perfect query optimization is impossible

« Conjunctive queries — an important query language
— All the relevant algorithmic problems are decidable

— Query minimization

RA = DRC = TRC*

*under the active domain semantics

Associated Papers

« Ashok K. Chandra, Philip M. Merlin: Optimal Implementation of Conjunctive Queries
in Relational Data Bases. STOC 1977: 77-90

Criterion for CQ containment/equivalence

« Martin Grohe: From polynomial time queries to graph structure theory. Commun.
ACM 54(6): 104-112 (2011)
A general account of connections between structural properties of databases and
languages that capture efficient queries over them

« Martin Grohe: Fixed-point definability and polynomial time on graphs with excluded

minors. Journal of the ACM 59(5): 27 (2012)

We can capture PTIME on databases that satisfy certain structural (graph-theoretic)
restrictions

Associated Papers

* Neil Immerman: Languages that Capture Complexity Classes. SIAM J. Comput.
16(4): 760-778 (1987)

Query languages that correspond to complexity classes

» Phokion G. Kolaitis, Moshe Y. Vardi: Conjunctive-Query Containment and Constraint
Satisfaction. J. Comput. Syst. Sci. 61(2): 302-332 (2000)

A connection between CQs and a central Al problem of constraint satisfaction

» Leonid Libkin: The finite model theory toolbox of a database theoretician. PODS
2009: 65-76

A toolbox for reasoning about expressivity and complexity of query languages

Associated Papers

» Leonid Libkin: Expressive power of SQL. Theor. Comput. Sci. 296(3): 379-404
(2003)

A specific application of the above toolbox for SQL

« Moshe Y. Vardi: The Complexity of Relational Query Languages (Extended Abstract).
STOC 1982: 137-146

Different types of complexity of database queries

» Christos H. Papadimitriou, Mihalis Yannakakis: On the Complexity of Database
Queries. J. Comput. Syst. Sci. 58(3): 407-427 (1999)

A finer way of measuring complexity, between data and combined

