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Volume Challenges

• Many standard algorithms for data processing do not scale

• We may not even have what can realistically be called an algorithm

‒ Data must be at least scanned (classical assumption in databases)

‒ The best case is a linear time algorithm

‒ But, consider a linear scan on the best available device (6GB/s)

 1 PetaByte (PB) = 106 GBs is scanned in about 2 days

 1 ExaByte (EB) = 109 GBs is scanned in about 5 years

‒ We have PB data sets, while EB data sets are not far away

) linear time, let alone polynomial time, is not good enough



Possible Approaches

• Scale Independence – find queries than can be answered regardless of scale

• Replace the query with one that is much faster to execute



Scale Independence

Advanced Topics in Foundations of Databases, University of Edinburgh, 2016/17



Query Answering on Big Data

• Answer a query on a big database using a small subset of it

• Then, exploit existing database technology to answer queries on big data

Q = Q



Scale Independence

• Armbrust et al. considered the notion of scale independence

‒ M. Armbrust, A. Fox, D. A. Patterson, N. Lanham, B. Trushkowsky, J. Trutna, and H. Oh. Scads: 

Scale-independent storage for social computing applications. In CIDR, 2009.

‒ M. Armbrust, K. Curtis, T. Kraska, A. Fox, M. J. Franklin, and D. A. Patterson. PIQL: Success-

tolerant query processing in the cloud. In VLDB, 2011.

‒ M. Armbrust, E. Liang, T. Kraska, A. Fox, M. J. Franklin, and D. Patterson. Generalized scale 

independence through incremental precomputation. In SIGMOD, 2013.

The evaluation of queries using a number of 

“operations” that is independent of the size of data



Scale Independence: Facebook Example

Find all friends of a person who live in NYC

Q(p,n)  :- FriendOf(p,id), Person(id,n,NYC)

Person id name city FriendOf id1 id2



Scale Independence: Facebook Example

Find all friends of a person who live in NYC

Q(P0,n)  :- FriendOf(P0,id), Person(id,n,NYC)

Person id name city FriendOf id1 id2

P0

…

P0

• We are interested in a certain person P0
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Scale Independence: Facebook Example

Find all friends of a person who live in NYC

• We are interested in a certain person P0

• Cardinality constraint: Facebook has a limit of 5000 friends per user

• Key constraint: id is the key attribute of Person

Q(P0,n)  :- FriendOf(P0,id), Person(id,n,NYC)

Person id name city

P

FriendOf id1 id2

P0 P

…

P0

≤ 5000≤ 1

) 10000 tuples in total are needed

…and these tuples can be fetched efficiently by using indices on id attributes



Scale Independence: Facebook Example

Find all friends of a person who live in NYC

Q(P0,n)  :- FriendOf(P0,id), Person(id,n,NYC)

Person id name city

P

FriendOf id1 id2

P0 P

…

P0

≤ 5000≤ 1

For a given person, this query can be answered using a bounded number of 

tuples, independent of the size of the Facebook graph

• We are interested in a certain person P0

• Cardinality constraint: Facebook has a limit of 5000 friends per user

• Key constraint: id is the key attribute of Person



Towards a Theory on Scale Independence

• The previous example shows that it is feasible to answer a query Q in a big 

database D by accessing a bounded amount of data

• However, to make practical use of scale independence, several fundamental 

questions have to be answered:

1. Given Q and D, can we decide whether Q is scale independent in D?

2. If such an identification is expensive, can we find sufficient conditions?

3. If Q is scale independent in D, can we effectively identify a small DQ µ D?

4. Can we achieve reasonable time bounds for finding DQ and computing Q(DQ)? 



Scale Independence: Definition

• A query Q is scale independent in a database D w.r.t. M ≥ 0 if there exists a 

subset DQ µ D such that:

1.  |DQ| ≤ M

2. Q(DQ) = Q(D)

• We say that Q is scale independent w.r.t. M ≥ 0 if Q is scale independent in D

w.r.t. M, for every database D

we refer to first-order queries (FO)* and conjunctive queries (CQ)

*notice that FO = RA = DRC = TRC



Scale Independence: Algorithmic Problems

QDSI(L)

Input: a database D, a query Q 2 L, and M ≥ 0

Question: is Q scale independent in D w.r.t. M? 

QSI(L)

Input: a query Q 2 L, and M ≥ 0

Question: is Q scale independent w.r.t. M? 

Data complexity, i.e., fixed Q – this gives rise to 

the problem QDSI[Q](L) for a fixed query Q 2 L



Complexity of QDSI(L)

L Non-Boolean Boolean

Combined Data Combined Data

CQ Σ3,P-c NP-c O(1)-time O(1)-time

FO PSPACE-c NP-c PSPACE-c NP-c

third level of the polynomial hierarchy

NP µ Σ3,P µ PSPACE

assuming that |Q| ≤ M

Proof idea (upper bounds):

• Given Q, D, M and D’µ D such that |D’| ≤ M, decide whether Q(D) = Q(D’) 

• Solve the complement of QDSI(L) by calling the algorithm for the above problem



Complexity of QSI(L)

• Conjunctive queries are never scale independent w.r.t. some M ≥ 0, unless 

the query is trivial

‒ This is due to monotonicity, i.e., D µ D’) Q(D) µ Q(D’)

‒ Example of a trivial query: returns a constant tuple over all databases

• QSI(FO) is undecidable. Why? (hint: consider the case when M = 0)

‒ This holds even for Boolean queries

‒ The class of scale independent FO queries is not recursively enumerable



Facebook Example Revisited

Find all friends of a person who live in NYC

Q(P0,n)  :- FriendOf(P0,id), Person(id,n,NYC)

Person id name city

P
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P0 P

…

P0

≤ 5000≤ 1

For a given person, this query can be answered using a bounded number of 

tuples, independent of the size of the Facebook graph

• We are interested in a certain person P0

• Cardinality constraint: Facebook has a limit of 5000 friends per user

• Key constraint: id is the key attribute of Person
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• Key constraint: id is the key attribute of Person



Access Schemas: Definition

• Consider a relational schema R = {R1,…,Rn}. An access schema A over R

is a set of tuples (R,X,N,T) where

‒ R 2 R

‒ X is a set of attributes of R

‒ N,T are natural numbers

• A database D (over R) conforms to A if for each tuple (R,X,N,T) 2 A the 

following hold:

‒ Size bound: for each tuple t of values for the attributes X, |σX=t(D)| ≤ N

‒ Time bound: σX=t(D) can be retrieved in time at most T



Facebook Example – Access Schemas

Person id name city FriendOf id1 id2

P0

…

P0

≤ 5000

key attribute

A = {(Person, {id}, 1, T1), (FriendOf, {id1}, 5000, T1)}

- id is a key attribute for Person (size bound)

- it takes time T1 to retrieve a tuple based on 

its key value (time bound)

- if id1 is provided, at most 5000 tuples with such an 

id exist (size bound)

- it takes time T2 to retrieve those tuples (time bound)

the Facebook graph 

conforms to A



Facebook Example – Access Schemas

Person id name city FriendOf id1 id2

P0

…

P0

≤ 5000

Find all friends of a person who live in NYC

Q(P0,n)  :- FriendOf(P0,id), Person(id,n,NYC)

By only looking at the access schema we can tell whether we can 

efficiently answer the given query

A = {(Person, {id}, 1, T1), (FriendOf, {id1}, 5000, T1)}



Scale Independence Under Access Schemas

• Given a schema R, access schema A over R, and a query Q(x,y), we say 

that Q is x-scale independent under A if for each database D that conforms 

to A, and each tuple of values t for x, the answer to Qt = Q(t,y) over D can 

be computed in time that depends only on A and Q, but not on D

• For a fixed query Q(x,y), Q is efficiently x-scale independent under A if for 

each database D that conforms to A, and each tuple of values t for x, the 

answer to Qt = Q(t,y) over D can be computed in polynomial time in A



Facebook Example – Access Schemas

Person id name city FriendOf id1 id2

Find all friends of a person who live in NYC

Q is efficiently {p}-scale independent under A

Q(p,n)  :- FriendOf(p,id), Person(id,n,NYC)

A = {(Person, {id}, 1, T1), (FriendOf, {id1}, 5000, T1)}



Can we Characterize Such Queries?

• It is an undecidable problem whether a query is x-scale independent under an 

access schema

• The lack of effective syntactic characterizations of semantic classes of queries 

is common in databases  ) isolate practically relevant sufficient conditions

• Goal: provide a syntactic class of queries such that

‒ Is sufficiently large to cover interesting queries

‒ Guarantees that the queries are efficiently scale independent



Controllability and Scale Independence

Define: a syntactic class of so-called x-controllable FO queries for a given access 

schema, where x is a subset of the free variables of a query

Show: each x-controlled query under access schema A is efficiently x-scaled 

independent under A

an x-controlled query under A can be answered efficiently on big databases 

that conform to A



x-controllability: Atom Rule

IF (R,X,N,T) 2 A

THEN R(y) is x-controlled under A, where x is the subtuple of y corresponding to X

Atomic Query Access Schema A Controlling Variables

FriendOf(p,id) (FriendOf, {p}, 5000, T1) {p}

Visit(id,rid,yy,mm,dd) (Visit, {id,yy,mm,dd}, 1, T2) {id, yy, mm, dd}

Person(id,pn,NYC) (Person, {id}, 1, T3) {id}

Dates(yy,mm,dd) (Dates, {yy}, 366, T4) {yy}

Restaurant(rid,rn,NYC,A) (Restaurant, {rid}, 1, T5) {rid}

We underline the controlling variables: FriendOf(p,id), Visit(id,rid,yy,mm,dd), etc. 



x-controllability: Conjunction Rule

IF Qi(xi,yi) is xi-controlled under A for i 2 {1,2}

THEN Q1 ^ Q2 is (x1 [ (x2 – y1))-controlled and (x2 [ (x1 – y2))-controlled under A

Consider the queries

Q1(id,rid,yy,mm,dd) :- Visit(id,rid,yy,mm,dd) Q2(yy,mm,dd) :- Dates(yy,mm,dd)

and the query

Q(id,rid,yy,mm,dd) :- Visit(id,rid,yy,mm,dd), Dates(yy,mm,dd)

Controlling variables: {id,yy,mm,dd} [ ({yy} – {rid}) = {id,yy,mm,dd}  or

{yy} [ ({id,yy,mm,dd} – {mm,dd}) = {id,yy}

) Q is {id,yy,mm,dd}-controlled and {id,yy}-controlled under A



x-controllability: Existential Quantification Rule

IF Q(y) is x-controlled under A, and z is a subtuple of y – x

THEN 9z Q is x-controlled under A

Consider the query

Q(id,rid,yy,mm,dd) :- Visit(id,rid,yy,mm,dd), Dates(yy,mm,dd)

and recall that is {id,yy}-controlled under A

Then, the query 

Q(id,yy) :- Visit(id,rid,yy,mm,dd), Dates(yy,mm,dd)

is also {id,yy}-controlled under A. Why?

less distinguished variables



x-controllability: Other Rules

• Similar rules are defined for:

‒ Conditions: if Q(x) is a Boolean combination of xi = xj, then Q is x-controlled

‒ Disjunction - Q1 _ Q2

‒ (Safe) Negation - Q1 ^ :Q2

‒ Universal quantification - 8y (Q(x,y) ! Q’(z))

‒ Expansion: Q(y) is x-controlled under A and x µ z µ y, then Q is z-controlled 

under A

• In isolation, all the above rules are optimal, i.e., we cannot achieve smaller 

controlling tuples



x-controllability: Example

Q(yy,p,rn) :- FriendOf(p,id), Visit(id,rid,yy,mm,dd), Person(id,pn,NYC), 

Dates(yy,mm,dd), Restaurant(rid,rn,NYC,A)

Access Schema A

(FriendOf, {p}, 5000, T1)

(Visit, {id,yy,mm,dd}, 1, T2)

(Person, {id}, 1, T3)

(Dates, {yy}, 366, T4)

(Restaurant, {rid}, 1, T5)

Is Q {yy,p}-controllable under A?



x-controllability: Example

QFriendOf(p,id) :- FriendOf(p,id)

QVisit(id,rid,yy,mm,dd) :- Visit(id,rid,yy,mm,dd)

QPerson(id,pn) :- Person(id,pn,NYC)

QDates(yy,mm,dd) :- Dates(yy,mm,dd)

QRestaurant(rid,rn) :- Restaurant(rid,rn,NYC,A)

Q1(id,rid,yy,mm,dd)  :- QVisit(id,rid,yy,mm,dd), QDates(yy,mm,dd)

Step 1

Step 2

Q2(id,rid,yy,mm,dd,pn)  :- Q1(id,rid,yy,mm,dd), QPerson(id,pn)Step 3

Q3(id,rid,yy,mm,dd,pn,p)  :- Q2(id,rid,yy,mm,dd,pn), QFriendOf(p,id)Step 4

Q4(id,rid,yy,mm,dd,pn,p,rn)  :- Q3(id,rid,yy,mm,dd,pn,p), QRestaurant(rid,rn)Step 5

Q (yy,p,rn)  :- Q4(id,rid,yy,mm,dd,pn,p,rn)Step 6





Main Result on x-controllability

Theorem: Consider a first-order query Q, and an access schema A.

If Q is x-controlled under A, then Q is efficiently x-scale independent under A

Proof hint: Show by induction on the structure of Q(x,y), given a tuple of values t for 

x, how to retrieve a set DQ,t µ D such that Qt(DQ,t) = Qt(D), where Qt = Q(t,y), and 

establish polynomial bounds for its size and query evaluation time.

• The above result states that by filling the variables x in Q by t, Qt can be answered 

on any database that conforms to A in polynomial time in A

• An effective plan for identifying DQ,t µ D such that Qt(DQ,t) = Qt(D) can be obtained



Effective Plan: Example

Access Schema A

(FriendOf, {p}, 5000, T1)

(Visit, {id,yy,mm,dd}, 1, T2)

(Person, {id}, 1, T3)

(Dates, {yy}, 366, T4)

(Restaurant, {rid}, 1, T5)

Q {yy,p}-controllable under A

Q(yy,p,rn) :- FriendOf(p,id), Visit(id,rid,yy,mm,dd), Person(id,pn,NYC), 

Dates(yy,mm,dd), Restaurant(rid,rn,NYC,A)



Effective Plan: Example

Visit(id, rid, yy, mm, dd) Dates(yy, mm, dd)

Person(id, pn, NYC)
^

^
FriendOf(p, id)

^
Restaurant(rid, rn, NYC, A)

^

9

Q(yy, p, rn)
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Effective Plan: Example

Visit(id, rid, yy, mm, dd) Dates(yy, mm, dd)

Person(id, pn, NYC)
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FriendOf(p, id)
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Wrap-Up

• A fixed first-order query Q(x,y) that is x-controlled under an access schema A

is efficiently x-scale independent under A, i.e., with Qt = Q(t,y):

• Then, exploit existing database technology to answer Qt on DQ,t (and thus on D)

Qt
= Qt

D

DQ,t

DQ,t

database that conforms to A

of polynomial size in A

(identified via an effective plan)



Associated Papers

• Michael Armbrust, Kristal Curtis, Tim Kraska, Armando Fox, Michael J. Franklin, 

David A. Patterson: PIQL: Success-Tolerant Query Processing in the Cloud. PVLDB 

5(3):181-192 (2011)

• Michael Armbrust, Armando Fox, David A. Patterson, Nick Lanham, Beth 

Trushkowsky, Jesse Trutna, Haruki Oh: SCADS: Scale-Independent Storage for 

Social Computing Applications. CIDR 2009

• Two early systems paper on scalability; what we saw in class was a formalization of 

their approach

• Michael Armbrust, Eric Liang, Tim Kraska, Armando Fox, Michael J. Franklin, David 

A. Patterson: Generalized scale independence through incremental precomputation. 

SIGMOD 2013:625-636

• Scalability under updates to the underlying data



Associated Papers

• Wenfei Fan, Floris Geerts, Frank Neven: Making Queries Tractable on Big Data 

with Preprocessing. PVLDB 6(9): 685-696 (2013)

• New notions of complexity for handling large volumes of data

• Wenfei Fan, Floris Geerts, Leonid Libkin: On scale independence for querying 

big data. PODS 2014:51-62

• We saw the notion of controllability here. Eligible topics for an essay are 

incremental computation and using views

• Yang Cao, Wenfei Fan, Tianyu Wo, Wenyuan Yu: Bounded Conjunctive Queries. 

PVLDB 7(12): 1231-1242 (2014)

• Specialized algorithms for handling select-project-join queries over big data


