
the rest of this course

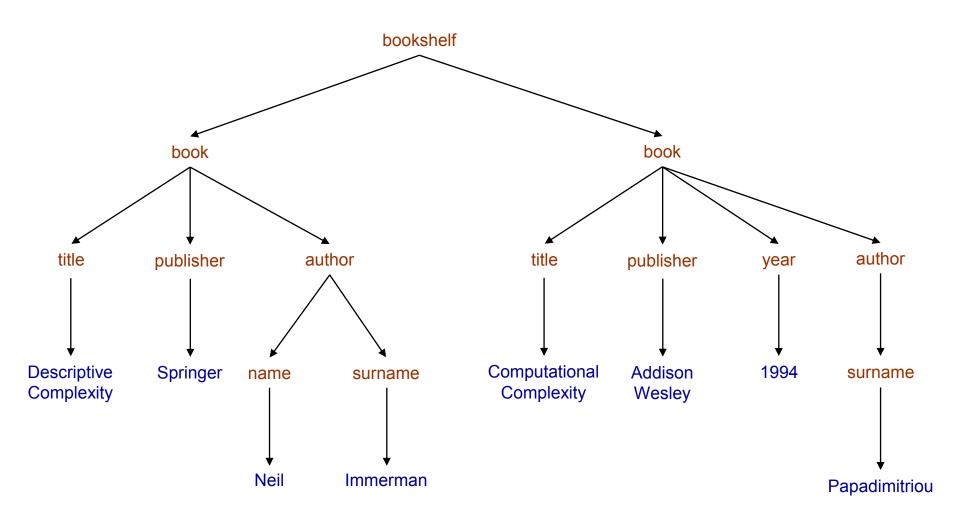
Foundations of XML

Advanced Topics in Foundations of Databases, University of Edinburgh, 2016/17

XML at First Glance

XML = eXtensible Markup Language

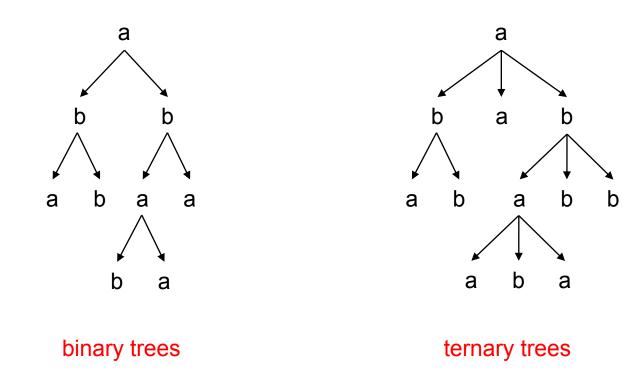
- W3C standard for document markup since 1998
- Generic syntax to markup data with human- and machine-readable tags
- One of the most common data formats
- Several XML-related W3C standards
 - XML Schema: define the markup permitted in a document
 - XPath: navigation mechanism
 - XSLT: transformation language
 - XQuery: query language


An exciting toping for database theorists:

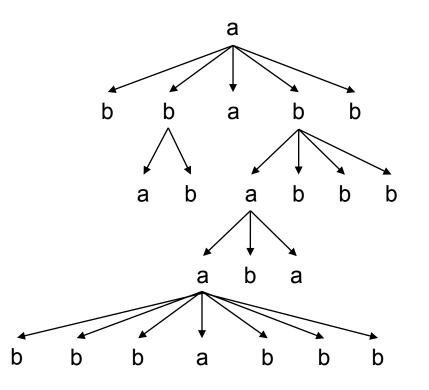
it brings techniques from formal language theory and merges them nicely with logic

XML at First Glance

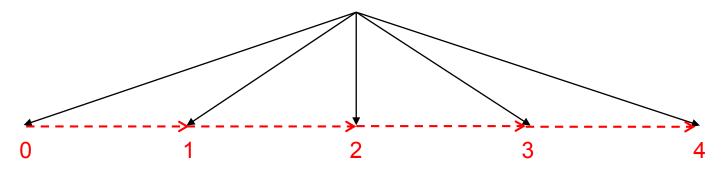
	<book></book>	
	<title>Descriptive Complexity</title> <publisher>Springer</publisher>	child elements of book
	<author> <au< td=""><td>child elements of author</td></au<></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author></author>	child elements of author
root element		
	<book></book>	
	<title>Computational Complexity</title> <publisher>Addison Wesley</publisher>	child elements of book
	< <mark>year</mark> >1994 <mark year>	
	<author></author>	
	<surname>Papadimitriou</surname>	child element of author


XML Documents as Trees

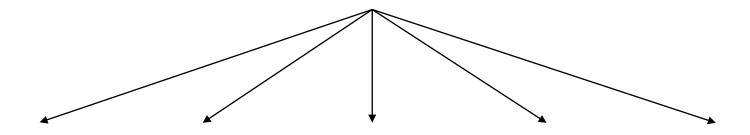
labeled ordered unranked tree


Ranked vs. Unranked Trees

Typically in computer science one works with ranked trees, e.g.,


Ranked vs. Unranked Trees

But for XML we need unranked trees – nodes can have arbitrarily many children


Ordered vs. Unordered Trees

In ordered trees, siblings are ordered (from the oldest to the youngest)

a "build-in" binary relation provides access to this ordering

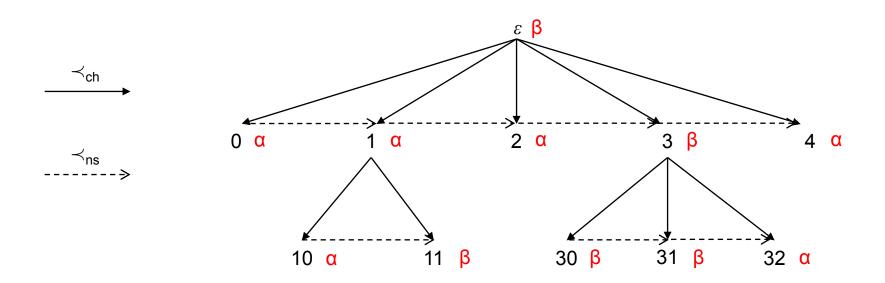
In unordered trees, such an order among siblings does not exist

XML Development

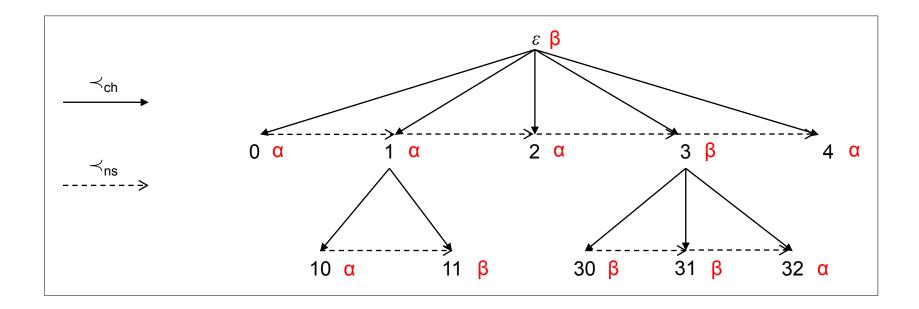
- Clean and simple model labeled ordered unranked trees
- Declarative languages XPath
 - Flavour of traditional first-order logic, or
 - Temporal logics for describing navigation
- Procedural languages automata-theoretic constructions
- Key advantages (like the relational model)
 - Simple and clean mathematical model (based on logic)
 - Separation of declarative and procedural

Ordered Unranked Trees: Definition

Fix a finite alphabet Λ


An ordered unranked tree T is a structure

$$(\mathbf{D},\prec_{\mathsf{ch}^*},\prec_{\mathsf{ns}^*},\{\mathsf{P}_\mathsf{s}\}_{\mathsf{s}\,\in\,\Lambda})$$


- **D** is a finite prefix-closed subset of N* such that $s \cdot i \in \mathbf{D} \Rightarrow s \cdot j \in \mathbf{D}$ for every j < i
- \prec_{ch^*} is the descendant relation
- \prec_{ns^*} is the sibling relation
- P_s's are interpreted as disjoint sets whose union is the entire domain D

Ordered Unranked Trees: Example

- Let $\Lambda = \{\alpha, \beta\}$
- Consider the ordered unranked tree $T = (\mathbf{D}, \prec_{ch^*}, \prec_{ns^*}, \{P_s\}_{s \in \Lambda})$, where
 - $\mathbf{D} = \{\varepsilon, 0, 1, 2, 3, 4, 10, 11, 30, 31, 32\}$
 - $\prec_{ch} = \{(\varepsilon, 0), (\varepsilon, 1), (\varepsilon, 2), (\varepsilon, 3), (\varepsilon, 4), (1, 10), (1, 11), (3, 30), (3, 31), (3, 32)\}$
 - $\prec_{ns} = \{(0,1), (1,2), (2,3), (3,4), (10,11), (30,31), (31,32)\}$
 - $P_{\alpha} = \{0, 1, 2, 4, 10, 32\}$
 - $P_{\beta} = \{\varepsilon, 3, 11, 30, 31\}$

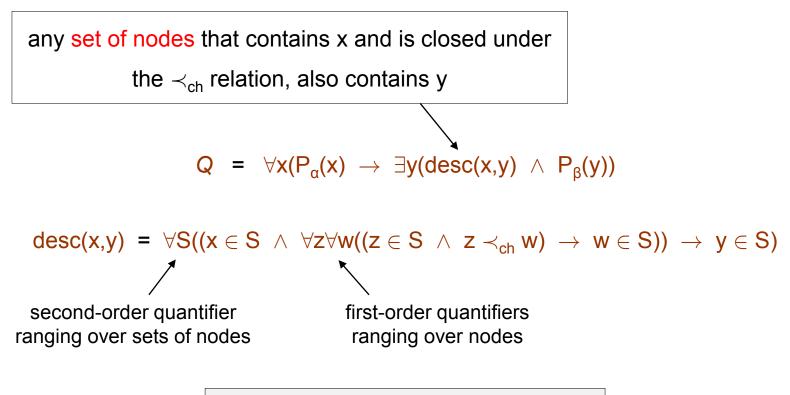
Ordered Unranked Trees: Basic Predicates

In $T = (D, \prec_{ch^*}, \prec_{ns^*}, \{P_s\}_{s \in \Lambda})$ we use the transitive closures of \prec_{ch} and \prec_{ns}

- They are not definable in first-order logic
- However, if the adopted logic is powerful enough to define them, then we can simply use \prec_{ch} and \prec_{ns}

Check that in a tree T over the alphabet { α,β } every α -labeled node always has a β -labeled descendant

$$\mathsf{Q} \;\; = \;\; \forall \mathsf{x}(\mathsf{P}_{\alpha}(\mathsf{x}) \; \to \; \exists \mathsf{y}(\mathsf{x} \prec_{\mathsf{ch}^{\star}} \mathsf{y} \; \land \; \mathsf{P}_{\beta}(\mathsf{y}))$$


Select the nodes in a tree T over the alphabet $\{\alpha,\beta,\gamma\}$ that are

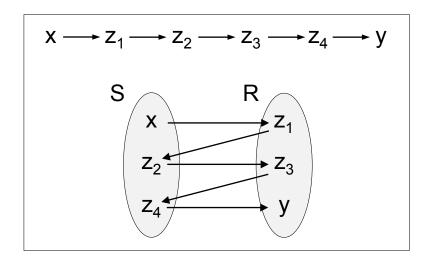
- (i) labeled α ,
- (ii) have a descendant d labeled b, and
- (iii) d has a younger sibling labeled γ

 $Q(x) = P_{\alpha}(x) \land \exists y \exists z (x \prec_{ch^{*}} y \land P_{\beta}(y) \land y \prec_{ns^{*}} z \land P_{\gamma}(z))$

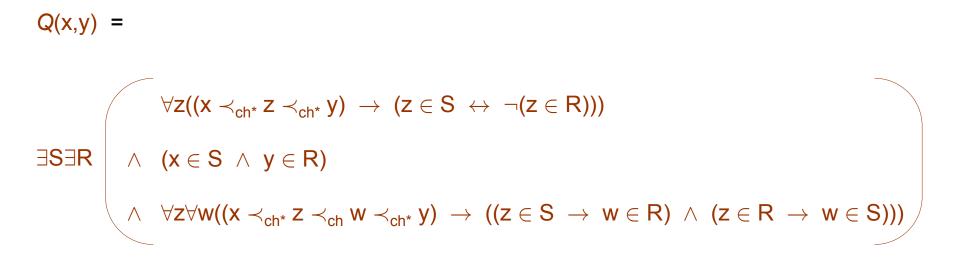
Check that in a tree T over the alphabet { α , β } every α -labeled node

always has a β -labeled descendant, but using only \prec_{ch}

monadic second-order logic (MSO)


Compute the pairs of nodes (x,y) such that y is a descendant of x and the path between them is of odd length

Ξ


There exist two sets of nodes S and R that

- (i) partition the path from x to y
- (ii) $x \in S$ and $y \in R$

(iii) the successor element of each element in S is in R, and vice versa

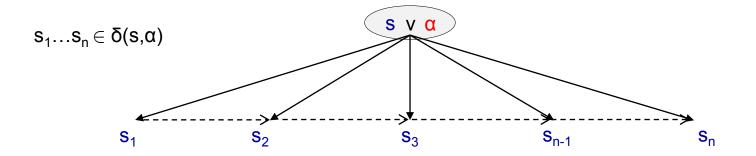
Compute the pairs of nodes (x,y) such that y is a descendant of x and the path between them is of odd length

- For querying labeled ordered unranked trees we use:
 - First-order logic (FO)
 - Boolean connectives ∨, ∧, ¬
 - Quantifiers $\exists x \text{ and } \forall x \text{ that range over nodes of trees}$
 - Monadic second-order logic (MSO)
 - FO plus quantifiers ∃S and ∀S that range over sets of nodes
 - New formulae x ∈ S
- Most commonly they define:
 - Boolean (yes/no) queries in fact, they define sets of trees
 - Unary queries that select nodes in trees

Ordered Unranked Trees: Definability in Logic

Let L be some logic (such as FO or MSO)

A Boolean query Q (i.e., a set of trees T) is L-definable if there is a sentence
 φ of L such that T ∈ T ⇔ T ⊨ φ


A unary query Q(x) is L-definable if there is a formula φ(x) of L such that for every tree *T* and node v in *T*, v ∈ Q(*T*) ⇔ *T* ⊨ φ(v)
 f f the set of nodes in *T* selected by Q

Unranked Tree Automata

• A nondeterministic unranked tree automaton (NUTA) over Λ-labeled trees is a triple

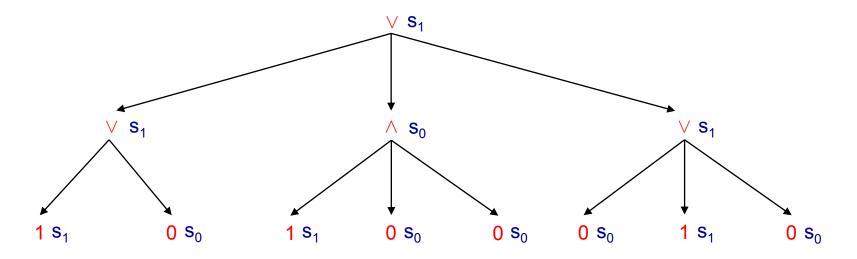
 $A = (S, F, \delta)$

- S is a finite set of states
- $\quad \mathsf{F} \subseteq \mathsf{S} \text{ is the set of final states}$
- $\delta: S \times \Lambda \rightarrow 2^{S^*}$ such that $\delta(s, \alpha)$ is a regular language over S
- A run of *A* on a tree *T* with domain **D** is a function $\lambda_A : \mathbf{D} \to S$ such that: if v is a node with n children, and is labeled α , then the string $\lambda_A(v \cdot 0) \dots \lambda_A(v \cdot (n-1)) \in \delta(\lambda_A(v), \alpha)$

Unranked Tree Automata

• A nondeterministic unranked tree automaton (NUTA) over Λ-labeled trees is a triple

 $A = (S, F, \delta)$


- S is a finite set of states
- $\quad \mathsf{F} \subseteq \mathsf{S} \text{ is the set of final states}$
- $\quad \delta:S\times\Lambda \ \to \ 2^{S^*} \text{ such that } \delta(s,\alpha) \text{ is a regular language over } S$
- A run of *A* on a tree *T* with domain **D** is a function $\lambda_A : \mathbf{D} \to S$ such that: if v is a node with n children, and is labeled α , then the string $\lambda_A(v \cdot 0) \dots \lambda_A(v \cdot (n-1)) \in \delta(\lambda_A(v), \alpha)$
- A run is accepting if $\lambda_A(\varepsilon) \in F$, i.e., the root is in an accepting state
- A tree *T* is accepted by *A* if there exists an accepting run of *A* on *T*
- We denote by L(A) the set of all trees accepted by A a set of trees accepted by an NUTA is called regular

Unranked Tree Automata: Example

- Let Λ = {∧,∨,0,1}, and consider Λ-labeled trees where 0,1 appear only at leaves, while ∧,∨ can appear everywhere except at leaves
- We define $A = (\{s_0, s_1\}, \{s_1\}, \delta)$, where

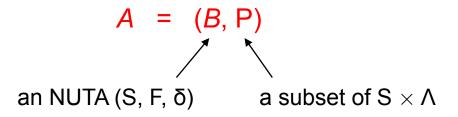
$$\begin{split} \delta(\mathbf{s}_0, 0) &= \delta(\mathbf{s}_1, 1) = \{\varepsilon\} \\ \delta(\mathbf{s}_0, 1) &= \delta(\mathbf{s}_1, 0) = \emptyset \\ \delta(\mathbf{s}_0, \wedge) &= (\mathbf{s}_0 \cup \mathbf{s}_1)^* \cdot \mathbf{s}_0 \cdot (\mathbf{s}_0 \cup \mathbf{s}_1)^* \end{split}$$

$$\begin{split} \delta(\mathbf{s}_1, \wedge) &= \mathbf{s}_1^* \\ \delta(\mathbf{s}_0, \vee) &= \mathbf{s}_0^* \\ \delta(\mathbf{s}_1, \vee) &= (\mathbf{s}_0 \cup \mathbf{s}_1)^* \cdot \mathbf{s}_1 \cdot (\mathbf{s}_0 \cup \mathbf{s}_1)^* \end{split}$$

MSO = NUTA

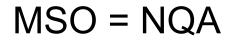
We can now present an interesting result:

Theorem: Consider a set **T** of labeled ordered unranked trees. Then:


T is **MSO**-definable \Leftrightarrow **T** is regular

...but, what about unary queries?

we need an extended automata model


Query Automata

A nondeterministic query automaton (NQA) over Λ-labeled trees is a pair

• Such an automaton defines a unary query Q_A over unranked trees:

 $v \in Q_A(T) \iff (\lambda_B(v), label(v)) \in P$, for some accepting run λ_B of B on T

We have similar characterization for unary queries:

Theorem: Consider a unary query *Q* on labeled ordered unranked trees. Then:

Q is **MSO**-definable \Leftrightarrow **Q** is of the form **Q**_A for some NQA A

Ordered Unranked Trees: Recap

• XML documents are modeled as labeled ordered unranked trees

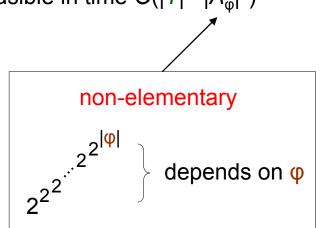
• **MSO** is the yardstick logic for querying ordered unranked trees

- Most commonly we consider:
 - Boolean queries that they define sets of trees: **MSO** = NUTA
 - Unary queries that select nodes in trees: **MSO** = NQA

...but, what about the complexity of MSO over trees?

BQE(**MSO**)

Input: a labeled ordered unranked tree *T*, an **MSO** sentence ϕ **Question:** $T \vDash \phi$?


- The same problem can be defined for unary formulas
 - Given a tree T, a unary formula $\varphi(x)$, and a node v: does $T \vDash \varphi(v)$?
- As usual, we consider the data and combined complexity
 - Data complexity: T is input, ϕ is fixed
 - Combined complexity: both T and ϕ are part of the input

Theorem: It holds that:

- BQE(**MSO**) is in PTIME in data complexity (in fact, linear time)
- BQE(**MSO**) is non-elementary in combined complexity

Proof idea: By translation to automata:

- Convert the given sentence φ into a NUTA A_{φ} such that $T \vDash \varphi \Leftrightarrow T \in L(A_{\varphi})$
- To decide whether $T \in L(A_{\varphi})$ is feasible in time $O(|T| \cdot |A_{\varphi}|^2)$

Theorem: It holds that:

- BQE(**MSO**) is in PTIME in data complexity (in fact, linear time)
- BQE(**MSO**) is non-elementary in combined complexity

Proof idea: By translation to automata:

- Convert the given sentence φ into a NUTA A_{φ} such that $T \vDash \varphi \Leftrightarrow T \in L(A_{\varphi})$
- To decide whether $T \in L(A_{\varphi})$ is feasible in time $O(|T| \cdot |A_{\varphi}|^2)$

Even a bigger problem: there is no algorithm (even if we avoid automata) for checking whether $T \vDash \varphi$ that runs in time $O(|T| \cdot f(|\varphi|))$ and f is an elementary function (unless P = NP)

Theorem: It holds that:

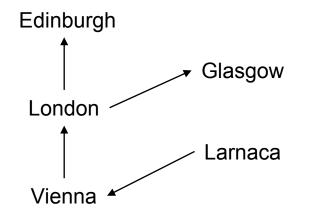
- BQE(**MSO**) is in PTIME in data complexity (in fact, linear time)
- BQE(**MSO**) is non-elementary in combined complexity

Proof idea: By translation to automata:

- Convert the given sentence φ into a NUTA A_{φ} such that $T \vDash \varphi \Leftrightarrow T \in L(A_{\varphi})$
- To decide whether $T \in L(A_{\varphi})$ is feasible in time $O(|T| \cdot |A_{\varphi}|^2)$

We need logics that have the same power as MSO, but

permit faster evaluation algorithms

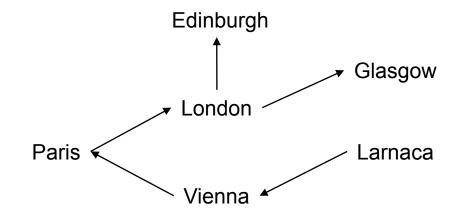

Alternative Logics for MSO

 Efficient Tree Logic (ETL) – obtained by posing some syntactic restrictions on MSO formulae, and at the same time adding new constructors for formulae that are not in MSO, but are MSO-definable

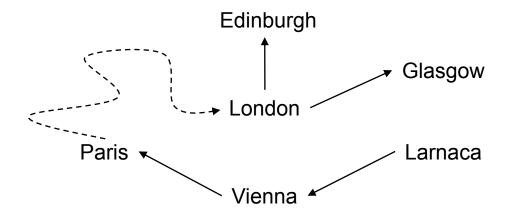
• µ-calculus – extension of a temporal logic with the least fixed-point operator

 Monadic Datalog – fragment of Datalog, a database query language that essentially extends existential positive FO with the least fixed-point operator

Is Glasgow reachable from Vienna?

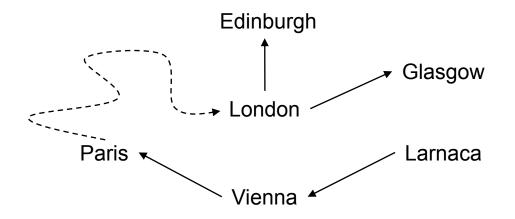

Is Glasgow reachable from Vienna?

 $\exists x (Flight(Vienna,x) \land Flight(x,Glasgow))$


X

Is Glasgow reachable from Vienna?

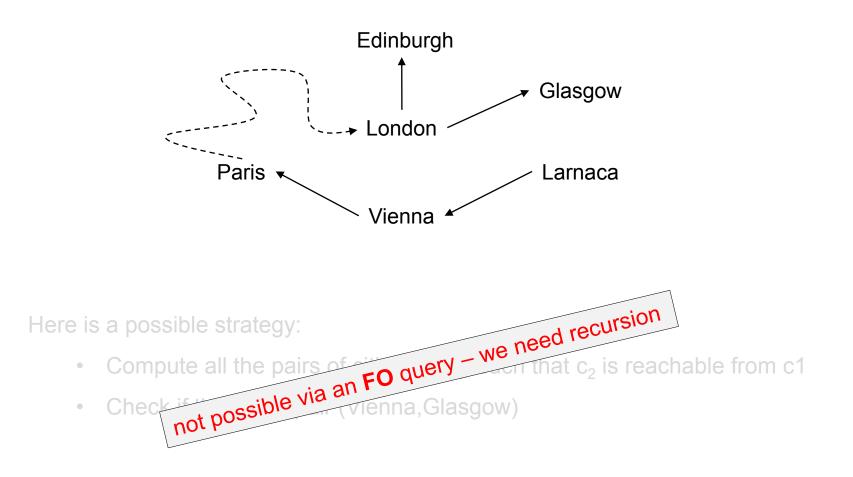
 $\exists x \exists y (Flight(Vienna,x) \land Flight(x,y) \land Flight(y,Glasgow))$


Is Glasgow reachable from Vienna?

 $\exists x \exists y (Flight(Vienna,x) \land Flight(x,y) \land Flight(y,Glasgow))$

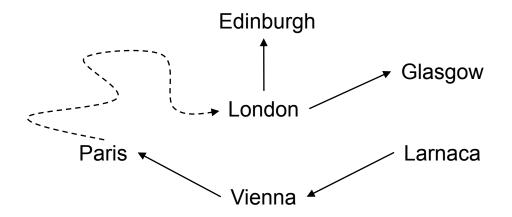
X

Is Glasgow reachable from Vienna?



Here is a possible strategy:

- Compute all the pairs of cities (c_1, c_2) such that c_2 is reachable from c_1
- Check if there is a pair (Vienna, Glasgow)


Reachability

Is Glasgow reachable from Vienna?

Reachability

Is Glasgow reachable from Vienna?

Reachable(x,y) :- Flight(x,y) Reachable(x,z) :- Flight(x,y), Reachable(y,z) Goal :- Reachable(Vienna,Glasgow)

Reachability

DATALOG

essentially, positive FO with least fixed-point

Reachable(x,y):-Flight(x,y)Reachable(x,z):-Flight(x,y), Reachable(y,z)Goal:-Reachable(Vienna,Glasgow)

Monadic Datalog

all the introduced (or intentional) predicates are unary

Select all nodes v such that their descendants (including v) are labeled α

Goal(x) :-
$$P_{\alpha}(x)$$
, Leaf(x)
Goal(x) :- $P_{\alpha}(x)$, $x \prec_{fc} y$, Mark(y)

 $Mark(\cdot)$ collects all the nodes v such that

- Goal(v) holds
- For every u such that $v \prec_{ns^*} u$, Goal(u) holds

Monadic Datalog

 $\textbf{R} = \{\prec_{fc}, Leaf, LastChild, Root, \{P_s\}_{s \in \Lambda}\}$

Theorem: Consider a unary query *Q* on labeled ordered unranked trees. Then:

Q is **MSO**-definable \Leftrightarrow **Q** is definable in Monadic Datalog over **R**

Theorem: A Monadic Datalog query Q can be evaluated on a tree T in time $O(|Q| \cdot |T|)$

Monadic Datalog is heavily used in Web data extraction: real-life languages are based on Monadic Datalog, which combines expressiveness and good evaluation properties

XML Schemas

- Usually, we are not interested in documents containing arbitrary elements, but only in documents that satisfy some specific constraints
- Schema the markup permitted in an XML document
- Many different XML schema languages available:
 - Document Type Definitions (DTDs)
 - W3C XML Schema
 - REgular LAnguage for XML Next Generation (RELAX NG)
 - Schematron

— ...

DTDs: An Example

<bookshelf> <book> <title>Descriptive Complexity</title> <publisher>Springer</publisher> <author> <name>Neil</name> <surname>Immerman</surname> </author> </book> <book> <title>Computational Complexity</title> <publisher>Addison Wesley</publisher> <year>1994</year> <author> <surname>Papadimitriou</surname> </author> </book> </bookshelf>

the XML document is valid w.r.t. the DTD

<!DOCTYPE bookshelf [

<!ELEMENT bookshelf (book+)>

<!ELEMENT book (title, publisher, year?, author+)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT publisher (#PCDATA)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT author (name?, surname)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT surname (#PCDATA)>

DTDs: Formal Definition

Fix a finite alphabet Λ

A document type definition (DTD) D is function-symbol pair

(f : $\Lambda \rightarrow$ regular expressions over Λ , $s \in \Lambda$)

For example, the previous DTD is written as (f, bookshelf), where

 $f(bookshelf) = book \cdot book^*$

 $f(book) = title \cdot publisher \cdot (year \cup \varepsilon) \cdot (author \cdot author^*)$

f(author) = (name $\cup \varepsilon$) · surname

 $f(title) = f(publisher) = f(year) = f(name) = f(surname) = \varepsilon$

DTDs into Tree Automata (and MSO)

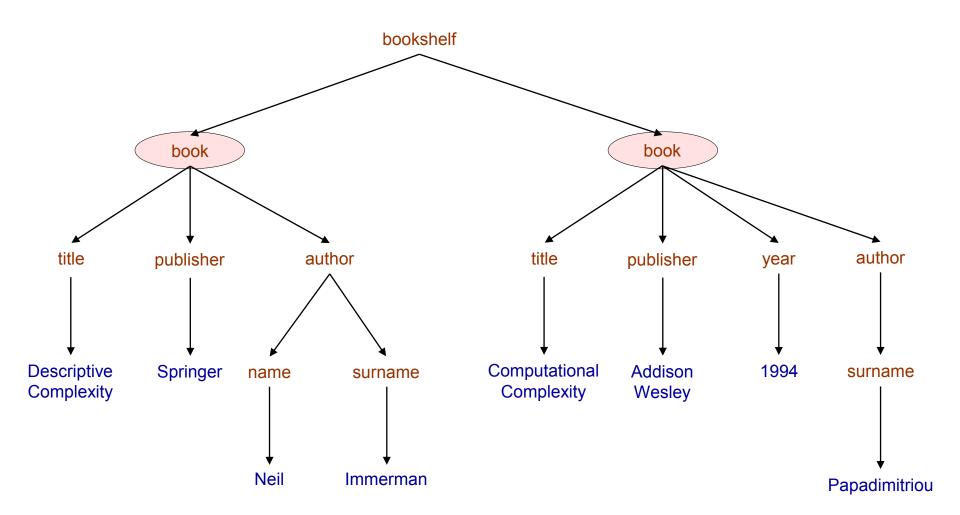
• The previous DTD is written as **D** = (f, bookshelf), where

 $f(bookshelf) = book \cdot book^*$ $f(book) = title \cdot publisher \cdot (year \cup \varepsilon) \cdot (author \cdot author^*)$ $f(author) = (name \cup \varepsilon) \cdot surname$ $f(title) = f(publisher) = f(year) = f(name) = f(surname) = \varepsilon$

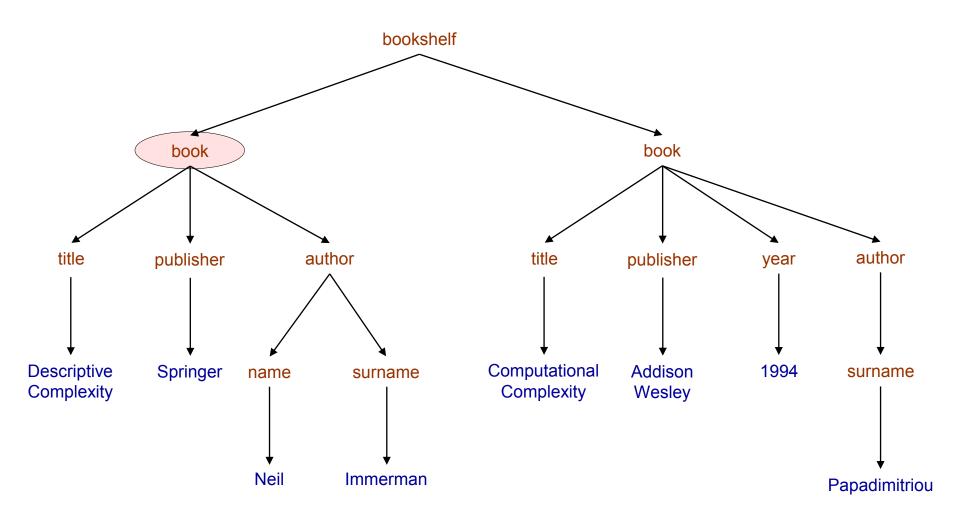
• Let $A_D = (\{s_{bookshelf}, s_{book}, s_{title}, s_{publisher}, s_{year}, s_{author}, s_{name}, s_{surname}\}, \{s_{bookshelf}\}, \delta)$, where

$$\begin{split} &\delta(s_x,x) = \varepsilon, \text{ for every } x \in \{\text{title, publisher, year, name, surname}\} \\ &\delta(s_{\text{bookshelf}},\text{bookshelf}) = \text{book} \cdot \text{book}^* \\ &\delta(s_{\text{book}},\text{book}) = \text{title} \cdot \text{publisher} \cdot (\text{year} \cup \varepsilon) \cdot (\text{author} \cdot \text{author}^*) \\ &\delta(s_{\text{author}},\text{author}) = (\text{name} \cup \varepsilon) \cdot \text{surname} \end{split}$$

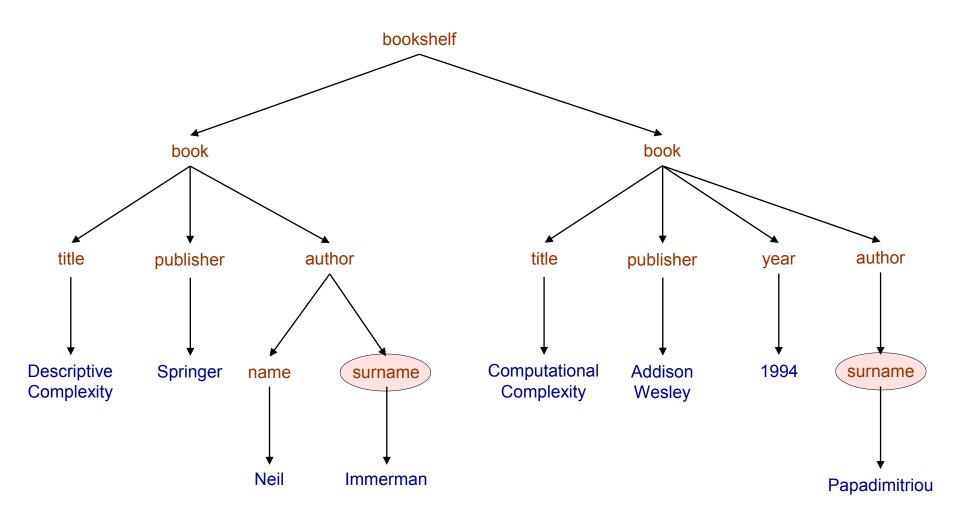
 $L(A_D) = \{T \mid T \text{ is valid w.r.t. } D\}$

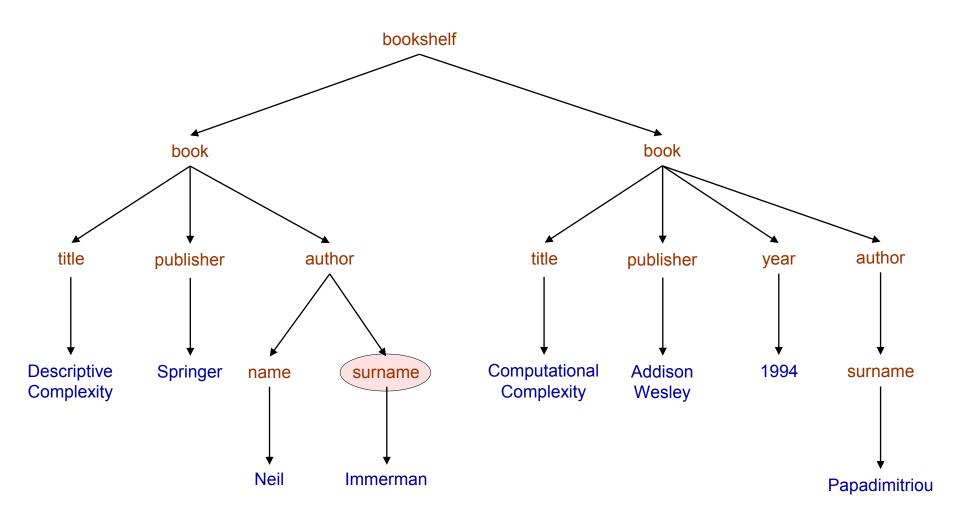

Recap

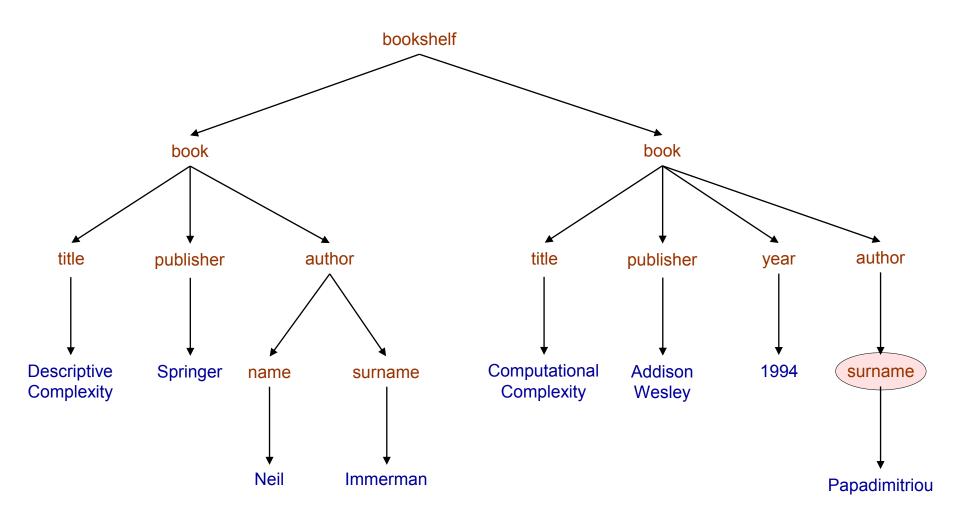
- XML documents are modeled as labeled ordered unranked trees
- **MSO** is the yardstick logic for querying ordered unranked trees
 - Boolean queries that they define sets of trees: **MSO** = NUTA
 - Unary queries that select nodes in trees: **MSO** = NQA
- **MSO** over trees can be evaluated in linear time in data complexity, but the combined complexity is non-elementary
- Monadic Datalog an alternative logic for MSO with good evaluation properties
- DTDs are captured by NUTA (**MSO**)

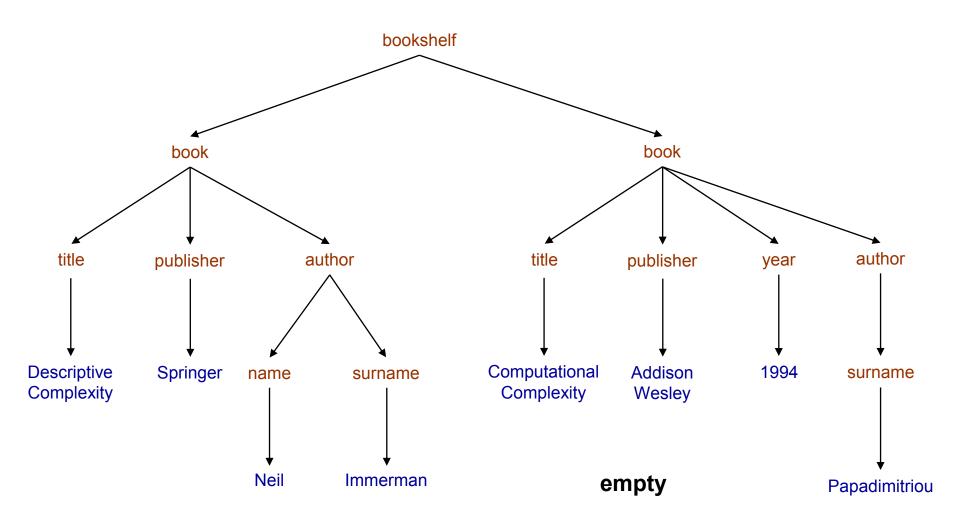

Ordered Unranked Trees: Querying

For querying labeled ordered unranked trees we use:

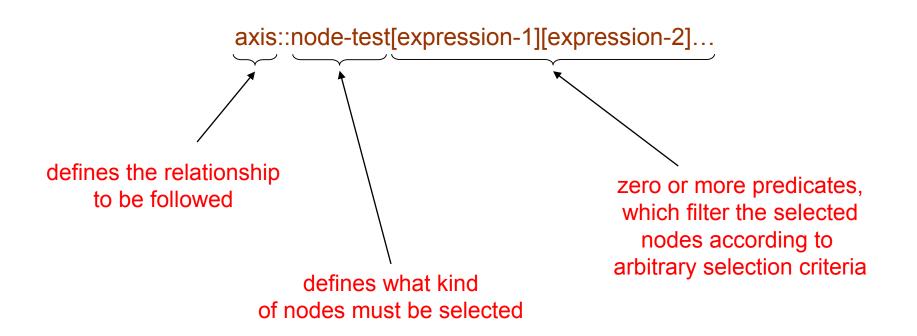

- First-order logic (FO) often studied in connection with XPath
 - Boolean connectives \lor , \land , \neg
 - Quantifiers $\exists x \text{ and } \forall x \text{ that range over nodes of trees}$
- Monadic second-order logic (MSO) the yardstick logic
 - **FO** plus quantifiers \exists S and \forall S that range over sets of nodes
 - New formulae $x \in S$

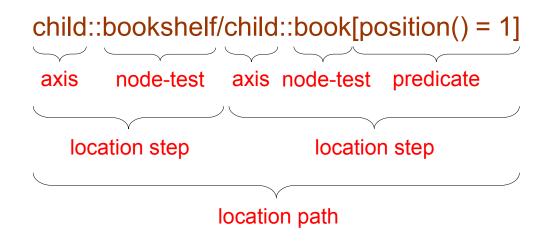

/child::bookshelf/child::book


/child::bookshelf/child::book[position() = 1]


/descendant::author/child::surname

/descendant::book/child::author[child::name]/child::surname


/descendant::book/child::author[position() = 2]/child::surname


/descendant::book/child::author[position() = 2][child::name]

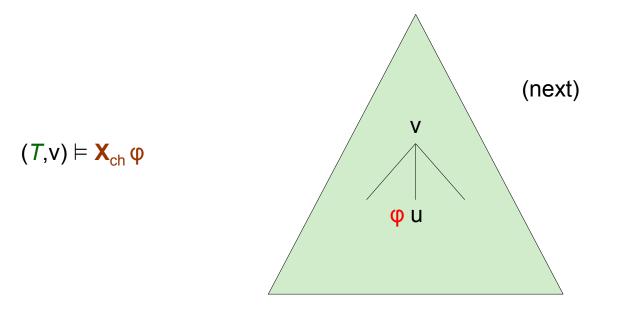
Location Paths

- XPath uses location paths to select nodes in a tree
- A location path is a series of location steps separated by the symbol /
- Each location step has the form

The Anatomy of a Location Path

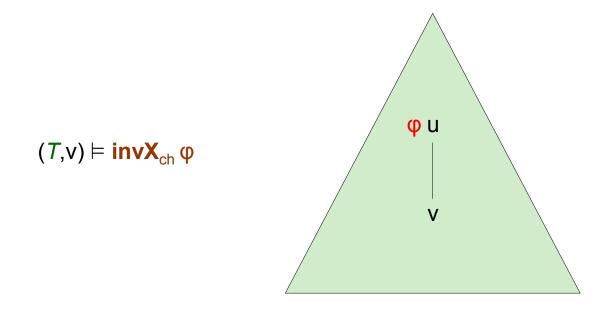
NOTE: The first location step does not have a predicate

FO over Ordered Unranked Trees

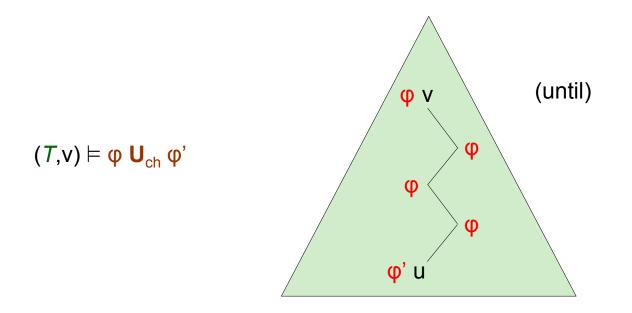

- First-order logic (FO) often studied in connection with XPath
 - Boolean connectives \lor, \land, \neg
 - Quantifiers $\exists x \text{ and } \forall x \text{ that range over nodes of trees}$

• The navigational features of XPath can be described in **FO**

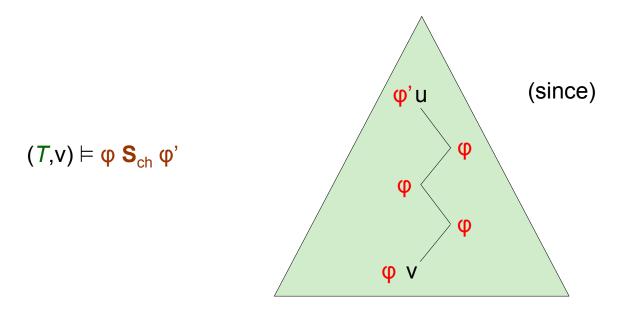
- Can we define alternative logics for FO over ordered unranked trees with good evaluation properties?
 - LTL-like logics
 - CTL-like logics


Syntax: with $d \in \{ch, ns\}$

 $\phi, \phi' := \alpha, \alpha \in \Lambda \mid \phi \lor \phi' \mid \neg \phi \mid \textbf{X}_d \phi \mid \textbf{invX}_d \phi \mid \phi \textbf{U}_d \phi' \mid \phi \textbf{S}_d \phi'$


Syntax: with $d \in \{ch, ns\}$

 $\phi, \phi' := \alpha, \alpha \in \Lambda \mid \phi \lor \phi' \mid \neg \phi \mid \textbf{X}_d \phi \mid \textbf{invX}_d \phi \mid \phi \textbf{U}_d \phi' \mid \phi \textbf{S}_d \phi'$


Syntax: with $d \in \{ch, ns\}$

 $\phi, \phi' := \alpha, \alpha \in \Lambda \mid \phi \lor \phi' \mid \neg \phi \mid \textbf{X}_d \phi \mid \textbf{invX}_d \phi \mid \phi \textbf{U}_d \phi' \mid \phi \textbf{S}_d \phi'$

Syntax: with $d \in \{ch, ns\}$

 $\phi, \phi' := \alpha, \alpha \in \Lambda \mid \phi \lor \phi' \mid \neg \phi \mid \mathbf{X}_{d} \phi \mid \mathbf{invX}_{d} \phi \mid \phi \mathbf{U}_{d} \phi' \mid \phi \mathbf{S}_{d} \phi'$

(analogously for $X_{ns} \phi \mid inv X_{ns} \phi \mid \phi \mid U_{ns} \phi' \mid \phi \mid S_{ns} \phi'$)

Syntax: with $d \in \{ch, ns\}$

 $\phi, \phi' := \alpha, \alpha \in \Lambda \mid \phi \lor \phi' \mid \neg \phi \mid \mathbf{X}_{d} \phi \mid \mathbf{invX}_{d} \phi \mid \phi \mathbf{U}_{d} \phi' \mid \phi \mathbf{S}_{d} \phi'$

Theorem: Consider a Boolean/unary query **Q** on labeled ordered unranked trees. Then:

Q is **FO**-definable \Leftrightarrow **Q** is **TL**^{tree}-definable

Important Algorithmic Problems for XPath

XPathSAT

```
Input: an XPath expression E, a DTD D
```

Question: is there a tree *T* valid w.r.t. *D* so that *E* selects at

least one node in it?

XPathCONTInput: two XPath expressions E, E' and a DTD DQuestion: does $E \subseteq_D E'$, i.e., for every tree T valid w.r.t. D, each nodeselected by E is also selected by E'?

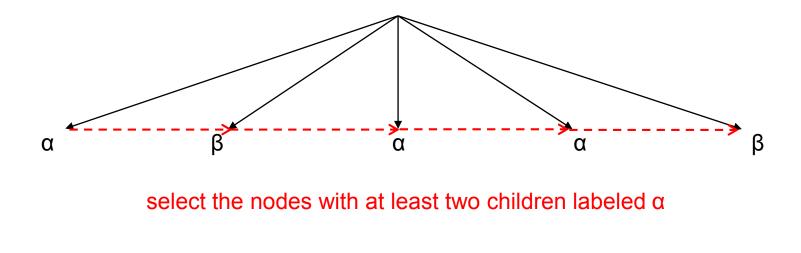
XPath Satisfiability

Theorem: Given an XPath expression *E*, and a DTD *D*, the problem of deciding whether *E* is satisfiable w.r.t. *D* is feasible in time $|D| \cdot 2^{O(|E|)}$

Proof idea: exploit automata

- Translate *E* into a query automaton A_E of exponential size in time $2^{O(|E|)}$
- Translate **D** into an automaton A_D in linear time
- Let $A = A_E \times A_D$ be the product of the two automata exponential size
- Test A for emptiness this can be done in polynomial time in the size of A

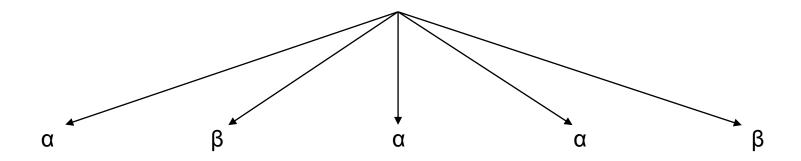
XPath Containment


Theorem: Given two XPath expressions *E*, *E*' and a DTD *D*, the problem of deciding whether $E \subseteq_D E'$ is feasible in time $|D| \cdot 2^{O(|E| + |E'|)}$

Proof idea: exploit TL^{tree} and automata

- Translate *E* and *E*' into **TL**^{tree} formulae φ and ψ , respectively
- Construct a query automaton $A_{(\phi \land \neg \psi)}$ for $\phi \land \neg \psi$
- Translate *D* into an automaton *A_D*
- Let $A = A_{(\phi \land \neg \psi)} \times A_D a$ query automaton of size $|D| \cdot 2^{O(|E| + |E'|)}$
- Test *A* for emptiness this can be done in polynomial time in the size of *A*

A Quick Note on Unordered Trees


- Like ordered trees but the sibling ordering (\prec_{ns}) is no longer available
- Without order, counting has to be introduced explicitly order buys counting

$$Q(x) = \exists y \exists z (x \prec_{ch} y \land P_{\alpha}(y) \land y \prec_{ns^{*}} z \land P_{\alpha}(z))$$

A Quick Note on Unordered Trees

- Like ordered trees but the sibling ordering (\prec_{ns}) is no longer available
- Without order, counting has to be introduced explicitly order buys counting

no way to say that there are at least two children labeled α

• We have counting NUTA and counting query automata

• Frank Neven: Automata, Logic, and XML. CSL 2002: 2-26

A survey of automata theoretic techniques in XML, particularly XML standards

 Leonid Libkin: Logics for Unranked Trees: An Overview. Logical Methods in Computer Science 2(3) (2006)

A survey of logical techniques for languages used in XML (schema, navigation, querying)

• Georg Gottlob, Christoph Koch, Reinhard Pichler: Efficient algorithms for processing XPath queries. ACM Trans. Database Syst. 30(2): 444-491 (2005)

How to evaluate XPath most efficiently

• Georg Gottlob, Christoph Koch, Reinhard Pichler, Luc Segoufin: The complexity of XPath query evaluation and XML typing. Journal of the ACM 52(2): 284-335 (2005)

Pinpointing exact complexity of many problems related to XPath evaluation and XML schemas

 Frank Neven, Thomas Schwentick: Query automata over finite trees. Theor. Comput. Sci. 275(1-2): 633-674 (2002)

Extending automata to formalisms that select nodes in trees

• Georg Gottlob, Christoph Koch: Monadic datalog and the expressive power of languages for Web information extraction. Journal of the ACM 51(1): 74-113 (2004)

Capturing MSO with a very efficient language, and applications in Web data extraction

• Pablo Barceló, Leonid Libkin: Temporal logics over unranked trees. LICS 2005: 31-40

How XML languages are related to logics used in software/hardware verification

 Leonid Libkin, Cristina Sirangelo: Reasoning about XML with temporal logics and automata. J. Applied Logic 8(2): 210-232 (2010)

... and how to exploit the connection to verify properties of XML

 Thomas Schwentick: XPath query containment. SIGMOD Record 33(1): 101-109 (2004)

A survey of techniques for testing containment and equivalence of XPath queries

• Wenfei Fan, Leonid Libkin: On XML integrity constraints in the presence of DTDs. Journal of the ACM 49(3): 368-406 (2002)

Explaining why unary keys and foreign keys are in NP for XML, and why beyond unary they are undecidable

• Marcelo Arenas, Wenfei Fan, Leonid Libkin: On the Complexity of Verifying Consistency of XML Specifications. SIAM J. Comput. 38(3): 841-880 (2008)

Pushing this further to more expressive constraints used in XML, such as those in XML Schema

• Wim Martens, Frank Neven, Thomas Schwentick: Simple off the shelf abstractions for XML schema. SIGMOD Record 36(3): 15-22 (2007)

Theoretical reconstructions of XML Schema

• Wim Martens, Frank Neven, Thomas Schwentick, Geert Jan Bex: Expressiveness and complexity of XML Schema. ACM Trans. Database Syst. 31(3): 770-813 (2006)

An automaton model for XML schema, and its use in efficient typing of documents

• Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin: Two-variable logic on data trees and XML reasoning. Journal of the ACM 56(3) (2009)

Decidability/undecidability boundary for 2 vs 3 variables over data trees

• Tony Tan: Extending two-variable logic on data trees with order on data values and its automata. ACM Trans. Comput. Log. 15(1): 8 (2014)

Pushing this to more expressive formalisms, with better (more readable) algorithms

• Claire David, Leonid Libkin, Tony Tan: Efficient reasoning about data trees via integer linear programming. ACM Trans. Database Syst. 37(3): 19 (2012)

The NP bound for sets and linear constraints

 Henrik Bjrklund, Wim Martens, Thomas Schwentick: Conjunctive query containment over trees. J. Comput. Syst. Sci. 77(3): 450-472 (2011)

Extending CQ containment from relations to databases

 Wojciech Czerwinski, Wim Martens, Pawel Parys, Marcin Przybylko: The (Almost) Complete Guide to Tree Pattern Containment. PODS 2015: 117-130

CQs over trees are essentially patterns: a detailed study of their containment

- Maarten Marx: Conditional XPath. ACM Trans. Database Syst. 30(4): 929-959 (2005)
 An XPath extension that captures all first-order queries over XML documents
- Balder ten Cate, Maarten Marx: Navigational XPath: calculus and algebra. SIGMOD Record 36(2): 19-26 (2007)

Providing algebraic counterpart for XPath fragments

 Loredana Afanasiev, Maarten Marx: An analysis of XQuery benchmarks. Inf. Syst. 33(2): 155-181 (2008)

The title says it all

 Luc Segoufin, Cristina Sirangelo: Constant-Memory Validation of Streaming XML Documents Against DTDs. ICDT 2007: 299-313

Analyzing which DTDs can be checked over streamed documents