
Foundations of Relational Query Languages

Advanced Topics in Foundations of Databases, University of Edinburgh, 2016/17

Relational Model

• Many ad hoc models before 1970

− Hard to work with

− Hard to reason about

• 1970: Relational Model by Edgar Frank Codd

− Data are stored in relations (or tables)

− Queried using a declarative language

− DBMS converts declarative queries into procedural queries that are

optimized and executed

• Key Advantages

− Simple and clean mathematical model (based on logic)

− Separation of declarative and procedural

Relational Databases

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Constants

VIE, LHR, …

BA, U2, …

Vienna, London, …

Relational Databases

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Relations

Constants

VIE, LHR, …

BA, U2, …

Vienna, London, …

Relational Databases

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Constants

VIE, LHR, …

BA, U2, …

Vienna, London, …

Relations

Tuples

Relational atoms

Flight(LHR,EDI,BA)

Airport(LGW,London)

Querying: Relational Algebra

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List all the airlines

Querying: Relational Algebra

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List all the airlines

πairline Flight

{BA, U2, OS}

Querying: Relational Algebra

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the codes of the airports in London

Querying: Relational Algebra

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the codes of the airports in London

πcode (σcity=‘London’ Airport)

{LHR, LGW}

Querying: Relational Algebra

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the airlines that fly directly from London to Glasgow

Querying: Relational Algebra

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the airlines that fly directly from London to Glasgow

πairline ((Flight ⋈origin=code (σcity=‘London’ Airport)) ⋈destination=code (σcity=‘Glasgow’ Airport))

Querying: Relational Algebra

Aux origin destination airline code city code city

LGW GLA U2 LGW London GLA Glasgow

List the airlines that fly directly from London to Glasgow

πairline ((Flight ⋈origin=code (σcity=‘London’ Airport)) ⋈destination=code (σcity=‘Glasgow’ Airport))

{U2}

defines the auxiliary relation Aux

Relational Algebra

• Selection: σ

• Projection: π

• Cross product: £

• Natural join: ⋈

• Rename: ρ

• Difference: ¡

• Union: [

• Intersection: \

in bold are the primitive operators

Formal definitions can be found in any database textbook

Querying: Domain Relational Calculus

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List all the airlines

Querying: Domain Relational Calculus

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List all the airlines

{z | 9 x9 y Flight(x,y,z)}

{BA, U2, OS}

Querying: Domain Relational Calculus

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the codes of the airports in London

Querying: Domain Relational Calculus

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the codes of the airports in London

{x | 9 y Airport(x,y) ^ y = London}

{LHR, LGW}

Querying: Domain Relational Calculus

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the airlines that fly directly from London to Glasgow

Querying: Domain Relational Calculus

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the airlines that fly directly from London to Glasgow

{z | 9 x9 y9 u9 v Airport(x,u) ^ u = London ^ Airport(y,v) ^ v = Glasgow ^ Flight(x,y,z)}

{U2}

Domain Relational Calculus

{x1,…,xk | φ}

first-order formula with

free variables {x1,…,xk}

But, we can express “problematic” queries, i.e., depend on the domain

{x | 8 y R(x,y)} {x | : R(x)} {x,y | R(x) _ R(y)}

…thus, we adopt the active domain semantics – quantified variables range over

the active domain, i.e., the constants occurring in the input database

Algebra = Calculus

A fundamental theorem (assuming the active domain semantics):

Theorem: The following query langauges are equally expressive

• Relational Algebra (RA)

• Domain Relational Calculus (DRC)

• Tuple Relational Calculus (TRC)

Note: Tuple relational calculus is the declarative language introduce by Codd. Domain

relational calculus has been introduced later as a formalism closer to first-order logic

Quiz!

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Is Glasgow reachable from Vienna?

Edinburgh

London

Vienna

Glasgow

Larnaca

Recursive query – not expressible in RA/DRC/TRC

(unless we bound the number of intermediate stops)

Complexity of Query Languages

• The goal is to understand the complexity of evaluating a query over a database

• Our main technical tool is complexity theory

• What to measure? Queries may have a large output, and it would be unfair to

count the output as “complexity”

• We therefore consider the following decision problems:

− Query Output Tuple (QOT)

− Boolean Query Evaluation (BQE)

A Crash Course on Complexity Theory

we are going to recall some fundamental notions from complexity theory that will be

heavily used in the context of this course – details can be found in the standard textbooks

Deterministic Turing Machine (DTM)

M = (S, Λ, Γ, δ, s0, saccept, sreject)

• S is the set of states

• Λ is the input alphabet, not containing the blank symbol t

• Γ is the tape alphabet, where t 2 Γ and Λ µ Γ

• δ : S £ Γ ! S £ Γ £ {L,R}

• s0 is the initial state

• saccept is the accept state

• sreject is the reject state, where saccept ≠ sreject

Deterministic Turing Machine (DTM)

M = (S, Λ, Γ, δ, s0, saccept, sreject)

δ(s1, α) = (s2, β, R)

IF at some time instant τ the machine is in sate s1, the cursor

points to cell κ, and this cell contains α

THEN at instant τ+1 the machine is in state s2, cell κ contains β,

and the cursor points to cell κ+1

Nondeterministic Turing Machine (NTM)

M = (S, Λ, Γ, δ, s0, saccept, sreject)

• S is the set of states

• Λ is the input alphabet, not containing the blank symbol t

• Γ is the tape alphabet, where t 2 Γ and Λ µ Γ

• δ : S £ Γ ! 2S £ Γ £ {L,R}

• s0 is the initial state

• saccept is the accept state

• sreject is the reject state, where saccept ≠ sreject

Turing Machine Configuration

A perfect description of the machine at a certain point in the computation

1 0 1 1 0 1 1 t t

s

is represented as a string: 1011s011

• Initial configuration on input w1,…,wn – s0w1,…,wn

• Accepting configuration – u1,…,uksacceptuk+1,…,uk+m

• Rejecting configuration – u1,…,uksrejectuk+1,…,uk+m

Turing Machine Computation

Deterministic Nondeterministic

s0w1,…,wn

the next configuration is unique computation tree

s0w1,…,wn

computation path

Deciding a Problem

(recall that an instance of a decision problem Π is encoded as a word over a certain

alphabet Λ – thus, Π is a set of words over Λ, i.e., Π µ Λ*)

A DTM M = (S, Λ, Γ, δ, s0, saccept, sreject) decides a problem Π if, for every w 2 Λ*:

• M on input w halts in saccept if w 2 Π

• M on input w halts in sreject if w ∉ Π

s0w

…
usacceptv

w 2 Π

s0w

…

usrejectv

w ∉ Π

w ∉ Π

Deciding a Problem

A NTM M = (S, Λ, Γ, δ, s0, saccept, sreject) decides a problem Π if, for every w 2 Λ*:

• The computation tree of M on input w is finite

• There exists at least one accepting computation path if w 2 Π

• There is no accepting computation path if w ∉ Π

w 2 Π

s0w

usacceptv

s0w

usrejectv

usrejectv

usrejectv

usrejectv

Complexity Classes

TIME(f(n)) = {Π | Π is decided by some DTM in time O(f(n))}

NTIME(f(n)) = {Π | Π is decided by some NTM in time O(f(n))}

SPACE(f(n)) = {Π | Π is decided by some DTM using space O(f(n))}

NSPACE(f(n)) = {Π | Π is decided by some NTM using space O(f(n))}

Consider a function f : N ! N

Complexity Classes

• We can now recall the standard time and space complexity classes:

PTIME = [k>0 TIME(nk)

NP = [k>0 NTIME(nk)

EXPTIME = [k>0 TIME(2nk
)

NEXPTIME = [k>0 NTIME(2nk
)

LOGSPACE = SPACE(log n)

NLOGSPACE = NSPACE(log n)

PSPACE = [k>0 SPACE(nk)

EXPSPACE = [k>0 SPACE(2nk
)

these definitions are relying on

two-tape Turing machines with a

read-only and a read/write tape

• For every complexity class C we can define its complementary class

coC = {Λ* n Π | Π 2 C}

An Alternative Definition for NP

Theorem: Consider a problem Π µ Λ*. The following are equivalent:

• Π 2 NP

• There is a relation R µ Λ* £ Λ* that is polynomially decidable such that

Π = {u | there exists w such that |w| ∙ |u|k and (u,w) 2 R}

{xy 2 Λ* | (x,y) 2 R } 2 PTIMEwitness or certificate

Example:

3SAT = {φ | φ is a 3CNF formula that is satisfiable}

3SAT = {φ | φ is a 3CNF for which 9 assignment α such that |α| ∙ |φ| and (φ,α) 2 R}

where R = {(φ,α) | α is a satisfying assignment for φ} 2 PTIME

Relationship Among Complexity Classes

LOGSPACE µ NLOGSPACE µ PTIME µ NP, coNP µ

PSPACE µ EXPTIME µ NEXPTIME, coNEXPTIME µ …

Some useful notes:

• For a deterministic complexity class C, coC = C

• coNLOGSPACE = NLOGSPACE

• It is generally believed that PTIME ≠ NP, but we don’t know

• PTIME ½ EXPTIME) at least one containment between them is strict

• PSPACE = NPSPACE, EXPSPACE = NEXPSPACE, etc.

• But, we don’t know whether LOGSPACE = NLOGSPACE

Complete Problems

• These are the hardest problems in a complexity class

• A problem that is complete for a class C, it is unlikely to belong in a lower class

• A problem Π is complete for a complexity class C, or simply C-complete, if:

1. Π 2 C

2. Π is C-hard, i.e., every problem Π’ 2 C can be efficiently reduced to Π

• To show that Π is C-hard it suffices to reduce some C-hard problem Π’ to it

there exists a polynomial time algorithm (resp., logspace algorithm)

that computes a function f such that w 2 Π’ , f(w) 2 Π – in this

case we write Π’ ∙P Π (resp., Π’ ∙L Π)

Some Complete Problems

• NP-complete

‒ SAT (satisfiability of propositional formulas)

‒ Many graph-theoretic problems (e.g., 3-colorability)

‒ Traveling salesman

‒ etc.

• PSPACE-complete

‒ Quantified SAT (or simply QSAT)

‒ Equivalence of two regular expressions

‒ Many games (e.g., Geography)

‒ etc.

Back to Query Languages

Complexity of Query Languages

• The goal is to understand the complexity of evaluating a query over a database

• Our main technical tool is complexity theory

• What to measure? Queries may have a large output, and it would be unfair to

count the output as “complexity”

• We therefore consider the following decision problems:

− Query Output Tuple (QOT)

− Boolean Query Evaluation (BQE)

Complexity of Query Languages

QOT(L)

Input: a database D, a query Q/k 2 L, a tuple of constants t 2 adom(D)k

Question: t 2 Q(D)?

Some useful notation:

• Given a database D, and a query Q, Q(D) is the answer to Q over D

• adom(D) is the active domain of D, i.e., the constants occurring in D

• We write Q/k for the fact that the arity of Q is k ¸ 0

L is some query language; for example, RA, DRC, etc. – we will see several query

languages in the context of this course

Complexity of Query Languages

BQE(L)

Input: a database D, a Boolean query Q/0 2 L

Question: Q(D) ≠ ;? (i.e., does D satisfies Q?)

Some useful notation:

• Given a database D, and a query Q, Q(D) is the answer to Q over D

• adom(D) is the active domain of D, i.e., the constants occurring in D

• We write Q/k for the fact that the arity of Q is k ¸ 0

L is some query language; for example, RA, DRC, etc. – we will see several query

languages in the context of this course

Complexity of Query Languages

BQE(L)

Input: a database D, a Boolean query Q/0 2 L

Question: Q(D) ≠ ;? (i.e., does D satisfies Q?)

QOT(L)

Input: a database D, a query Q/k 2 L, a tuple of constants t 2 adom(D)k

Question: t 2 Q(D)?

Theorem: QOT(L) ´L BQE(L), where L 2 {RA, DRC, TRC}

(´L means logspace-equivalent)

Complexity of Query Languages

(let us show this for domain relational calculus)

Theorem: QOT(DRC) ´L BQE(DRC)

Proof: (∙L) Consider a database D, a k-ary query Q = {x1,…,xk | φ}, and a tuple (t1,…,tk)

Let Qbool = { | φ ^ x1 = t1 ^ x2 = t2 ^ … ^ xk = tk}

Clearly, (t1,…,tk) 2 Q(D) iff Qbool (D) ≠ ;

(¸L) Trivial – a Boolean domain RC query is a domain RC query

…henceforth, we focus on the Boolean Query Evaluation problem

Complexity Measures

• Combined complexity – both D and Q are part of the input

• Query complexity – fixed D, input Q

• Data complexity – input D, fixed Q

BQE[D](L)

Input: a Boolean query Q 2 L

Question: Q(D) ≠ ;?

BQE[Q](L)

Input: a database D

Question: Q(D) ≠ ;?

Complexity of RA, DRC, TRC

Theorem: For L 2 {RA, DRC, TRC} the following hold:

• BQE(L) is PSPACE-complete (combined complexity)

• BQE[D](L) is PSPACE-complete, for a fixed database D (query complexity)

• BQE[Q](L) is in LOGSPACE, for a fixed query Q 2 L (data complexity)

Proof hints:

• Recursive algorithm that uses polynomial space in Q and logarithmic space in D

• Reduction from QSAT (a standard PSPACE-hard problem)

Evaluating (Boolean) DRC Queries

Eval(D,φ) – for brevity we write φ instead of { | φ}

• If φ = R(t1,…,tk), then YES iff R(t1,…,tk) 2 D

• If φ = ψ1 ^ ψ2, then YES iff Eval(D,ψ1) = YES and Eval(D,ψ2) = YES

• If φ = : ψ, then NO iff Eval(D,ψ) = YES

• If φ = 9 x ψ(x), then YES iff for some t 2 adom(D), Eval(D,ψ(t)) = YES

Lemma: It holds that

• Eval(D,φ) always terminates – in fact, this is trivial

• Eval(D,φ) = YES iff Q(D) ≠ ;, where Q = { | φ}

• Eval(D,φ) uses O(|φ| ¢ log |φ| + |φ|2 ¢ log |D|) space

Complexity of RA, DRC, TRC

Theorem: For each L 2 {RA, DRC, TRC} the following holds:

• BQE(L) is PSPACE-complete (combined complexity)

• BQE[D](L) is PSPACE-complete, for a fixed database D (query complexity)

• BQE[Q](L) is in LOGSPACE, for a fixed query Q 2 L (data complexity)

Proof hints:

• Recursive algorithm that uses polynomial space in Q and logarithmic space in D

• Reduction from QSAT (a standard PSPACE-hard problem)

• Actually, BQE[Q](L) is in AC0 ½ LOGSPACE (a highly parallelizable complexity

class defined using Boolean circuits)

Other Important Algorithmic Problems

EQUIV(L)

Input: two queries Q1 2 L and Q2 2 L

Question: Q1 ´ Q2? (i.e., Q1(D) = Q2(D) for every (finite) database D?)

SAT(L)

Input: a query Q 2 L

Question: is there a (finite) database D such that Q(D) ≠ ;?

CONT(L)

Input: two queries Q1 2 L and Q2 2 L

Question: Q1 µ Q2? (i.e., Q1(D) µ Q2(D) for every (finite) database D?)

Other Important Algorithmic Problems

EQUIV(L)

Input: two queries Q1 2 L and Q2 2 L

Question: Q1 ´ Q2? (i.e., Q1(D) = Q2(D) for every (finite) database D?)

SAT(L)

Input: a query Q 2 L

Question: is there a (finite) database D such that Q(D) ≠ ;?

CONT(L)

Input: two queries Q1 2 L and Q2 2 L

Question: Q1 µ Q2? (i.e., Q1(D) µ Q2(D) for every (finite) database D?)

these problems are important

for optimization purposes

Other Important Algorithmic Problems

SAT(L)

Input: a query Q 2 L

Question: is there a (finite) database D such that Q(D) ≠ ;?

• If the answer is no, then the input query Q makes no sense

• Query evaluation becomes trivial – the answer is always NO!

EQUIV(L)

Input: two queries Q1 2 L and Q2 2 L

Question: Q1 ´ Q2? (i.e., Q1(D) = Q2(D) for every (finite) database D?)

Other Important Algorithmic Problems

• Replace a query Q1 with a query Q2 that is easier to evaluate

• But, we have to be sure that Q1(D) = Q2(D) for every database D

CONT(L)

Input: two queries Q1 2 L and Q2 2 L

Question: Q1 µ Q2? (i.e., Q1(D) µ Q2(D) for every (finite) database D?)

Other Important Algorithmic Problems

• Approximate a query Q1 with a query Q2 that is easier to evaluate

• But, we have to be sure that Q2(D) µ Q1(D) for every database D

SAT is Undecidable

Theorem: For L 2 {RA, DRC, TRC}, SAT(L) is undecidable

Proof hint: By reduction from the halting problem.

Given a Turing machine M, we can construct a query QM 2 L such that:

M halts on the empty string , there exists a database D such that Q(D) ≠ ;

Note: Actually, this result goes back to the 1950 when

Boris A. Trakhtenbrot proved that the problem of deciding

whether a first-order sentence has a finite model is undecidable

EQUIV and CONT are Undecidable

An easy consequence of the fact that SAT is undecidable is that:

Theorem: For L 2 {RA, DRC, TRC}, EQUIV(L) and CONT(L) are undecidable

Proof: By reduction from the complement of SAT(L)

• Consider a query Q 2 L – i.e., an instance of SAT(L)

• Let Q? be a query that is trivially unsatisfiable, i.e., Q?(D) = ; for every D

• For example, when L = DRC, Q? can be the query { | 9x R(x) ^ :R(x)}

• Clearly, Q is unsatisfiable , Q ´ Q? (or even Q µ Q?)

Recap

• The main languages for querying relational databases are:

− Relational Algebra (RA)

− Domain Relational Calcuclus (DRC)

− Tuple Relational Calculus (TRC)

• Evaluation is decidable, and highly tractable in data complexity

− Foundations of the database industry

− The core of SQL is equally expressive to RA/DRC/TRC

RA = DRC = TRC

(under the active domain semantics)

• Satisfiability, equivalence and containment are undecidable

− Perfect query optimization is impossible

A Crucial Question

Are there interesting sublanguages of RA/DRC/TRC for which

satisfiability, equivalence and containment are decidable?

= Conjunctive Queries

= {σ,π,⋈}-fragment of relational algebra

= relational calculus without :, 8, _

= simple SELECT-FROM-WHERE SQL queries

= (only AND and equality in the WHERE clause)

Syntax of Conjunctive Queries (CQ)

Q(x) := 9y (R1(v1) ^ … ^ Rm(vm))

• Ri (1 ∙ i ∙ m) are relations

• x, y, v1, …, vm are tuples of variables

• each variable mentioned in vi (1 ∙ i ∙ m) appears either in x or y

• the variables in x are free called distinguished variables

It is very convenient to see conjunctive queries as rule-based queries of the form

Q(x) :- R1(v1),…,Rm(vm)

this is called the body of Q that can be seen as a set of atoms

Conjunctive Queries: Example 1

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List all the airlines

πairline Flight

{BA, U2, OS}

{z | 9 x9 y Flight(x,y,z)}

Q(z) :- Flight(x,y,z)

{x | 9 y Airport(x,London) ^ y = London}

πcode (σcity=‘London’ Airport)

Conjunctive Queries: Example 2

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the codes of the airports in London

{LHR, LGW}

Q(x) :- Airport(x,y), y = London

πcode (σcity=‘London’ Airport)

Conjunctive Queries: Example 2

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the codes of the airports in London

{LHR, LGW}

Q(x) :- Airport(x,London){x | 9 y Airport(x,London) ^ y = London}

{z | 9 x9 y9 u9 v Airport(x,u) ^ u = London ^ Airport(y,v) ^ v = Glasgow ^ Flight(x,y,z)}

πairline ((Flight ⋈origin=code (σcity=‘London’ Airport)) ⋈destination=code (σcity=‘Glasgow’ Airport))

Conjunctive Queries: Example 3

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the airlines that fly directly from London to Glasgow

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

{U2}

Conjunctive Queries: Example 3

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the airlines that fly directly from London to Glasgow

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

{U2}

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Homomorphism

• Semantics of conjunctive queries via the key notion of homomorphism

• A substitution from a set of symbols S to a set of symbols T is a function h : S ! T

i.e., h is a set of mappings of the form s ! t, where s 2 S and t 2 T

• A homomorphism from a set of atoms A to a set of atoms B is a substitution

h : terms(A) ! terms(B) such that:

1. t is a constant) h(t) = t

2. R(t1,…,tk) 2 A) h(R(t1,…,tk)) = R(h(t1),…,h(tk)) 2 B

(terms(A) = {t | t is a variable or constant that occurs in A})

Exercise: Find the Homomorphisms

xS1 = {P(x,y), P(y,z), P(z,x)}

S4 = {P(x,y), P(y,x)}S3 = {P(x,y), P(y,x), P(y,y)}

S2 = {P(x,x)}

S5 = {P(x,y), P(y,z), P(z,w)}

x y x y

x y z w

x

y

z

S3 = {P(x,y), P(y,x), P(y,y)}S2 = {P(x,x)}

S4 = {P(x,y), P(y,x)}S1 = {P(x,y), P(y,z), P(z,x)}

S5 = {P(x,y), P(y,z), P(z,w)}

x y

x

y

z

x y z w

Exercise: Find the Homomorphisms

x

{x  x, y  y , z  z , w  x} {x  x, y  y , z  x , w  y}

{x  y, y  x , z  y} {x  x, y  y}

{x  y}

{x  x, y  x}
x y

Semantics of Conjunctive Queries

• A match of a conjunctive query Q(x1,…,xk) :- body in a database D is a

homomorphism h such that h(body) µ D

• The answer to Q(x1,…,xk) :- body over D is the set of k-tuples

Q(D) := {(h(x1),…, h(xk)) | h is a match of Q in D}

• The answer consists of the witnesses for the distinguished variables of Q

Conjunctive Queries: Example

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the airlines that fly directly from London to Glasgow

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

{x  LGW, y  GLA, z  U2}

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Complexity of CQ

Theorem: It holds that:

• BQE(CQ) is NP-complete (combined complexity)

• BQE[D](CQ) is NP-complete, for a fixed database D (query complexity)

• BQE[Q](CQ) is in LOGSPACE, for a fixed query Q 2 CQ (data complexity)

Proof:

(NP-membership) Consider a database D, and a Boolean CQ Q :- body

Guess a substitution h : terms(body) ! terms(D)

Verify that h is a match of Q in D, i.e., h(body) µ D

(NP-hardness) Reduction from 3-colorability

(LOGSPACE-membership) Inherited from BQE[Q](DRC) – in fact, in AC0

NP-hardness

(NP-hardness) Reduction from 3-colorability

3COL

Input: an undirected graph G = (V,E)

Question: is there a function c : {Red,Green,Blue} ! V such that

(v,u) 2 E) c(v) ≠ c(u)?

Lemma: G is 3-colorable , G can be mapped to K3, i.e., G

therefore, G is 3-colorable , there is a match of QG in D = {E(x,y),E(y,z),E(z,x)}

, QG(D) ≠ ;

the Boolean CQ that represents G

hom

Complexity of CQ

Theorem: It holds that:

• BQE(CQ) is NP-complete (combined complexity)

• BQE[D](CQ) is NP-complete, for a fixed database D (query complexity)

• BQE[Q](CQ) is in LOGSPACE, for a fixed query Q 2 CQ (data complexity)

Proof:

(NP-membership) Consider a database D, and a Boolean CQ Q :- body

Guess a substitution h : terms(body) ! terms(D)

Verify that h is a match of Q in D, i.e., h(body) µ D

(NP-hardness) Reduction from 3-colorability

(LOGSPACE-membership) Inherited from BQE[Q](DRC) – in fact, in AC0

What About Optimization of CQs?

EQUIV(CQ)

Input: two queries Q1 2 CQ and Q2 2 CQ

Question: Q1 ´ Q2? (i.e., Q1(D) = Q2(D) for every (finite) database D?)

SAT(CQ)

Input: a query Q 2 CQ

Question: is there a (finite) database D such that Q(D) ≠ ;?

CONT(CQ)

Input: two queries Q1 2 CQ and Q2 2 CQ

Question: Q1 µ Q2? (i.e., Q1(D) µ Q2(D) for every (finite) database D?)

Canonical Database

• Convert a conjunctive query Q into a database D[Q] – the canonical database of Q

• Given a conjunctive query of the form Q(x) :- body, D[Q] is obtained from body by

replacing each variable x with a new constant c(x) = x

• E.g., given Q(x,y) :- R(x,y), P(y,z,w), R(z,x), then D[Q] = {R(x,y), P(y,z,w), R(z,x)}

• Note: The mapping c : {variables in body} ! {new constants} is a bijection, where

c(body) = D[Q] and c-1(D[Q]) = body

Satisfiability of CQs

SAT(CQ)

Input: a query Q 2 CQ

Question: is there a (finite) database D such that Q(D) ≠ ;?

Theorem: A query Q 2 CQ is always satisfiable; thus, SAT(CQ) 2 O(1)-time

Proof: Due to its canonical database – Q(D[Q]) ≠ ;

Equivalence and Containment of CQs

EQUIV(CQ)

Input: two queries Q1 2 CQ and Q2 2 CQ

Question: Q1 ´ Q2? (i.e., Q1(D) = Q2(D) for every (finite) database D?)

CONT(CQ)

Input: two queries Q1 2 CQ and Q2 2 CQ

Question: Q1 µ Q2? (i.e., Q1(D) µ Q2(D) for every (finite) database D?)

Q1 ´ Q2 , Q1 µ Q2 and Q2 µ Q1

Q1 µ Q2 , Q1 ´ (Q1 ^ Q2)

…thus, we can safely focus on CONT(CQ)

Homomorphism Theorem

A query homomorphism from Q1(x1,…,xk) :- body1 to Q2(y1,…,yk) :- body2 is a

substitution h : terms(body1) ! terms(body2) such that:

1. h is a homomorphism from body1 to body2

2. (h(x1),…,h(xk)) = (y1,…,yk)

Homomorphism Theorem: Let Q1 and Q2 be conjunctive queries. It holds that:

Q1 µ Q2 , there exists a query homomorphism from Q2 to Q1

Homomorphism Theorem: Example

Q1(x,y) :- R(x,z), S(z,z), R(z,y)

x z y
R R

S

Q2(a,b) :- R(a,c), S(c,d), R(d,b)

a c d
R S

b
R

We expect that Q1 µ Q2. Why?

Homomorphism Theorem: Example

Q1(x,y) :- R(x,z), S(z,z), R(z,y)

Q2(a,b) :- R(a,c), S(c,d), R(d,b)

• h is a query homomorphism from Q2 to Q1) Q1 µ Q2

• But, there is no homomorphism from Q1 to Q2) Q1 ½ Q2

h = {a  x, b  y, c  z, d  z}

Homomorphism Theorem: Proof

Assume that Q1(x1,…,xk) :- body1 and Q2(y1,…,yk) :- body2

()) Q1 µ Q2) there exists a query homomorphism from Q2 to Q1

• Clearly, (c(x1),…,c(xk)) 2 Q1(D[Q1]) – recall that D[Q1] = c(body1)

• Since Q1 µ Q2, we conclude that (c(x1),…,c(xk)) 2 Q2(D[Q1])

• Therefore, there exists a homomorphism h such that h(body2) µ D[Q1] = c(body1)

and h((y1,…,yk)) = (c(x1),…,c(xk))

• By construction, c-1(c(body1)) = body1

and c-1((c(x1),…,c(xk))) = (x1,…,xk)

• Therefore, c-1 ± h is a

query homomorphism from Q2 to Q1

Q2(y1,…,yk) :- body2

Q1(c(x1),…,c(xk)) :- c(body1)

Q1(x1,…,xk) :- body1

h

c-1

c-1 ± h

Homomorphism Theorem: Proof

Assume that Q1(x1,…,xk) :- body1 and Q2(y1,…,yk) :- body2

(() Q1 µ Q2 (there exists a query homomorphism from Q2 to Q1

• Consider a database D, and a tuple t such that t 2 Q1(D)

• We need to show that t 2 Q2(D)

• Clearly, there exists a homomorphism g such that g(body1) µ D and g((x1,…,xk)) = t

• By hypothesis, there exists a query homomorphism h from Q2 to Q1

• Therefore, g(h(body2)) µ D and

g(h((y1,…,yk))) = t, which implies that

t 2 Q2(D)

Q2(y1,…,yk) :- body2

Q1(x1,…,xk) :- body1

t D

h

g

g ± h

Existence of a Query Homomorphism

Theorem: Let Q1 and Q2 be conjunctive queries. The problem of deciding whether

there exists a query homomorphism from Q2 to Q1 is NP-complete

Proof:

(NP-membership) Guess a substitution, and verify that is a query homomorphism

(NP-hardness) Straightforward reduction from BQE(CQ)

By applying the homomorphism theorem we get that:

Corollary: EQUIV(CQ) and CONT(CQ) are NP-complete

Recap

L 2 {RA,DRC,TRC}

UNDECIDABLE PSPACE NP LOGSPACE O(1)-time

EQUIV(L)

CONT(L)

SAT(L)

BQE(L)
(combined, query)

QOT(L)
(combined, query)

BQE(CQ)
(combined, query)

QOT(CQ)
(combined, query)

EQUIV(CQ)

CONT(CQ)
BQE(L)

(data)

QOT(L)
(data)

SAT(CQ)

Minimizing Conjunctive Queries

• Goal: minimize the number of joins in a query

• A conjunctive query Q1 is minimal if there is no conjunctive query Q2 such that:

1. Q1 ´ Q2

2. Q2 has fewer atoms than Q1

• The task of CQ minimization is, given a conjunctive query Q, to compute a minimal

one that is equivalent to Q

Minimization by Deletion

By exploiting the homomorphism theorem we can show the following:

Theorem: Consider a conjunctive query Q1(x1,…,xk) :- body1.

If Q1 is equivalent to a conjunctive query Q2(y1,…,yk) :- body2, where |body2| < |body1|,

then Q1 is equivalent to a query Q1(x1,…,xk) :- body3 such that body3 µ body1

The above theorem says that to minimize a conjunctive query Q1(x) :- body we simply

need to remove some atoms from body

Minimization Procedure

Minimization(Q(x) :- body)

Repeat until no change

choose an atom α 2 body

if there is a query homomorphism from Q(x) :- body to Q(x) :- body n {α}

then body := body n {α}

Return Q(x) :- body

Note: if there is a query homomorphism from Q(x) :- body to Q(x) :- body n {α},

then the two queries are equivalent since there is trivially a query homomorphism

from the latter to the former query

Minimization Procedure: Example

Q(x) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

(a,b,c,d are constants)

Q(x) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

{y ! b}

Q(x) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

{v ! c}

minimal query

Note: the mapping x ! a is not valid since x is a distinguished variable

Uniqueness of Minimal Queries

Natural question: does the order in which we remove atoms from the body of the

input conjunctive query matter?

Theorem: Consider a conjunctive query Q. Let Q1 and Q2 be minimal conjunctive

queries such that Q1 ´ Q and Q2 ´ Q. Then, Q1 and Q2 are isomorphic (i.e., they are

the same up to variable renaming)

Therefore, given a conjunctive query Q, the result of Minimization(Q) is unique (up

to variable renaming) and is called the core of Q

Wrap-Up

• The main relational query languages – RA/DRC/TRC

‒ Evaluation is decidable – foundations of the database industry

‒ Perfect query optimization is impossible

• Conjunctive queries – an important query language

‒ All the relevant algorithmic problems are decidable

‒ Query minimization

*under the active domain semantics

RA = DRC = TRC*

CQ

Associated Papers

• Ashok K. Chandra, Philip M. Merlin: Optimal Implementation of Conjunctive Queries

in Relational Data Bases. STOC 1977: 77-90

• Criterion for CQ containment/equivalence

• Martin Grohe: From polynomial time queries to graph structure theory. Commun.

ACM 54(6): 104-112 (2011)

• A general account of connections between structural properties of databases and

languages that capture efficient queries over them

• Martin Grohe: Fixed-point definability and polynomial time on graphs with excluded

minors. Journal of the ACM 59(5): 27 (2012)

• We can capture PTIME on databases that satisfy certain structural (graph-theoretic)

restrictions

Associated Papers

• Neil Immerman: Languages that Capture Complexity Classes. SIAM J. Comput.

16(4): 760-778 (1987)

• Query languages that correspond to complexity classes

• Phokion G. Kolaitis, Moshe Y. Vardi: Conjunctive-Query Containment and Constraint

Satisfaction. J. Comput. Syst. Sci. 61(2): 302-332 (2000)

• A connection between CQs and a central AI problem of constraint satisfaction

• Leonid Libkin: The finite model theory toolbox of a database theoretician. PODS

2009: 65-76

• A toolbox for reasoning about expressivity and complexity of query languages

Associated Papers

• Leonid Libkin: Expressive power of SQL. Theor. Comput. Sci. 296(3): 379-404

(2003)

• A specific application of the above toolbox for SQL

• Moshe Y. Vardi: The Complexity of Relational Query Languages (Extended Abstract).

STOC 1982: 137-146

• Different types of complexity of database queries

• Christos H. Papadimitriou, Mihalis Yannakakis: On the Complexity of Database

Queries. J. Comput. Syst. Sci. 58(3): 407-427 (1999)

• A finer way of measuring complexity, between data and combined

