
Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

a standard database system

user queries (RA, SQL, etc.)

relational database

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

…but, we live in the era of big data

user queries (RA, SQL, etc.)

Volume

size does mattes

(thousands of TBs of data)

Variety

many data formats

(structured, semi-structured, etc.)

Veracity

data is often

incomplete/inconsistent

Velocity

data often arrives at fast speed

(updates are frequent)

Volume

size does mattes

(thousands of TBs of data)

Variety

many data formats

(structured, semi-structured, etc.)

Veracity

data is often

incomplete/inconsistent

Velocity

data often arrives at fast speed

(updates are frequent)

the rest of this course

Volume Challenges

• Many standard algorithms for data processing do not scale

• We may not even have what can realistically be called an algorithm

‒ Data must be at least scanned (classical assumption in databases)

‒ The best case is a linear time algorithm

‒ But, consider a linear scan on the best available device (6GB/s)

 1 PetaByte (PB) = 106 GBs is scanned in about 2 days

 1 ExaByte (EB) = 109 GBs is scanned in about 5 years

‒ We have PB data sets, while EB data sets are not far away

) linear time, let alone polynomial time, is not good enough

Possible Approaches

• Scale Independence – find queries than can be answered regardless of scale

• Replace the query with one that is much faster to execute

Scale Independence

Advanced Topics in Foundations of Databases, University of Edinburgh, 2016/17

Query Answering on Big Data

• Answer a query on a big database using a small subset of it

• Then, exploit existing database technology to answer queries on big data

Q = Q

Scale Independence

• Armbrust et al. considered the notion of scale independence

‒ M. Armbrust, A. Fox, D. A. Patterson, N. Lanham, B. Trushkowsky, J. Trutna, and H. Oh. Scads:

Scale-independent storage for social computing applications. In CIDR, 2009.

‒ M. Armbrust, K. Curtis, T. Kraska, A. Fox, M. J. Franklin, and D. A. Patterson. PIQL: Success-

tolerant query processing in the cloud. In VLDB, 2011.

‒ M. Armbrust, E. Liang, T. Kraska, A. Fox, M. J. Franklin, and D. Patterson. Generalized scale

independence through incremental precomputation. In SIGMOD, 2013.

The evaluation of queries using a number of

“operations” that is independent of the size of data

Scale Independence: Facebook Example

Find all friends of a person who live in NYC

Q(p,n) :- FriendOf(p,id), Person(id,n,NYC)

Person id name city FriendOf id1 id2

Scale Independence: Facebook Example

Find all friends of a person who live in NYC

Q(P0,n) :- FriendOf(P0,id), Person(id,n,NYC)

Person id name city FriendOf id1 id2

P0

…

P0

• We are interested in a certain person P0

Scale Independence: Facebook Example

Find all friends of a person who live in NYC

Q(P0,n) :- FriendOf(P0,id), Person(id,n,NYC)

Person id name city FriendOf id1 id2

P0

…

P0

≤ 5000

• We are interested in a certain person P0

• Cardinality constraint: Facebook has a limit of 5000 friends per user

Scale Independence: Facebook Example

Find all friends of a person who live in NYC

• We are interested in a certain person P0

• Cardinality constraint: Facebook has a limit of 5000 friends per user

• Key constraint: id is the key attribute of Person

Q(P0,n) :- FriendOf(P0,id), Person(id,n,NYC)

Person id name city

P

FriendOf id1 id2

P0 P

…

P0

≤ 5000≤ 1

) 10000 tuples in total are needed

…and these tuples can be fetched efficiently by using indices on id attributes

Scale Independence: Facebook Example

Find all friends of a person who live in NYC

Q(P0,n) :- FriendOf(P0,id), Person(id,n,NYC)

Person id name city

P

FriendOf id1 id2

P0 P

…

P0

≤ 5000≤ 1

For a given person, this query can be answered using a bounded number of

tuples, independent of the size of the Facebook graph

• We are interested in a certain person P0

• Cardinality constraint: Facebook has a limit of 5000 friends per user

• Key constraint: id is the key attribute of Person

Towards a Theory on Scale Independence

• The previous example shows that it is feasible to answer a query Q in a big

database D by accessing a bounded amount of data

• However, to make practical use of scale independence, several fundamental

questions have to be answered:

1. Given Q and D, can we decide whether Q is scale independent in D?

2. If such an identification is expensive, can we find sufficient conditions?

3. If Q is scale independent in D, can we effectively identify a small DQ µ D?

4. Can we achieve reasonable time bounds for finding DQ and computing Q(DQ)?

Scale Independence: Definition

• A query Q is scale independent in a database D w.r.t. M ≥ 0 if there exists a

subset DQ µ D such that:

1. |DQ| ≤ M

2. Q(DQ) = Q(D)

• We say that Q is scale independent w.r.t. M ≥ 0 if Q is scale independent in D

w.r.t. M, for every database D

we refer to first-order queries (FO)* and conjunctive queries (CQ)

*notice that FO = RA = DRC = TRC

Scale Independence: Algorithmic Problems

QDSI(L)

Input: a database D, a query Q 2 L, and M ≥ 0

Question: is Q scale independent in D w.r.t. M?

QSI(L)

Input: a query Q 2 L, and M ≥ 0

Question: is Q scale independent w.r.t. M?

Data complexity, i.e., fixed Q – this gives rise to

the problem QDSI[Q](L) for a fixed query Q 2 L

Complexity of QDSI(L)

L Non-Boolean Boolean

Combined Data Combined Data

CQ Σ3,P-c NP-c O(1)-time O(1)-time

FO PSPACE-c NP-c PSPACE-c NP-c

third level of the polynomial hierarchy

NP µ Σ3,P µ PSPACE

assuming that |Q| ≤ M

Proof idea (upper bounds):

• Given Q, D, M and D’µ D such that |D’| ≤ M, decide whether Q(D) = Q(D’)

• Solve the complement of QDSI(L) by calling the algorithm for the above problem

Complexity of QSI(L)

• Conjunctive queries are never scale independent w.r.t. some M ≥ 0, unless

the query is trivial

‒ This is due to monotonicity, i.e., D µ D’) Q(D) µ Q(D’)

‒ Example of a trivial query: returns a constant tuple over all databases

• QSI(FO) is undecidable. Why? (hint: consider the case when M = 0)

‒ This holds even for Boolean queries

‒ The class of scale independent FO queries is not recursively enumerable

Facebook Example Revisited

Find all friends of a person who live in NYC

Q(P0,n) :- FriendOf(P0,id), Person(id,n,NYC)

Person id name city

P

FriendOf id1 id2

P0 P

…

P0

≤ 5000≤ 1

For a given person, this query can be answered using a bounded number of

tuples, independent of the size of the Facebook graph

• We are interested in a certain person P0

• Cardinality constraint: Facebook has a limit of 5000 friends per user

• Key constraint: id is the key attribute of Person

Facebook Example Revisited

Find all friends of a person who live in NYC

Q(P0,n) :- FriendOf(P0,id), Person(id,n,NYC)

Person id name city

P

FriendOf id1 id2

P0 P

…

P0

≤ 5000≤ 1

For a given person, this query can be answered using a bounded number of

tuples, independent of the size of the Facebook graph

• We are interested in a certain person P0

• Cardinality constraint: Facebook has a limit of 5000 friends per user

• Key constraint: id is the key attribute of Person

Access Schemas: Definition

• Consider a relational schema R = {R1,…,Rn}. An access schema A over R

is a set of tuples (R,X,N,T) where

‒ R 2 R

‒ X is a set of attributes of R

‒ N,T are natural numbers

• A database D (over R) conforms to A if for each tuple (R,X,N,T) 2 A the

following hold:

‒ Size bound: for each tuple t of values for the attributes X, |σX=t(D)| ≤ N

‒ Time bound: σX=t(D) can be retrieved in time at most T

Facebook Example – Access Schemas

Person id name city FriendOf id1 id2

P0

…

P0

≤ 5000

key attribute

A = {(Person, {id}, 1, T1), (FriendOf, {id1}, 5000, T1)}

- id is a key attribute for Person (size bound)

- it takes time T1 to retrieve a tuple based on

its key value (time bound)

- if id1 is provided, at most 5000 tuples with such an

id exist (size bound)

- it takes time T2 to retrieve those tuples (time bound)

the Facebook graph

conforms to A

Facebook Example – Access Schemas

Person id name city FriendOf id1 id2

P0

…

P0

≤ 5000

Find all friends of a person who live in NYC

Q(P0,n) :- FriendOf(P0,id), Person(id,n,NYC)

By only looking at the access schema we can tell whether we can

efficiently answer the given query

A = {(Person, {id}, 1, T1), (FriendOf, {id1}, 5000, T1)}

Scale Independence Under Access Schemas

• Given a schema R, access schema A over R, and a query Q(x,y), we say

that Q is x-scale independent under A if for each database D that conforms

to A, and each tuple of values t for x, the answer to Qt = Q(t,y) over D can

be computed in time that depends only on A and Q, but not on D

• For a fixed query Q(x,y), Q is efficiently x-scale independent under A if for

each database D that conforms to A, and each tuple of values t for x, the

answer to Qt = Q(t,y) over D can be computed in polynomial time in A

Facebook Example – Access Schemas

Person id name city FriendOf id1 id2

Find all friends of a person who live in NYC

Q is efficiently {p}-scale independent under A

Q(p,n) :- FriendOf(p,id), Person(id,n,NYC)

A = {(Person, {id}, 1, T1), (FriendOf, {id1}, 5000, T1)}

Can we Characterize Such Queries?

• It is an undecidable problem whether a query is x-scale independent under an

access schema

• The lack of effective syntactic characterizations of semantic classes of queries

is common in databases) isolate practically relevant sufficient conditions

• Goal: provide a syntactic class of queries such that

‒ Is sufficiently large to cover interesting queries

‒ Guarantees that the queries are efficiently scale independent

Controllability and Scale Independence

Define: a syntactic class of so-called x-controllable FO queries for a given access

schema, where x is a subset of the free variables of a query

Show: each x-controlled query under access schema A is efficiently x-scaled

independent under A

an x-controlled query under A can be answered efficiently on big databases

that conform to A

x-controllability: Atom Rule

IF (R,X,N,T) 2 A

THEN R(y) is x-controlled under A, where x is the subtuple of y corresponding to X

Atomic Query Access Schema A Controlling Variables

FriendOf(p,id) (FriendOf, {p}, 5000, T1) {p}

Visit(id,rid,yy,mm,dd) (Visit, {id,yy,mm,dd}, 1, T2) {id, yy, mm, dd}

Person(id,pn,NYC) (Person, {id}, 1, T3) {id}

Dates(yy,mm,dd) (Dates, {yy}, 366, T4) {yy}

Restaurant(rid,rn,NYC,A) (Restaurant, {rid}, 1, T5) {rid}

We underline the controlling variables: FriendOf(p,id), Visit(id,rid,yy,mm,dd), etc.

x-controllability: Conjunction Rule

IF Qi(xi,yi) is xi-controlled under A for i 2 {1,2}

THEN Q1 ^ Q2 is (x1 [(x2 – y1))-controlled and (x2 [(x1 – y2))-controlled under A

Consider the queries

Q1(id,rid,yy,mm,dd) :- Visit(id,rid,yy,mm,dd) Q2(yy,mm,dd) :- Dates(yy,mm,dd)

and the query

Q(id,rid,yy,mm,dd) :- Visit(id,rid,yy,mm,dd), Dates(yy,mm,dd)

Controlling variables: {id,yy,mm,dd} [({yy} – {rid}) = {id,yy,mm,dd} or

{yy} [({id,yy,mm,dd} – {mm,dd}) = {id,yy}

) Q is {id,yy,mm,dd}-controlled and {id,yy}-controlled under A

x-controllability: Existential Quantification Rule

IF Q(y) is x-controlled under A, and z is a subtuple of y – x

THEN 9z Q is x-controlled under A

Consider the query

Q(id,rid,yy,mm,dd) :- Visit(id,rid,yy,mm,dd), Dates(yy,mm,dd)

and recall that is {id,yy}-controlled under A

Then, the query

Q(id,yy) :- Visit(id,rid,yy,mm,dd), Dates(yy,mm,dd)

is also {id,yy}-controlled under A. Why?

less distinguished variables

x-controllability: Other Rules

• Similar rules are defined for:

‒ Conditions: if Q(x) is a Boolean combination of xi = xj, then Q is x-controlled

‒ Disjunction - Q1 _ Q2

‒ (Safe) Negation - Q1 ^ :Q2

‒ Universal quantification - 8y (Q(x,y) ! Q’(z))

‒ Expansion: Q(y) is x-controlled under A and x µ z µ y, then Q is z-controlled

under A

• In isolation, all the above rules are optimal, i.e., we cannot achieve smaller

controlling tuples

x-controllability: Example

Q(yy,p,rn) :- FriendOf(p,id), Visit(id,rid,yy,mm,dd), Person(id,pn,NYC),

Dates(yy,mm,dd), Restaurant(rid,rn,NYC,A)

Access Schema A

(FriendOf, {p}, 5000, T1)

(Visit, {id,yy,mm,dd}, 1, T2)

(Person, {id}, 1, T3)

(Dates, {yy}, 366, T4)

(Restaurant, {rid}, 1, T5)

Is Q {yy,p}-controllable under A?

x-controllability: Example

QFriendOf(p,id) :- FriendOf(p,id)

QVisit(id,rid,yy,mm,dd) :- Visit(id,rid,yy,mm,dd)

QPerson(id,pn) :- Person(id,pn,NYC)

QDates(yy,mm,dd) :- Dates(yy,mm,dd)

QRestaurant(rid,rn) :- Restaurant(rid,rn,NYC,A)

Q1(id,rid,yy,mm,dd) :- QVisit(id,rid,yy,mm,dd), QDates(yy,mm,dd)

Step 1

Step 2

Q2(id,rid,yy,mm,dd,pn) :- Q1(id,rid,yy,mm,dd), QPerson(id,pn)Step 3

Q3(id,rid,yy,mm,dd,pn,p) :- Q2(id,rid,yy,mm,dd,pn), QFriendOf(p,id)Step 4

Q4(id,rid,yy,mm,dd,pn,p,rn) :- Q3(id,rid,yy,mm,dd,pn,p), QRestaurant(rid,rn)Step 5

Q (yy,p,rn) :- Q4(id,rid,yy,mm,dd,pn,p,rn)Step 6

Main Result on x-controllability

Theorem: Consider a first-order query Q, and an access schema A.

If Q is x-controlled under A, then Q is efficiently x-scale independent under A

Proof hint: Show by induction on the structure of Q(x,y), given a tuple of values t for

x, how to retrieve a set DQ,t µ D such that Qt(DQ,t) = Qt(D), where Qt = Q(t,y), and

establish polynomial bounds for its size and query evaluation time.

• The above result states that by filling the variables x in Q by t, Qt can be answered

on any database that conforms to A in polynomial time in A

• An effective plan for identifying DQ,t µ D such that Qt(DQ,t) = Qt(D) can be obtained

Effective Plan: Example

Access Schema A

(FriendOf, {p}, 5000, T1)

(Visit, {id,yy,mm,dd}, 1, T2)

(Person, {id}, 1, T3)

(Dates, {yy}, 366, T4)

(Restaurant, {rid}, 1, T5)

Q {yy,p}-controllable under A

Q(yy,p,rn) :- FriendOf(p,id), Visit(id,rid,yy,mm,dd), Person(id,pn,NYC),

Dates(yy,mm,dd), Restaurant(rid,rn,NYC,A)

Effective Plan: Example

Visit(id, rid, yy, mm, dd) Dates(yy, mm, dd)

Person(id, pn, NYC)
^

^
FriendOf(p, id)

^
Restaurant(rid, rn, NYC, A)

^

9

Q(yy, p, rn)

Effective Plan: Example

Visit(id, rid, yy, mm, dd) Dates(yy, mm, dd)

Person(id, pn, NYC)
^

^
FriendOf(p, id)

^
Restaurant(rid, rn, NYC, A)

^

9

Q(yy, p, rn)

Effective Plan: Example

Visit(id, rid, yy, mm, dd) Dates(yy, mm, dd)

Person(id, pn, NYC)
^

^
FriendOf(p, id)

^
Restaurant(rid, rn, NYC, A)

^

9

Q(yy, p, rn)

Effective Plan: Example

Visit(id, rid, yy, mm, dd) Dates(yy, mm, dd)

Person(id, pn, NYC)
^

^
FriendOf(p, id)

^
Restaurant(rid, rn, NYC, A)

^

9

Q(yy, p, rn)

Effective Plan: Example

Visit(id, rid, yy, mm, dd) Dates(yy, mm, dd)

Person(id, pn, NYC)
^

^
FriendOf(p, id)

^
Restaurant(rid, rn, NYC, A)

^

9

Q(yy, p, rn)

Effective Plan: Example

Visit(id, rid, yy, mm, dd) Dates(yy, mm, dd)

Person(id, pn, NYC)
^

^
FriendOf(p, id)

^
Restaurant(rid, rn, NYC, A)

^

9

Q(yy, p, rn)

Effective Plan: Example

Visit(id, rid, yy, mm, dd) Dates(yy, mm, dd)

Person(id, pn, NYC)
^

^
FriendOf(p, id)

^
Restaurant(rid, rn, NYC, A)

^

9

Q(yy, p, rn)

Wrap-Up

• A fixed first-order query Q(x,y) that is x-controlled under an access schema A

is efficiently x-scale independent under A, i.e., with Qt = Q(t,y):

• Then, exploit existing database technology to answer Qt on DQ,t (and thus on D)

Qt
= Qt

D

DQ,t

DQ,t

database that conforms to A

of polynomial size in A

(identified via an effective plan)

Associated Papers

• Michael Armbrust, Kristal Curtis, Tim Kraska, Armando Fox, Michael J. Franklin,

David A. Patterson: PIQL: Success-Tolerant Query Processing in the Cloud. PVLDB

5(3):181-192 (2011)

• Michael Armbrust, Armando Fox, David A. Patterson, Nick Lanham, Beth

Trushkowsky, Jesse Trutna, Haruki Oh: SCADS: Scale-Independent Storage for

Social Computing Applications. CIDR 2009

• Two early systems paper on scalability; what we saw in class was a formalization of

their approach

• Michael Armbrust, Eric Liang, Tim Kraska, Armando Fox, Michael J. Franklin, David

A. Patterson: Generalized scale independence through incremental precomputation.

SIGMOD 2013:625-636

• Scalability under updates to the underlying data

Associated Papers

• Wenfei Fan, Floris Geerts, Frank Neven: Making Queries Tractable on Big Data

with Preprocessing. PVLDB 6(9): 685-696 (2013)

• New notions of complexity for handling large volumes of data

• Wenfei Fan, Floris Geerts, Leonid Libkin: On scale independence for querying

big data. PODS 2014:51-62

• We saw the notion of controllability here. Eligible topics for an essay are

incremental computation and using views

• Yang Cao, Wenfei Fan, Tianyu Wo, Wenyuan Yu: Bounded Conjunctive Queries.

PVLDB 7(12): 1231-1242 (2014)

• Specialized algorithms for handling select-project-join queries over big data

