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user queries (RA, SQL, etc.)
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..but, we live in the era of big data



Volume Veracity
size does mattes data is often
(thousands of TBs of data) incomplete/inconsistent
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Variety Velbcity
many data formats data often arrives at fast speed

(structured, semi-structured, etc.) (updates are frequent)



the rest of this course

Volume Veracity
size does mattes data is often
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Variety
many data formats
(structured, semi-structured, etc.)



Volume Challenges

» Many standard algorithms for data processing do not scale

« We may not even have what can realistically be called an algorithm
— Data must be at least scanned (classical assumption in databases)
— The best case is a linear time algorithm
— But, consider a linear scan on the best available device (6GB/s)
= 1 PetaByte (PB) = 108 GBs is scanned in about 2 days
= 1 ExaByte (EB) = 10° GBs is scanned in about 5 years

— We have PB data sets, while EB data sets are not far away

= linear time, let alone polynomial time, is not good enough



Possible Approaches

« Scale Independence — find queries than can be answered regardless of scale

« Replace the query with one that is much faster to execute



Scale Independence

Advanced Topics in Foundations of Databases, University of Edinburgh, 2016/17



Query Answering on Big Data

» Answer a query on a big database using a small subset of it

/\\
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« Then, exploit existing database technology to answer queries on big data



Scale Independence

* Armbrust et al. considered the notion of scale independence

The evaluation of queries using a number of

“operations” that is independent of the size of data

— M. Armbrust, A. Fox, D. A. Patterson, N. Lanham, B. Trushkowsky, J. Trutna, and H. Oh. Scads:
Scale-independent storage for social computing applications. In CIDR, 2009.

— M. Armbrust, K. Curtis, T. Kraska, A. Fox, M. J. Franklin, and D. A. Patterson. PIQL: Success-
tolerant query processing in the cloud. In VLDB, 2011.

— M. Armbrust, E. Liang, T. Kraska, A. Fox, M. J. Franklin, and D. Patterson. Generalized scale
independence through incremental precomputation. In SIGMOD, 2013.



Scale Independence: Facebook Example

Find all friends of a person who live in NYC

Person  id name | city FriendOf | id,

Q(p,n) :- FriendOf(p,id), Person(id,n,NYC)




Scale Independence: Facebook Example

Find all friends of a person who live in NYC

Person  id name | city FriendOf | id,

Q(Pgy,n) :- FriendOf(P,,id), Person(id,n,NYC)

« We are interested in a certain person P,



Scale Independence: Facebook Example

Find all friends of a person who live in NYC

Person  id name | city FriendOf | id, | id,

< 5000

Q(Pgy,n) :- FriendOf(P,,id), Person(id,n,NYC)

« We are interested in a certain person P,

« Cardinality constraint: Facebook has a limit of 5000 friends per user



Scale Independence: Facebook Example

Find all friends of a person who live in NYC

Person  id name | city FriendOf | id, | id,
_P—P
P * < 5000
IDO

Q(Pgy,n) :- FriendOf(P,,id), Person(id,n,NYC)

« We are interested in a certain person P,
« Cardinality constraint: Facebook has a limit of 5000 friends per user

« Key constraint: id is the key attribute of Person

= 10000 tuples in total are needed
...and these tuples can be fetched efficiently by using indices on id attributes




Scale Independence: Facebook Example

Find all friends of a person who live in NYC

Person  id name | city FriendOf | id, | id,
_P—P

P — .

IDO

Q(Pgy,n) :- FriendOf(P,,id), Person(id,n,NYC)

« We are interested in a certain person P,

< 5000

« Cardinality constraint: Facebook has a limit of 5000 friends per user

« Key constraint: id is the key attribute of Person

For a given person, this query can be answered using a bounded number of

tuples, independent of the size of the Facebook graph




Towards a Theory on Scale Independence

The previous example shows that it is feasible to answer a query Q in a big

database D by accessing a bounded amount of data

However, to make practical use of scale independence, several fundamental
questions have to be answered:

1. Given Q and D, can we decide whether Q is scale independent in D?

2. If such an identification is expensive, can we find sufficient conditions?
3. If Qis scale independent in D, can we effectively identify a small D, C D?
4

. Can we achieve reasonable time bounds for finding D, and computing Q(D)?



Scale Independence: Definition

we refer to first-order queries (FO)* and conjunctive queries (CQ)

e

 Aquery Q is scale independent in a database D w.r.t. M = 0 if there exists a
subset D, C D such that:
1. |Dgl =M
2. Q(Dy) = Q(D)

 We say that Q is scale independent w.r.t. M = 0 if Q is scale independent in D

w.r.t. M, for every database D

*notice that FO = RA = DRC = TRC



Scale Independence: Algorithmic Problems

QDSI(L)
Input: a database D, aquery Qe L,andM=0

Question: is Q scale independent in D w.r.t. M?

Data complexity, i.e., fixed Q — this gives rise to

the problem QDSI[Q](L) for a fixed query Q € L

QSI(L)
Input: aquery Qe L,andM =0

Question: is Q scale independent w.r.t. M?




Complexity of QDSI(L)

L Non-Boolean Boolean
Combined Data Combined Data

cQ P 23p-C NP-c O(1)-time‘\ O(1)—time

FO /PSPACE<c NP-c | PSPACE-c “\ NP-

/. N\

third level of the polynomial hierarchy assuming that |Q| <=M
NP C ;- C PSPACE

Proof idea (upper bounds):
« Given Q, D, M and D’ C D such that |D’| < M, decide whether Q(D) = Q(D’)
* Solve the complement of QDSI(L) by calling the algorithm for the above problem



Complexity of QSI(L)

» Conjunctive queries are never scale independent w.r.t. some M = 0, unless
the query is trivial
— This is due to monotonicity, i.e., D C D' = Q(D) C Q(D’)

— Example of a trivial query: returns a constant tuple over all databases

* QSI(FO) is undecidable. Why? (hint: consider the case when M = 0)
— This holds even for Boolean queries

— The class of scale independent FO queries is not recursively enumerable



Facebook Example Revisited

Find all friends of a person who live in NYC

Person  id name | city FriendOf | id, | id,
_P—P

P — .

IDO

Q(Pgy,n) :- FriendOf(P,,id), Person(id,n,NYC)

« We are interested in a certain person P,

< 5000

« Cardinality constraint: Facebook has a limit of 5000 friends per user

« Key constraint: id is the key attribute of Person

For a given person, this query can be answered using a bounded number of

tuples, independent of the size of the Facebook graph




Facebook Example Revisited

Find all friends of a person who live in NYC

Person  id name | city FriendOf | id, | id,
_P—P

P — .

IDO

< 5000

For a given person, this query can be answered using a bounded number of

tuples, independent of the size of the Facebook graph




Access Schemas: Definition

« Consider a relational schema R = {R,,...,R.}. An access schema A over R
is a set of tuples (R,X,N,T) where
- ReR
— Xis a set of attributes of R

— N, T are natural numbers

« Adatabase D (over R) conforms to A if for each tuple (R,X,N,T) € A the
following hold:
— Size bound: for each tuple t of values for the attributes X, |oy_(D)| <N

— Time bound: oy_(D) can be retrieved in time at most T



Facebook Example — Access Schemas

key attribute
Person  id name | city FriendOf | id, | id,
IDO
< 5000
IDO

- id is a key attribute for Person (size bound)
- it takes time T, to retrieve a tuple based on
its key value (time bound)

.

A = {(Person, {id}, 1, T,), (FriendOf, {id,}, 5000, T,)}

\

the Facebook graph - if id, is provided, at most 5000 tuples with such an
id exist (size bound)
- it takes time T, to retrieve those tuples (time bound)

conforms to A




Facebook Example — Access Schemas

Find all friends of a person who live in NYC

Person  id name | city FriendOf | id, | id,

< 5000

Q(Py,n) :- FriendOf(P,,id), Person(id,n,NYC)

A = {(Person, {id}, 1, T,), (FriendOf, {id,}, 5000, T,)}

By only looking at the access schema we can tell whether we can

efficiently answer the given query




Scale Independence Under Access Schemas

Given a schema R, access schema A over R, and a query Q(x,y), we say
that Q is x-scale independent under A if for each database D that conforms
to A, and each tuple of values t for x, the answer to Q, = Q(t,y) over D can

be computed in time that depends only on A and Q, but not on D

For a fixed query Q(x,y), Q is efficiently x-scale independent under A if for
each database D that conforms to A, and each tuple of values t for x, the

answer to Q, = Q(t,y) over D can be computed in polynomial time in A



Facebook Example — Access Schemas

Find all friends of a person who live in NYC

Person  id name | city FriendOf | id,

Q(p,n) :- FriendOf(p,id), Person(id,n,NYC)

A = {(Person, {id}, 1, T,), (FriendOf, {id,}, 5000, T,)}

Q is efficiently {p}-scale independent under A




Can we Characterize Such Queries?

» Itis an undecidable problem whether a query is x-scale independent under an

access schema

» The lack of effective syntactic characterizations of semantic classes of queries

is common in databases =- isolate practically relevant sufficient conditions

» Goal: provide a syntactic class of queries such that
— |s sufficiently large to cover interesting queries

— Guarantees that the queries are efficiently scale independent



Controllability and Scale Independence

Define: a syntactic class of so-called x-controllable FO queries for a given access

schema, where x is a subset of the free variables of a query

Show: each x-controlled query under access schema A is efficiently x-scaled

independent under A

an x-controlled query under A can be answered efficiently on big databases

that conform to A




x-controllability: Atom Rule

IF (R,X,N,T) € A

THEN R(y) is x-controlled under A, where x is the subtuple of y corresponding to X

Atomic Query Access Schema A Controlling Variables
FriendOf(p,id) (FriendOf, {p}, 5000, T,) {p}
Visit(id,rid,yy,mm,dd) (Visit, {id,yy,mm,dd}, 1, T,) {id, yy, mm, dd}

Person(id,pn,NYC) (Person, {id}, 1, T5) {id}
Dates(yy,mm,dd) (Dates, {yy}, 366, T,) {yy}
Restaurant(rid,rn,NYC,A) | (Restaurant, {rid}, 1, Ts) {rid}

We underline the controlling variables: FriendOf(p,id), Visit(id,rid,yy,,mm,dd), etc.




x-controllability: Conjunction Rule

IF Q(x;y;) is x;-controlled under A fori € {1,2}
THEN Q, A Q, is (X4 U (x,— y4))-controlled and (x, U (x,—Y,))-controlled under A

Consider the queries
Q,(id,rid,yy,mm,dd) :- Visit(id,rid,yy,mm.,dd) Q,(yy,mm,dd) :- Dates(yy,mm,dd)

and the query
Q(id,rid,yy,mm,dd) :- Visit(id,rid,yy,mm,dd), Dates(yy,mm,dd)

Controlling variables: {id,yy,mm,dd} U ({yy} — {rid}) = {id,yy,mm,dd} or
{yy} U ({id,yy,mm,dd} — {mm,dd}) = {id,yy}

= Qs {id,yy,mm,dd}-controlled and {id,yy}-controlled under A



x-controllability: Existential Quantification Rule

IF Q(y) is x-controlled under A, and z is a subtuple of y — x
THEN dz Q is x-controlled under A

Consider the query
Q(id,rid,yy,mm,dd) :- Visit(id,rid,yy,mm,dd), Dates(yy,mm,dd)

and recall that is {id,yy}-controlled under A

less distinguished variables
Then, the query /

Q(id,yy) :- Visit(id,rid,yy,mm,dd), Dates(yy,,nm,dd)
is also {id,yy}-controlled under A. Why?



x-controllability: Other Rules

Similar rules are defined for:
— Conditions: if Q(x) is a Boolean combination of x; = x;, then Q is x-controlled
— Disjunction- Q, vV Q,
— (Safe) Negation - Q, A =Q,
— Universal quantification - Vy (Q(x,y) — Q7(z))
— Expansion: Q(y) is x-controlled under A and x C z C y, then Q is z-controlled

under A

In isolation, all the above rules are optimal, i.e., we cannot achieve smaller

controlling tuples



x-controllability: Example

Q(yy,p,rn) :- FriendOf(p,id), Visit(id,rid,yy,mm,dd), Person(id,pn,NYC),
Dates(yy,mm,dd), Restaurant(rid,rn,NYC,A)

Access Schema A
(FriendOf, {p}, 5000, T,)
(Visit, {id,yymm,dd}, 1, T,)

Is Q {yy,p}-controllable under A?
(Person, {id}, 1, T;)

(Dates, {yy}, 366, T,)
(Restaurant, {rid}, 1, Ts)




x-controllability: Example

Step 1 QEriendof(R,id) FriendOf(p,id)
Quisi(id,rid,yy,mm.dd) Visit(id,rid,yy,mm,dd)
QPerson(Mapn) Person(@,pn,NYC)
Qpates(YY,mm,dd) Dates(yy,mm,dd)
QRestaurant(rid, ) Restaurant(rid,rn,NYC,A)
Step 2 Q4(id,rid,yy,mm,dd) :- Qi (id,rid,yy.mm.dd), Qpes(Yy,mm,dd)
Step 3 Q,(id,rid,yy,mm,dd,pn) :- Q(id,rid,yy,mm,dd), Qpgson(id,pn)
Step 4 Qs(id,rid,yy,mm,dd,pn,p) :- Q(id,rid,yy,mm,dd,pn), Qg iengor(R,id)
Step 5 Q,(id,rid,yy,mm,dd,pn,p,rn) :- Q4(id,rid,yy,mm,dd,pn,p), Qrestaurant(rid,rn)
Step 6 Q (yy.p,rn) :- Q,(id,rid,yy,mm,dd,pn,p,rn)

v



Main Result on x-controllability

Theorem: Consider a first-order query Q, and an access schema A.

If Q is x-controlled under A, then Q is efficiently x-scale independent under A
Proof hint: Show by induction on the structure of Q(x,y), given a tuple of values t for

X, how to retrieve a set D; C D such that Q(Dy;) = Q«(D), where Q; = Q(t,y), and

establish polynomial bounds for its size and query evaluation time.

« The above result states that by filling the variables x in Q by t, Q, can be answered

on any database that conforms to A in polynomial time in A

* An effective plan for identifying D, C D such that Q,(Dy,) = Q,(D) can be obtained



Effective Plan: Example

Q(yy.p,rn) :- FriendOf(p,id), Visit(id,rid,yy,mm.dd), Person(id,pn,NYC),
Dates(yy,mm,dd), Restaurant(rid,rn,NYC,A)

Access Schema A
(FriendOf, {p}, 5000, T,)
(Visit, {id,yymm,dd}, 1, T,)

Q {yy,p}-controllable under A
(Person, {id}, 1, T;)

(Dates, {yy}, 366, T,)
(Restaurant, {rid}, 1, Ts)




Effective Plan: Example

Q(yy. p, )

A\
/ \
/ \ Restaurant(rid, rn, NYC, A)
/ \ FriendOf(p, id)
/ \ Person(id, pn, NYC)

Visit(id, rid, yy, mm, dd) Dates(yy, mm, dd)




Effective Plan: Example

\ Restaurant(rid, rn, NYC, A)

FriendOf(p, id)

Person(id, pn, NYC)

Visit(id, rid, yy, mm, dd) Dates(yy, mm, dd)




Effective Plan: Example

\ Restaurant(rid, rn, NYC, A)

FriendOf(p, id)

Person(id, pn, NYC)

Visit(id, rid, yy, mm, dd) Dates(yy, mm, dd)

\/




Effective Plan: Example

RN

\ Restaurant(rid, rn, NYC, A)

v
FriendOf(p, id)

Visit(id, rid, yy, mm, dd) Dates(yy, mm, dd)

\/




Effective Plan: Example

RN

\ Restaurant(rid, rn, NYC, A)
\

y

FriendOf(p, id)

v
Person(id, pn, NYC)

Visit(id, rid, yy, mm, dd) Dates(yy, mm, dd)

\/




Effective Plan: Example

RN

\ Restaurant(rid, rn, NYC, A)

FrlendOf(p_ id)

——

/ Person(ld pn, NYC)

[

Visit(id, rid, yy, mm, dd) Dates(yy, mm, dd)

\/




Effective Plan: Example

RN

\ Restaurant(rid, rn, NYC, A)

FrlendOf(p_ id)

——

/ Person(ld pn, NYC)

[

Visit(id, rid, yy, mm, dd) Dates(yy, mm, dd)

\/




Wrap-Up

« Afixed first-order query Q(x,y) that is x-controlled under an access schema A

is efficiently x-scale independent under A, i.e., with Q, = Q(t,y):

b\

7/ of polynomial size in A

(identified via an effective plan)
database that conforms to A

kS

I
kS,
=

« Then, exploit existing database technology to answer Q; on D (and thus on D)



Associated Papers

« Michael Armbrust, Kristal Curtis, Tim Kraska, Armando Fox, Michael J. Franklin,
David A. Patterson: PIQL: Success-Tolerant Query Processing in the Cloud. PVLDB
5(3):181-192 (2011)

 Michael Armbrust, Armando Fox, David A. Patterson, Nick Lanham, Beth
Trushkowsky, Jesse Trutna, Haruki Oh: SCADS: Scale-Independent Storage for
Social Computing Applications. CIDR 2009

Two early systems paper on scalability; what we saw in class was a formalization of

their approach

« Michael Armbrust, Eric Liang, Tim Kraska, Armando Fox, Michael J. Franklin, David
A. Patterson: Generalized scale independence through incremental precomputation.
SIGMOD 2013:625-636

Scalability under updates to the underlying data



Associated Papers

» Wenfei Fan, Floris Geerts, Frank Neven: Making Queries Tractable on Big Data
with Preprocessing. PVLDB 6(9): 685-696 (2013)

New notions of complexity for handling large volumes of data

* Wenfei Fan, Floris Geerts, Leonid Libkin: On scale independence for querying
big data. PODS 2014:51-62

We saw the notion of controllability here. Eligible topics for an essay are
incremental computation and using views

» Yang Cao, Wenfei Fan, Tianyu Wo, Wenyuan Yu: Bounded Conjunctive Queries.
PVLDB 7(12): 1231-1242 (2014)

Specialized algorithms for handling select-project-join queries over big data



