
Volume

size does mattes

(thousands of TBs of data)

Variety

many data formats

(structured, semi-structured, etc.)

Veracity

data is often

incomplete/inconsistent

Velocity

data often arrives at fast speed

(updates are frequent)

the rest of this course

Foundations of XML

Advanced Topics in Foundations of Databases, University of Edinburgh, 2016/17

XML at First Glance

• W3C standard for document markup since 1998

• Generic syntax to markup data with human- and machine-readable tags

• One of the most common data formats

• Several XML-related W3C standards

‒ XML Schema: define the markup permitted in a document

‒ XPath: navigation mechanism

‒ XSLT: transformation language

‒ XQuery: query language

XML = eXtensible Markup Language

An exciting toping for database theorists:

it brings techniques from formal language theory and merges them nicely with logic

XML at First Glance

<bookshelf>

<book>

<title>Descriptive Complexity</title>

<publisher>Springer</publisher>

<author>

<name>Neil</name>

<surname>Immerman</surname>

</author>

</book>

<book>

<title>Computational Complexity</title>

<publisher>Addison Wesley</publisher>

<year>1994</year>

<author>

<surname>Papadimitriou</surname>

</author>

</book>

</bookshelf>

root element

child elements of book

child elements of author

child elements of book

child element of author

XML Documents as Trees

book

bookshelf

book

title authorpublisher

Descriptive

Complexity
Springer name surname

title yearpublisher

Computational

Complexity
Addison

Wesley

1994

author

surname

Neil Immerman Papadimitriou

labeled ordered unranked tree

Ranked vs. Unranked Trees

Typically in computer science one works with ranked trees, e.g.,

a

b b

a b a a

b a

a

b b

a b a b

a

b

a b a

binary trees ternary trees

Ranked vs. Unranked Trees

But for XML we need unranked trees – nodes can have arbitrarily many children

a

b b

a b a b

a

b

a b a

b b

b

b bab bb b

Ordered vs. Unordered Trees

In ordered trees, siblings are ordered (from the oldest to the youngest)

a “build-in” binary relation provides access to this ordering

In unordered trees, such an order among siblings does not exist

0 1 2 3 4

XML Development

• Clean and simple model – labeled ordered unranked trees

• Declarative languages – XPath

‒ Flavour of traditional first-order logic, or

‒ Temporal logics for describing navigation

• Procedural languages – automata-theoretic constructions

• Key advantages (like the relational model)

‒ Simple and clean mathematical model (based on logic)

‒ Separation of declarative and procedural

Ordered Unranked Trees: Definition

(D, Ách*, Áns*, {Ps}s 2 Λ)

Fix a finite alphabet Λ

An ordered unranked tree T is a structure

• D is a finite prefix-closed subset of N* such that s¢i 2 D) s¢j 2 D for every j < i

• Ách* is the descendant relation

• Áns* is the sibling relation

• Ps’s are interpreted as disjoint sets whose union is the entire domain D

Ordered Unranked Trees: Example

• Let Λ = {α,β}

• Consider the ordered unranked tree T = (D, Ách*, Áns*, {Ps}s 2 Λ), where

‒ D = {ε, 0, 1, 2, 3, 4, 10, 11, 30, 31, 32}

‒ Ách = {(ε,0), (ε,1), (ε,2), (ε,3), (ε,4), (1,10), (1,11), (3,30), (3,31), (3,32)}

‒ Áns = {(0,1), (1,2), (2,3), (3,4), (10,11), (30,31), (31,32)}

‒ Pα = {0, 1, 2, 4, 10, 32}

‒ Pβ = {ε, 3, 11, 30, 31}

ε

0 1 2 3 4

30 31 3210 11

β

α α α α

α α

β

β β β

Ách

Áns

ε

0 1 2 3 4

30 31 3210 11

β

α α α α

α α

β

β β β

Ách

Áns

Ordered Unranked Trees: Basic Predicates

In T = (D, Ách*, Áns*, {Ps}s 2 Λ) we use the transitive closures of Ách and Áns

‒ They are not definable in first-order logic

‒ However, if the adopted logic is powerful enough to define them, then we

can simply use Ách and Áns

Ordered Unranked Trees: Querying

Check that in a tree T over the alphabet {α,β} every α-labeled node

always has a β-labeled descendant

Q = 8x(Pα(x) ! 9y(x Ách* y ^ Pβ(y))

Ordered Unranked Trees: Querying

Select the nodes in a tree T over the alphabet {α,β,γ} that are

(i) labeled α,

(ii) have a descendant d labeled b, and

(iii) d has a younger sibling labeled γ

Q(x) = Pα(x) ^ 9y9z(x Ách* y ^ Pβ(y) ^ y Áns* z ^ Pγ(z))

Ordered Unranked Trees: Querying

Check that in a tree T over the alphabet {α,β} every α-labeled node

always has a β-labeled descendant, but using only Ách

Q = 8x(Pα(x) ! 9y(desc(x,y) ^ Pβ(y))

any set of nodes that contains x and is closed under

the Ách relation, also contains y

desc(x,y) = 8S((x 2 S ^ 8z8w((z 2 S ^ z Ách w) ! w 2 S)) ! y 2 S)

second-order quantifier

ranging over sets of nodes

first-order quantifiers

ranging over nodes

monadic second-order logic (MSO)

Ordered Unranked Trees: Querying

Compute the pairs of nodes (x,y) such that y is a descendant of x

and the path between them is of odd length

There exist two sets of nodes S and R that

(i) partition the path from x to y

(ii) x 2 S and y 2 R

(iii) the successor element of each element in S is in R, and vice versa

´

x z1 z2 z3 z4 y

x

z2

z4

S

z1

z3

y

R

Ordered Unranked Trees: Querying

Compute the pairs of nodes (x,y) such that y is a descendant of x

and the path between them is of odd length

9S9R

^ 8z((x Ách* z Ách* y) ! (z 2 S $:(z 2 R)))

^ (x 2 S ^ y 2 R)

^ 8z8w((x Ách* z Ách w Ách* y) ! ((z 2 S ! w 2 R) ^ (z 2 R ! w 2 S)))

Q(x,y) =

Ordered Unranked Trees: Querying

• For querying labeled ordered unranked trees we use:

− First-order logic (FO)

 Boolean connectives _, ^, :

 Quantifiers 9x and 8x that range over nodes of trees

− Monadic second-order logic (MSO)

 FO plus quantifiers 9S and 8S that range over sets of nodes

 New formulae x 2 S

• Most commonly they define:

− Boolean (yes/no) queries – in fact, they define sets of trees

− Unary queries that select nodes in trees

Ordered Unranked Trees: Definability in Logic

• A Boolean query Q (i.e., a set of trees T) is L-definable if there is a sentence

φ of L such that T 2 T , T ² φ

• A unary query Q(x) is L-definable if there is a formula φ(x) of L such that

for every tree T and node v in T, v 2 Q(T) , T ² φ(v)

Let L be some logic (such as FO or MSO)

the set of nodes in T selected by Q

Unranked Tree Automata

A = (S, F, δ)

‒ S is a finite set of states

‒ F µ S is the set of final states

‒ δ : S £ Λ ! 2S* such that δ(s,α) is a regular language over S

• A nondeterministic unranked tree automaton (NUTA) over Λ-labeled trees is a triple

• A run of A on a tree T with domain D is a function λΑ : D ! S such that: if v is a node

with n children, and is labeled α, then the string λΑ(v¢0)…λΑ(v¢(n-1)) 2 δ(λΑ(v),α)

v α

s1 s2 s3 sn-1 sn

s1…sn 2 δ(s,α)
s

Unranked Tree Automata

A = (S, F, δ)

‒ S is a finite set of states

‒ F µ S is the set of final states

‒ δ : S £ Λ ! 2S* such that δ(s,α) is a regular language over S

• A nondeterministic unranked tree automaton (NUTA) over Λ-labeled trees is a triple

• A run of A on a tree T with domain D is a function λΑ : D ! S such that: if v is a node

with n children, and is labeled α, then the string λΑ(v¢0)…λΑ(v¢(n-1)) 2 δ(λΑ(v),α)

• A run is accepting if λΑ(ε) 2 F, i.e., the root is in an accepting state

• A tree T is accepted by A if there exists an accepting run of A on T

• We denote by L(A) the set of all trees accepted by A – a set of trees accepted by an

NUTA is called regular

Unranked Tree Automata: Example

• Let Λ = {^,_,0,1}, and consider Λ-labeled trees where 0,1 appear only at leaves,

while ^,_ can appear everywhere except at leaves

• We define A = ({s0,s1}, {s1}, δ), where

δ(s0,0) = δ(s1,1) = {ε}

δ(s0,1) = δ(s1,0) = ;
δ(s0,^) = (s0 [s1)* ¢ s0 ¢ (s0 [s1)*

δ(s1,^) = s1*

δ(s0,_) = s0*

δ(s1,_) = (s0 [s1)* ¢ s1 ¢ (s0 [s1)*

_

_ ^ _

0 1 01 0 1 0 0 s1s1 s1s0 s0 s0 s0 s0

s1 s0 s1

s1

MSO = NUTA

We can now present an interesting result:

Theorem: Consider a set T of labeled ordered unranked trees. Then:

T is MSO-definable , T is regular

…but, what about unary queries?

we need an extended automata model

Query Automata

• A nondeterministic query automaton (NQA) over Λ-labeled trees is a pair

• Such an automaton defines a unary query QA over unranked trees:

v 2 QA(T) , (λB(v),label(v)) 2 P, for some accepting run λB of B on T

A = (B, P)

an NUTA (S, F, δ) a subset of S £ Λ

MSO = NQA

We have similar characterization for unary queries:

Theorem: Consider a unary query Q on labeled ordered unranked trees. Then:

Q is MSO-definable , Q is of the form QA for some NQA A

Ordered Unranked Trees: Recap

• XML documents are modeled as labeled ordered unranked trees

• MSO is the yardstick logic for querying ordered unranked trees

• Most commonly we consider:

− Boolean queries that they define sets of trees: MSO = NUTA

− Unary queries that select nodes in trees: MSO = NQA

…but, what about the complexity of MSO over trees?

Complexity of MSO

BQE(MSO)

Input: a labeled ordered unranked tree T, an MSO sentence φ

Question: Τ ² φ?

• The same problem can be defined for unary formulas

‒ Given a tree T, a unary formula φ(x), and a node v: does Τ ² φ(v)?

• As usual, we consider the data and combined complexity

‒ Data complexity: T is input, φ is fixed

‒ Combined complexity: both T and φ are part of the input

Complexity of MSO

Theorem: It holds that:

• BQE(MSO) is in PTIME in data complexity (in fact, linear time)

• BQE(MSO) is non-elementary in combined complexity

Proof idea: By translation to automata:

• Convert the given sentence φ into a NUTA Aφ such that Τ ² φ , T 2 L(Aφ)

• To decide whether T 2 L(Aφ) is feasible in time O(|T| ¢ |Aφ|2)

non-elementary

2
2

2

2
2

|φ|

depends on φ

Complexity of MSO

Even a bigger problem: there is no algorithm (even if we avoid automata)

for checking whether Τ ² φ that runs in time O(|T| ¢ f(|φ|)) and f is an

elementary function (unless P = NP)

Theorem: It holds that:

• BQE(MSO) is in PTIME in data complexity (in fact, linear time)

• BQE(MSO) is non-elementary in combined complexity

Proof idea: By translation to automata:

• Convert the given sentence φ into a NUTA Aφ such that Τ ² φ , T 2 L(Aφ)

• To decide whether T 2 L(Aφ) is feasible in time O(|T| ¢ |Aφ|2)

Complexity of MSO

We need logics that have the same power as MSO, but

permit faster evaluation algorithms

Theorem: It holds that:

• BQE(MSO) is in PTIME in data complexity (in fact, linear time)

• BQE(MSO) is non-elementary in combined complexity

Proof idea: By translation to automata:

• Convert the given sentence φ into a NUTA Aφ such that Τ ² φ , T 2 L(Aφ)

• To decide whether T 2 L(Aφ) is feasible in time O(|T| ¢ |Aφ|2)

Alternative Logics for MSO

• Efficient Tree Logic (ETL) – obtained by posing some syntactic restrictions on

MSO formulae, and at the same time adding new constructors for formulae

that are not in MSO, but are MSO-definable

• μ-calculus – extension of a temporal logic with the least fixed-point operator

• Monadic Datalog – fragment of Datalog, a database query language that

essentially extends existential positive FO with the least fixed-point operator

Reachability

Is Glasgow reachable from Vienna?

Edinburgh

London

Vienna

Glasgow

Larnaca

9 x (Flight(Vienna,x) ^ Flight(x,Glasgow))

Reachability

Is Glasgow reachable from Vienna?

Edinburgh

London

Vienna

Glasgow

Larnaca

Paris

9 x (Flight(Vienna,x) ^ Flight(x,Glasgow))

Reachability

Is Glasgow reachable from Vienna?

Edinburgh

London

Vienna

Glasgow

Larnaca

9 x9 y (Flight(Vienna,x) ^ Flight(x,y) ^ Flight(y,Glasgow))

Paris

Reachability

Is Glasgow reachable from Vienna?

Edinburgh

London

Vienna

Glasgow

Larnaca

9 x9 y (Flight(Vienna,x) ^ Flight(x,y) ^ Flight(y,Glasgow))

Paris

Reachability

Is Glasgow reachable from Vienna?

Edinburgh

London

Vienna

Glasgow

LarnacaParis

Here is a possible strategy:

• Compute all the pairs of cities (c1,c2) such that c2 is reachable from c1

• Check if there is a pair (Vienna,Glasgow)

Here is a possible strategy:

• Compute all the pairs of cities (c1,c2) such that c2 is reachable from c1

• Check if there is a pair (Vienna,Glasgow)

Reachability

Is Glasgow reachable from Vienna?

Edinburgh

London

Vienna

Glasgow

LarnacaParis

Reachability

Is Glasgow reachable from Vienna?

Edinburgh

London

Vienna

Glasgow

LarnacaParis

Reachable(x,y) :- Flight(x,y)

Reachable(x,z) :- Flight(x,y), Reachable(y,z)

Goal :- Reachable(Vienna,Glasgow)

Reachability

Reachable(x,y) :- Flight(x,y)

Reachable(x,z) :- Flight(x,y), Reachable(y,z)

Goal :- Reachable(Vienna,Glasgow)

DATALOG

essentially, positive FO with least fixed-point

Monadic Datalog

Goal(x) :- Pα(x), Leaf(x)

Goal(x) :- Pα(x), x Áfc y, Mark(y)

all the introduced (or intentional) predicates are unary

Select all nodes v such that their descendants (including v) are labeled α

Mark(¢) collects all the nodes v such that

• Goal(v) holds

• For every u such that v Áns* u, Goal(u) holds

Mark(x) :- LastChild(x), Goal(x)

Mark(x) :- Goal(x), x Áns y, Mark(y)

Monadic Datalog

Theorem: A Monadic Datalog query Q can be evaluated on a tree T in time O(|Q| ¢ |T|))

R = {Áfc, Leaf, LastChild, Root, {Ps}s 2 Λ }

Theorem: Consider a unary query Q on labeled ordered unranked trees. Then:

Q is MSO-definable , Q is definable in Monadic Datalog over R

Monadic Datalog is heavily used in Web data extraction:

real-life languages are based on Monadic Datalog, which

combines expressiveness and good evaluation properties

XML Schemas

• Usually, we are not interested in documents containing arbitrary elements, but

only in documents that satisfy some specific constraints

• Schema – the markup permitted in an XML document

• Many different XML schema languages available:

‒ Document Type Definitions (DTDs)

‒ W3C XML Schema

‒ REgular LAnguage for XML Next Generation (RELAX NG)

‒ Schematron

‒ …

DTDs: An Example

<!DOCTYPE bookshelf [

<!ELEMENT bookshelf (book+)>

<!ELEMENT book (title, publisher, year?, author+)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT publisher (#PCDATA)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT author (name?, surname)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT surname (#PCDATA)>

]>

<bookshelf>

<book>

<title>Descriptive Complexity</title>

<publisher>Springer</publisher>

<author>

<name>Neil</name>

<surname>Immerman</surname>

</author>

</book>

<book>

<title>Computational Complexity</title>

<publisher>Addison Wesley</publisher>

<year>1994</year>

<author>

<surname>Papadimitriou</surname>

</author>

</book>

</bookshelf>

the XML document is valid w.r.t. the DTD

DTDs: Formal Definition

(f : Λ! regular expressions over Λ , s 2 Λ)

Fix a finite alphabet Λ

A document type definition (DTD) D is function-symbol pair

f(bookshelf) = book ¢ book*

f(book) = title ¢ publisher ¢ (year [ε) ¢ (author ¢ author*)

f(author) = (name [ε) ¢ surname

f(title) = f(publisher) = f(year) = f(name) = f(surname) = ε

For example, the previous DTD is written as (f, bookshelf), where

DTDs into Tree Automata (and MSO)

• Let AD = ({sbookshelf, sbook, stitle, spublisher, syear, sauthor, sname, ssurname}, {sbookshelf}, δ), where

δ(sx,x) = ε, for every x 2 {title, publisher, year, name, surname}

δ(sbookshelf,bookshelf) = book ¢ book*

δ(sbook,book) = title ¢ publisher ¢ (year [ε) ¢ (author ¢ author*)

δ(sauthor,author) = (name [ε) ¢ surname

f(bookshelf) = book ¢ book*

f(book) = title ¢ publisher ¢ (year [ε) ¢ (author ¢ author*)

f(author) = (name [ε) ¢ surname

f(title) = f(publisher) = f(year) = f(name) = f(surname) = ε

• The previous DTD is written as D = (f, bookshelf), where

L(AD) = {T | T is valid w.r.t. D}

Recap

• XML documents are modeled as labeled ordered unranked trees

• MSO is the yardstick logic for querying ordered unranked trees

− Boolean queries that they define sets of trees: MSO = NUTA

− Unary queries that select nodes in trees: MSO = NQA

• MSO over trees can be evaluated in linear time in data complexity, but the

combined complexity is non-elementary

• Monadic Datalog – an alternative logic for MSO with good evaluation properties

• DTDs are captured by NUTA (MSO)

Ordered Unranked Trees: Querying

For querying labeled ordered unranked trees we use:

• First-order logic (FO) – often studied in connection with XPath

‒ Boolean connectives _, ^, :

‒ Quantifiers 9x and 8x that range over nodes of trees

• Monadic second-order logic (MSO) – the yardstick logic

‒ FO plus quantifiers 9S and 8S that range over sets of nodes

‒ New formulae x 2 S

XPath at First Glance

book

bookshelf

book

title authorpublisher

Descriptive

Complexity
Springer name surname

title yearpublisher

Computational

Complexity
Addison

Wesley

1994

author

surname

Neil Immerman Papadimitriou

/child::bookshelf/child::book

XPath at First Glance

book

bookshelf

book

title authorpublisher

Descriptive

Complexity
Springer name surname

title yearpublisher

Computational

Complexity
Addison

Wesley

1994

author

surname

Neil Immerman Papadimitriou

/child::bookshelf/child::book[position() = 1]

XPath at First Glance

book

bookshelf

book

title authorpublisher

Descriptive

Complexity
Springer name surname

title yearpublisher

Computational

Complexity
Addison

Wesley

1994

author

surname

Neil Immerman Papadimitriou

/descendant::author/child::surname

XPath at First Glance

book

bookshelf

book

title authorpublisher

Descriptive

Complexity
Springer name surname

title yearpublisher

Computational

Complexity
Addison

Wesley

1994

author

surname

Neil Immerman Papadimitriou

/descendant::book/child::author[child::name]/child::surname

XPath at First Glance

book

bookshelf

book

title authorpublisher

Descriptive

Complexity
Springer name surname

title yearpublisher

Computational

Complexity
Addison

Wesley

1994

author

surname

Neil Immerman Papadimitriou

/descendant::book/child::author[position() = 2]/child::surname

XPath at First Glance

book

bookshelf

book

title authorpublisher

Descriptive

Complexity
Springer name surname

title yearpublisher

Computational

Complexity
Addison

Wesley

1994

author

surname

Neil Immerman Papadimitriou

/descendant::book/child::author[position() = 2][child::name]

empty

Location Paths

• XPath uses location paths to select nodes in a tree

• A location path is a series of location steps separated by the symbol /

• Each location step has the form

axis::node-test[expression-1][expression-2]…

defines the relationship

to be followed

defines what kind

of nodes must be selected

zero or more predicates,

which filter the selected

nodes according to

arbitrary selection criteria

The Anatomy of a Location Path

child::bookshelf/child::book[position() = 1]

axis node-test axis node-test

location step location step

location path

predicate

NOTE: The first location step does not have a predicate

FO over Ordered Unranked Trees

• First-order logic (FO) – often studied in connection with XPath

‒ Boolean connectives _, ^, :

‒ Quantifiers 9x and 8x that range over nodes of trees

• The navigational features of XPath can be described in FO

• Can we define alternative logics for FO over ordered unranked trees

with good evaluation properties?

‒ LTL-like logics

‒ CTL-like logics

Tree Temporal Logic – TLtree

Syntax: with d 2 {ch,ns}

φ, φ’ := α, α 2 Λ | φ _ φ’ | : φ | Χd φ | invΧd φ | φ Ud φ’ | φ Sd φ’

(Τ,v) ² Χch φ

v

uφ

(next)

Tree Temporal Logic – TLtree

(Τ,v) ² invΧch φ

u

v

φ

Syntax: with d 2 {ch,ns}

φ, φ’ := α, α 2 Λ | φ _ φ’ | : φ | Χd φ | invΧd φ | φ Ud φ’ | φ Sd φ’

Tree Temporal Logic – TLtree

(Τ,v) ² φ Uch φ’

v

u

φ (until)

φ

φ

φ

φ’

Syntax: with d 2 {ch,ns}

φ, φ’ := α, α 2 Λ | φ _ φ’ | : φ | Χd φ | invΧd φ | φ Ud φ’ | φ Sd φ’

Tree Temporal Logic – TLtree

(Τ,v) ² φ Sch φ’

u

v

φ’ (since)

φ

φ

φ

φ

(analogously for Χns φ | invΧns φ | φ Uns φ’ | φ Sns φ’)

Syntax: with d 2 {ch,ns}

φ, φ’ := α, α 2 Λ | φ _ φ’ | : φ | Χd φ | invΧd φ | φ Ud φ’ | φ Sd φ’

Tree Temporal Logic – TLtree

Theorem: Consider a Boolean/unary query Q on labeled ordered unranked trees. Then:

Q is FO-definable , Q is TLtree-definable

Syntax: with d 2 {ch,ns}

φ, φ’ := α, α 2 Λ | φ _ φ’ | : φ | Χd φ | invΧd φ | φ Ud φ’ | φ Sd φ’

Important Algorithmic Problems for XPath

XPathSAT

Input: an XPath expression E, a DTD D

Question: is there a tree T valid w.r.t. D so that E selects at

least one node in it?

XPathCONT

Input: two XPath expressions E, E’ and a DTD D

Question: does E µD E’, i.e., for every tree T valid w.r.t. D, each node

selected by E is also selected by E’?

XPath Satisfiability

Theorem: Given an XPath expression E, and a DTD D, the problem of deciding

whether E is satisfiable w.r.t. D is feasible in time |D| ¢ 2O(|E|)

Proof idea: exploit automata

• Translate E into a query automaton AE of exponential size in time 2O(|E|)

• Translate D into an automaton AD in linear time

• Let A = AE £ AD be the product of the two automata – exponential size

• Test A for emptiness – this can be done in polynomial time in the size of A

XPath Containment

Theorem: Given two XPath expressions E, E’ and a DTD D, the problem of deciding

whether E µD E’ is feasible in time |D| ¢ 2O(|E| + |E’|)

Proof idea: exploit TLtree and automata

• Translate E and E’ into TLtree formulae φ and ψ, respectively

• Construct a query automaton A(φ^: ψ) for φ ^ : ψ

• Translate D into an automaton AD

• Let A = A(φ^: ψ) £ AD – a query automaton of size |D| ¢ 2O(|E| + |E’|)

• Test A for emptiness – this can be done in polynomial time in the size of A

A Quick Note on Unordered Trees

• Like ordered trees but the sibling ordering (Áns) is no longer available

• Without order, counting has to be introduced explicitly – order buys counting

α β α α β

Q(x) = 9y9z(x Ách y ^ Pα(y) ^ y Áns* z ^ Pα(z))

select the nodes with at least two children labeled α

A Quick Note on Unordered Trees

• Like ordered trees but the sibling ordering (Áns) is no longer available

• Without order, counting has to be introduced explicitly – order buys counting

• We have counting NUTA and counting query automata

α β α α β

no way to say that there are at least two children labeled α

Associated Papers

• Frank Neven: Automata, Logic, and XML. CSL 2002: 2-26

• A survey of automata theoretic techniques in XML, particularly XML standards

• Leonid Libkin: Logics for Unranked Trees: An Overview. Logical Methods in

Computer Science 2(3) (2006)

• A survey of logical techniques for languages used in XML (schema, navigation,

querying)

• Georg Gottlob, Christoph Koch, Reinhard Pichler: Efficient algorithms for processing

XPath queries. ACM Trans. Database Syst. 30(2): 444-491 (2005)

• How to evaluate XPath most efficiently

• Georg Gottlob, Christoph Koch, Reinhard Pichler, Luc Segoufin: The complexity of

XPath query evaluation and XML typing. Journal of the ACM 52(2): 284-335 (2005)

• Pinpointing exact complexity of many problems related to XPath evaluation and

XML schemas

Associated Papers

• Frank Neven, Thomas Schwentick: Query automata over finite trees. Theor. Comput.

Sci. 275(1-2): 633-674 (2002)

• Extending automata to formalisms that select nodes in trees

• Georg Gottlob, Christoph Koch: Monadic datalog and the expressive power of

languages for Web information extraction. Journal of the ACM 51(1): 74-113 (2004)

• Capturing MSO with a very efficient language, and applications in Web data

extraction

• Pablo Barceló, Leonid Libkin: Temporal logics over unranked trees. LICS 2005: 31-40

• How XML languages are related to logics used in software/hardware verification

• Leonid Libkin, Cristina Sirangelo: Reasoning about XML with temporal logics and

automata. J. Applied Logic 8(2): 210-232 (2010)

• ... and how to exploit the connection to verify properties of XML

Associated Papers

• Thomas Schwentick: XPath query containment. SIGMOD Record 33(1): 101-109

(2004)

• A survey of techniques for testing containment and equivalence of XPath queries

• Wenfei Fan, Leonid Libkin: On XML integrity constraints in the presence of DTDs.

Journal of the ACM 49(3): 368-406 (2002)

• Explaining why unary keys and foreign keys are in NP for XML, and why beyond

unary they are undecidable

• Marcelo Arenas, Wenfei Fan, Leonid Libkin: On the Complexity of Verifying

Consistency of XML Specifications. SIAM J. Comput. 38(3): 841-880 (2008)

• Pushing this further to more expressive constraints used in XML, such as those in

XML Schema

• Wim Martens, Frank Neven, Thomas Schwentick: Simple off the shelf abstractions for

XML schema. SIGMOD Record 36(3): 15-22 (2007)

• Theoretical reconstructions of XML Schema

Associated Papers

• Wim Martens, Frank Neven, Thomas Schwentick, Geert Jan Bex: Expressiveness

and complexity of XML Schema. ACM Trans. Database Syst. 31(3): 770-813 (2006)

• An automaton model for XML schema, and its use in efficient typing of documents

• Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin: Two-variable

logic on data trees and XML reasoning. Journal of the ACM 56(3) (2009)

• Decidability/undecidability boundary for 2 vs 3 variables over data trees

• Tony Tan: Extending two-variable logic on data trees with order on data values and

its automata. ACM Trans. Comput. Log. 15(1): 8 (2014)

• Pushing this to more expressive formalisms, with better (more readable) algorithms

• Claire David, Leonid Libkin, Tony Tan: Efficient reasoning about data trees via

integer linear programming. ACM Trans. Database Syst. 37(3): 19 (2012)

• The NP bound for sets and linear constraints

Associated Papers

• Henrik Bjrklund, Wim Martens, Thomas Schwentick: Conjunctive query containment

over trees. J. Comput. Syst. Sci. 77(3): 450-472 (2011)

• Extending CQ containment from relations to databases

• Wojciech Czerwinski, Wim Martens, Pawel Parys, Marcin Przybylko: The (Almost)

Complete Guide to Tree Pattern Containment. PODS 2015: 117-130

• CQs over trees are essentially patterns: a detailed study of their containment

• Maarten Marx: Conditional XPath. ACM Trans. Database Syst. 30(4): 929-959 (2005)

• An XPath extension that captures all first-order queries over XML documents

• Balder ten Cate, Maarten Marx: Navigational XPath: calculus and algebra. SIGMOD

Record 36(2): 19-26 (2007)

• Providing algebraic counterpart for XPath fragments

Associated Papers

• Loredana Afanasiev, Maarten Marx: An analysis of XQuery benchmarks. Inf. Syst.

33(2): 155-181 (2008)

• The title says it all

• Luc Segoufin, Cristina Sirangelo: Constant-Memory Validation of Streaming XML

Documents Against DTDs. ICDT 2007: 299-313

• Analyzing which DTDs can be checked over streamed documents

