
Volume

size does mattes

(thousands of TBs of data)

Variety

many data formats

(structured, semi-structured, etc.)

Veracity

data is often 

incomplete/inconsistent

Velocity

data often arrives at fast speed 

(updates are frequent)

the rest of this course
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XML at First Glance

• W3C standard for document markup since 1998

• Generic syntax to markup data with human- and machine-readable tags

• One of the most common data formats

• Several XML-related W3C standards

‒ XML Schema: define the markup permitted in a document

‒ XPath: navigation mechanism

‒ XSLT: transformation language

‒ XQuery: query language

XML =  eXtensible Markup Language

An exciting toping for database theorists:

it brings techniques from formal language theory and merges them nicely with logic



XML at First Glance

<bookshelf>

<book>

<title>Descriptive Complexity</title>

<publisher>Springer</publisher>

<author>

<name>Neil</name>

<surname>Immerman</surname>

</author>

</book>

<book>

<title>Computational Complexity</title>

<publisher>Addison Wesley</publisher>

<year>1994</year>

<author>

<surname>Papadimitriou</surname>

</author>

</book>

</bookshelf>

root element

child elements of book

child elements of author

child elements of book

child element of author



XML Documents as Trees

book

bookshelf

book

title authorpublisher

Descriptive

Complexity
Springer name surname

title yearpublisher

Computational

Complexity
Addison

Wesley

1994

author

surname

Neil Immerman Papadimitriou

labeled ordered unranked tree



Ranked vs. Unranked Trees

Typically in computer science one works with ranked trees, e.g., 

a

b b

a b a a

b a

a

b b

a b a b

a

b

a b a

binary trees ternary trees



Ranked vs. Unranked Trees

But for XML we need unranked trees – nodes can have arbitrarily many children

a

b b

a b a b

a

b

a b a

b b

b

b bab bb b



Ordered vs. Unordered Trees

In ordered trees, siblings are ordered (from the oldest to the youngest)

a “build-in” binary relation provides access to this ordering

In unordered trees, such an order among siblings does not exist

0 1 2 3 4



XML Development

• Clean and simple model – labeled ordered unranked trees

• Declarative languages – XPath

‒ Flavour of traditional first-order logic, or

‒ Temporal logics for describing navigation

• Procedural languages – automata-theoretic constructions

• Key advantages (like the relational model)

‒ Simple and clean mathematical model (based on logic)

‒ Separation of declarative and procedural



Ordered Unranked Trees: Definition

(D, Ách*, Áns*, {Ps}s 2 Λ)

Fix a finite alphabet Λ

An ordered unranked tree T is a structure

• D is a finite prefix-closed subset of N* such that s¢i 2 D ) s¢j 2 D for every j < i

• Ách* is the descendant relation

• Áns* is the sibling relation

• Ps’s are interpreted as disjoint sets whose union is the entire domain D



Ordered Unranked Trees: Example

• Let Λ = {α,β}

• Consider the ordered unranked tree T = (D, Ách*, Áns*, {Ps}s 2 Λ), where

‒ D = {ε, 0, 1, 2, 3, 4, 10, 11, 30, 31, 32}

‒ Ách = {(ε,0), (ε,1), (ε,2), (ε,3), (ε,4), (1,10), (1,11), (3,30), (3,31), (3,32)}

‒ Áns = {(0,1), (1,2), (2,3), (3,4), (10,11), (30,31), (31,32)}

‒ Pα = {0, 1, 2, 4, 10, 32}

‒ Pβ = {ε, 3, 11, 30, 31}

ε

0 1 2 3 4

30 31 3210 11

β

α α α α

α α

β

β β β

Ách

Áns



ε

0 1 2 3 4

30 31 3210 11

β

α α α α

α α

β

β β β

Ách

Áns

Ordered Unranked Trees: Basic Predicates

In T = (D, Ách*, Áns*, {Ps}s 2 Λ) we use the transitive closures of Ách and Áns

‒ They are not definable in first-order logic

‒ However, if the adopted logic is powerful enough to define them, then we 

can simply use Ách and Áns



Ordered Unranked Trees: Querying

Check that in a tree T over the alphabet {α,β} every α-labeled node 

always has a β-labeled descendant

Q = 8x(Pα(x) ! 9y(x Ách* y ^ Pβ(y))



Ordered Unranked Trees: Querying

Select the nodes in a tree T over the alphabet {α,β,γ} that are

(i) labeled α,

(ii) have a descendant d labeled b, and

(iii) d has a younger sibling labeled γ

Q(x)  = Pα(x) ^ 9y9z(x Ách* y ^ Pβ(y) ^ y Áns* z ^ Pγ(z))



Ordered Unranked Trees: Querying

Check that in a tree T over the alphabet {α,β} every α-labeled node 

always has a β-labeled descendant, but using only Ách

Q = 8x(Pα(x) ! 9y(desc(x,y) ^ Pβ(y))

any set of nodes that contains x and is closed under 

the Ách relation, also contains y

desc(x,y)  = 8S((x 2 S  ^ 8z8w((z 2 S  ^ z Ách w)  ! w 2 S))  ! y 2 S)

second-order quantifier 

ranging over sets of nodes

first-order quantifiers

ranging over nodes

monadic second-order logic (MSO)



Ordered Unranked Trees: Querying

Compute the pairs of nodes (x,y) such that y is a descendant of x 

and the path between them is of odd length 

There exist two sets of nodes S and R that

(i) partition the path from x to y

(ii) x 2 S and y 2 R 

(iii) the successor element of each element in S is in R, and vice versa

´

x z1 z2 z3 z4 y

x

z2

z4

S

z1

z3

y

R



Ordered Unranked Trees: Querying

Compute the pairs of nodes (x,y) such that y is a descendant of x 

and the path between them is of odd length 

9S9R

^   8z((x Ách* z Ách* y)  ! (z 2 S  $ :(z 2 R)))

^   (x 2 S  ^ y 2 R)

^   8z8w((x Ách* z Ách w Ách* y)  ! ((z 2 S  ! w 2 R)  ^ (z 2 R  ! w 2 S)))

Q(x,y)  =



Ordered Unranked Trees: Querying

• For querying labeled ordered unranked trees we use:

− First-order logic (FO)

 Boolean connectives _, ^, :

 Quantifiers 9x and 8x that range over nodes of trees

− Monadic second-order logic (MSO) 

 FO plus quantifiers 9S and 8S that range over sets of nodes

 New formulae x 2 S

• Most commonly they define:

− Boolean (yes/no) queries – in fact, they define sets of trees

− Unary queries that select nodes in trees



Ordered Unranked Trees: Definability in Logic

• A Boolean query Q (i.e., a set of trees T) is L-definable if there is a sentence 

φ of L such that T 2 T , T ² φ

• A unary query Q(x) is L-definable if there is a formula φ(x) of L such that       

for every tree T and node v in T, v 2 Q(T)  , T ² φ(v)

Let L be some logic (such as FO or MSO)

the set of nodes in T selected by Q



Unranked Tree Automata

A =   (S, F, δ)

‒ S is a finite set of states

‒ F µ S is the set of final states

‒ δ : S £ Λ ! 2S*  such that δ(s,α) is a regular language over S

• A nondeterministic unranked tree automaton (NUTA) over Λ-labeled trees is a triple

• A run of A on a tree T with domain D is a function λΑ : D ! S such that: if v is a node 

with n children, and is labeled α, then the string λΑ(v¢0)…λΑ(v¢(n-1)) 2 δ(λΑ(v),α)

v α

s1 s2 s3 sn-1 sn

s1…sn 2 δ(s,α)
s



Unranked Tree Automata

A =   (S, F, δ)

‒ S is a finite set of states

‒ F µ S is the set of final states

‒ δ : S £ Λ ! 2S*  such that δ(s,α) is a regular language over S

• A nondeterministic unranked tree automaton (NUTA) over Λ-labeled trees is a triple

• A run of A on a tree T with domain D is a function λΑ : D ! S such that: if v is a node 

with n children, and is labeled α, then the string λΑ(v¢0)…λΑ(v¢(n-1)) 2 δ(λΑ(v),α)

• A run is accepting if λΑ(ε) 2 F, i.e., the root is in an accepting state

• A tree T is accepted by A if there exists an accepting run of A on T

• We denote by L(A) the set of all trees accepted by A – a set of trees accepted by an 

NUTA is called regular



Unranked Tree Automata: Example

• Let Λ = {^,_,0,1}, and consider Λ-labeled trees where 0,1 appear only at leaves, 

while ^,_ can appear everywhere except at leaves

• We define A = ({s0,s1}, {s1}, δ), where

δ(s0,0) = δ(s1,1) = {ε}

δ(s0,1) = δ(s1,0) = ;
δ(s0,^) = (s0 [ s1)* ¢ s0 ¢ (s0 [ s1)*

δ(s1,^) = s1*

δ(s0,_) = s0*

δ(s1,_) = (s0 [ s1)* ¢ s1 ¢ (s0 [ s1)*

_

_ ^ _

0 1 01 0 1 0 0 s1s1 s1s0 s0 s0 s0 s0

s1 s0 s1

s1



MSO = NUTA

We can now present an interesting result:

Theorem: Consider a set T of labeled ordered unranked trees. Then:

T is MSO-definable   , T is regular

…but, what about unary queries?

we need an extended automata model



Query Automata

• A nondeterministic query automaton (NQA) over Λ-labeled trees is a pair

• Such an automaton defines a unary query QA over unranked trees:

v 2 QA(T)   , (λB(v),label(v)) 2 P, for some accepting run λB of B on T

A =   (B, P)

an NUTA (S, F, δ) a subset of S £ Λ



MSO = NQA

We have similar characterization for unary queries:

Theorem: Consider a unary query Q on labeled ordered unranked trees. Then:

Q is MSO-definable   , Q is of the form QA for some NQA A



Ordered Unranked Trees: Recap

• XML documents are modeled as labeled ordered unranked trees

• MSO is the yardstick logic for querying ordered unranked trees

• Most commonly we consider:

− Boolean queries that they define sets of trees: MSO = NUTA

− Unary queries that select nodes in trees: MSO = NQA

…but, what about the complexity of MSO over trees?



Complexity of MSO

BQE(MSO)

Input: a labeled ordered unranked tree T, an MSO sentence φ

Question: Τ ² φ?

• The same problem can be defined for unary formulas

‒ Given a tree T, a unary formula φ(x), and a node v: does Τ ² φ(v)?

• As usual, we consider the data and combined complexity

‒ Data complexity: T is input, φ is fixed

‒ Combined complexity: both T and φ are part of the input



Complexity of MSO

Theorem: It holds that:

• BQE(MSO) is in PTIME in data complexity (in fact, linear time)

• BQE(MSO) is non-elementary in combined complexity

Proof idea: By translation to automata:

• Convert the given sentence φ into a NUTA Aφ such that Τ ² φ ,   T 2 L(Aφ) 

• To decide whether T 2 L(Aφ) is feasible in time O(|T| ¢ |Aφ|2)

non-elementary

2
2

2

2
2

|φ|

depends on φ



Complexity of MSO

Even a bigger problem: there is no algorithm (even if we avoid automata) 

for checking whether Τ ² φ that runs in time O(|T| ¢ f(|φ|)) and f is an 

elementary function (unless P = NP)

Theorem: It holds that:

• BQE(MSO) is in PTIME in data complexity (in fact, linear time)

• BQE(MSO) is non-elementary in combined complexity

Proof idea: By translation to automata:

• Convert the given sentence φ into a NUTA Aφ such that Τ ² φ ,   T 2 L(Aφ) 

• To decide whether T 2 L(Aφ) is feasible in time O(|T| ¢ |Aφ|2)



Complexity of MSO

We need logics that have the same power as MSO, but 

permit faster evaluation algorithms

Theorem: It holds that:

• BQE(MSO) is in PTIME in data complexity (in fact, linear time)

• BQE(MSO) is non-elementary in combined complexity

Proof idea: By translation to automata:

• Convert the given sentence φ into a NUTA Aφ such that Τ ² φ ,   T 2 L(Aφ) 

• To decide whether T 2 L(Aφ) is feasible in time O(|T| ¢ |Aφ|2)



Alternative Logics for MSO

• Efficient Tree Logic (ETL) – obtained by posing some syntactic restrictions on 

MSO formulae, and at the same time adding new constructors for formulae 

that are not in MSO, but are MSO-definable

• μ-calculus – extension of a temporal logic with the least fixed-point operator 

• Monadic Datalog – fragment of Datalog, a database query language that 

essentially extends existential positive FO with the least fixed-point operator



Reachability

Is Glasgow reachable from Vienna?

Edinburgh

London

Vienna

Glasgow

Larnaca

9 x (Flight(Vienna,x) ^ Flight(x,Glasgow))





Reachability

Is Glasgow reachable from Vienna?

Edinburgh

London

Vienna

Glasgow

Larnaca



Paris

9 x (Flight(Vienna,x) ^ Flight(x,Glasgow))



Reachability

Is Glasgow reachable from Vienna?

Edinburgh

London

Vienna

Glasgow

Larnaca

9 x9 y (Flight(Vienna,x) ^ Flight(x,y) ^ Flight(y,Glasgow))

Paris





Reachability

Is Glasgow reachable from Vienna?

Edinburgh

London

Vienna

Glasgow

Larnaca

9 x9 y (Flight(Vienna,x) ^ Flight(x,y) ^ Flight(y,Glasgow))

Paris





Reachability

Is Glasgow reachable from Vienna?

Edinburgh

London

Vienna

Glasgow

LarnacaParis

Here is a possible strategy:

• Compute all the pairs of cities (c1,c2) such that c2 is reachable from c1

• Check if there is a pair (Vienna,Glasgow)



Here is a possible strategy:

• Compute all the pairs of cities (c1,c2) such that c2 is reachable from c1

• Check if there is a pair (Vienna,Glasgow)

Reachability

Is Glasgow reachable from Vienna?

Edinburgh

London

Vienna

Glasgow

LarnacaParis



Reachability

Is Glasgow reachable from Vienna?

Edinburgh

London

Vienna

Glasgow

LarnacaParis

Reachable(x,y) :- Flight(x,y)

Reachable(x,z) :- Flight(x,y), Reachable(y,z)

Goal :- Reachable(Vienna,Glasgow)



Reachability

Reachable(x,y) :- Flight(x,y)

Reachable(x,z) :- Flight(x,y), Reachable(y,z)

Goal :- Reachable(Vienna,Glasgow)

DATALOG

essentially, positive FO with least fixed-point



Monadic Datalog

Goal(x) :- Pα(x), Leaf(x)

Goal(x) :- Pα(x), x Áfc y, Mark(y)

all the introduced (or intentional) predicates are unary

Select all nodes v such that their descendants (including v) are labeled α

Mark(¢) collects all the nodes v such that

• Goal(v) holds

• For every u such that v Áns* u, Goal(u) holds

Mark(x) :- LastChild(x), Goal(x)

Mark(x) :- Goal(x), x Áns y, Mark(y)



Monadic Datalog

Theorem: A Monadic Datalog query Q can be evaluated on a tree T in time O(|Q| ¢ |T|))

R = {Áfc, Leaf, LastChild, Root, {Ps}s 2 Λ }

Theorem: Consider a unary query Q on labeled ordered unranked trees. Then:

Q is MSO-definable   , Q is definable in Monadic Datalog over R

Monadic Datalog is heavily used in Web data extraction: 

real-life languages are based on Monadic Datalog, which 

combines expressiveness and good evaluation properties



XML Schemas

• Usually, we are not interested in documents containing arbitrary elements, but 

only in documents that satisfy some specific constraints

• Schema – the markup permitted in an XML document

• Many different XML schema languages available:

‒ Document Type Definitions (DTDs)

‒ W3C XML Schema

‒ REgular LAnguage for XML Next Generation (RELAX NG)

‒ Schematron

‒ …



DTDs: An Example

<!DOCTYPE  bookshelf  [

<!ELEMENT bookshelf (book+)>

<!ELEMENT book (title, publisher, year?, author+)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT publisher (#PCDATA)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT author (name?, surname)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT surname (#PCDATA)>

]>

<bookshelf>

<book>

<title>Descriptive Complexity</title>

<publisher>Springer</publisher>

<author>

<name>Neil</name>

<surname>Immerman</surname>

</author>

</book>

<book>

<title>Computational Complexity</title>

<publisher>Addison Wesley</publisher>

<year>1994</year>

<author>

<surname>Papadimitriou</surname>

</author>

</book>

</bookshelf>

the XML document is valid w.r.t. the DTD



DTDs: Formal Definition

(f : Λ! regular expressions over Λ , s 2 Λ)

Fix a finite alphabet Λ

A document type definition (DTD) D is function-symbol pair

f(bookshelf) = book ¢ book*

f(book) = title ¢ publisher ¢ (year [ ε) ¢ (author ¢ author*)

f(author) = (name [ ε) ¢ surname

f(title) = f(publisher) = f(year) =  f(name) = f(surname) =  ε

For example, the previous DTD is written as (f, bookshelf), where 



DTDs into Tree Automata (and MSO)

• Let AD = ({sbookshelf, sbook, stitle, spublisher, syear, sauthor, sname, ssurname}, {sbookshelf}, δ), where

δ(sx,x) = ε, for every x 2 {title, publisher, year, name, surname} 

δ(sbookshelf,bookshelf) = book ¢ book*

δ(sbook,book) = title ¢ publisher ¢ (year [ ε) ¢ (author ¢ author*)

δ(sauthor,author) = (name [ ε) ¢ surname

f(bookshelf) = book ¢ book*

f(book) = title ¢ publisher ¢ (year [ ε) ¢ (author ¢ author*)

f(author) = (name [ ε) ¢ surname

f(title) = f(publisher) = f(year) =  f(name) = f(surname) =  ε

• The previous DTD is written as D = (f, bookshelf), where 

L(AD)  =  {T | T is valid w.r.t. D}



Recap

• XML documents are modeled as labeled ordered unranked trees

• MSO is the yardstick logic for querying ordered unranked trees

− Boolean queries that they define sets of trees: MSO = NUTA

− Unary queries that select nodes in trees: MSO = NQA

• MSO over trees can be evaluated in linear time in data complexity, but the 

combined complexity is non-elementary

• Monadic Datalog – an alternative logic for MSO with good evaluation properties

• DTDs are captured by NUTA (MSO)



Ordered Unranked Trees: Querying

For querying labeled ordered unranked trees we use:

• First-order logic (FO) – often studied in connection with XPath

‒ Boolean connectives _, ^, :

‒ Quantifiers 9x and 8x that range over nodes of trees

• Monadic second-order logic (MSO) – the yardstick logic

‒ FO plus quantifiers 9S and 8S that range over sets of nodes

‒ New formulae x 2 S





XPath at First Glance

book

bookshelf

book

title authorpublisher

Descriptive

Complexity
Springer name surname

title yearpublisher

Computational

Complexity
Addison

Wesley

1994

author

surname

Neil Immerman Papadimitriou

/child::bookshelf/child::book



XPath at First Glance

book

bookshelf

book

title authorpublisher

Descriptive

Complexity
Springer name surname

title yearpublisher

Computational

Complexity
Addison

Wesley

1994

author

surname

Neil Immerman Papadimitriou

/child::bookshelf/child::book[position() = 1]



XPath at First Glance

book

bookshelf

book

title authorpublisher

Descriptive

Complexity
Springer name surname

title yearpublisher

Computational

Complexity
Addison

Wesley

1994

author

surname

Neil Immerman Papadimitriou

/descendant::author/child::surname



XPath at First Glance

book

bookshelf

book

title authorpublisher

Descriptive

Complexity
Springer name surname

title yearpublisher

Computational

Complexity
Addison

Wesley

1994

author

surname

Neil Immerman Papadimitriou

/descendant::book/child::author[child::name]/child::surname



XPath at First Glance

book

bookshelf

book

title authorpublisher

Descriptive

Complexity
Springer name surname

title yearpublisher

Computational

Complexity
Addison

Wesley

1994

author

surname

Neil Immerman Papadimitriou

/descendant::book/child::author[position() = 2]/child::surname



XPath at First Glance

book

bookshelf

book

title authorpublisher

Descriptive

Complexity
Springer name surname

title yearpublisher

Computational

Complexity
Addison

Wesley

1994

author

surname

Neil Immerman Papadimitriou

/descendant::book/child::author[position() = 2][child::name]

empty



Location Paths

• XPath uses location paths to select nodes in a tree 

• A location path is a series of location steps separated by the symbol /

• Each location step has the form

axis::node-test[expression-1][expression-2]…

defines the relationship

to be followed

defines what kind

of nodes must be selected

zero or more predicates,

which filter the selected

nodes according to 

arbitrary selection criteria



The Anatomy of a Location Path

child::bookshelf/child::book[position() = 1]

axis node-test axis node-test

location step location step

location path

predicate

NOTE: The first location step does not have a predicate



FO over Ordered Unranked Trees

• First-order logic (FO) – often studied in connection with XPath

‒ Boolean connectives _, ^, :

‒ Quantifiers 9x and 8x that range over nodes of trees

• The navigational features of XPath can be described in FO

• Can we define alternative logics for FO over ordered unranked trees 

with good evaluation properties?

‒ LTL-like logics

‒ CTL-like logics



Tree Temporal Logic – TLtree

Syntax: with d 2 {ch,ns}

φ, φ’ :=  α, α 2 Λ | φ _ φ’ | : φ | Χd φ | invΧd φ | φ Ud φ’ | φ Sd φ’

(Τ,v) ² Χch φ

v

uφ

(next)



Tree Temporal Logic – TLtree

(Τ,v) ² invΧch φ

u

v

φ

Syntax: with d 2 {ch,ns}

φ, φ’ :=  α, α 2 Λ | φ _ φ’ | : φ | Χd φ | invΧd φ | φ Ud φ’ | φ Sd φ’



Tree Temporal Logic – TLtree

(Τ,v) ² φ Uch φ’

v

u

φ (until)

φ

φ

φ

φ’

Syntax: with d 2 {ch,ns}

φ, φ’ :=  α, α 2 Λ | φ _ φ’ | : φ | Χd φ | invΧd φ | φ Ud φ’ | φ Sd φ’



Tree Temporal Logic – TLtree

(Τ,v) ² φ Sch φ’

u

v

φ’ (since)

φ

φ

φ

φ

(analogously for Χns φ | invΧns φ | φ Uns φ’ | φ Sns φ’) 

Syntax: with d 2 {ch,ns}

φ, φ’ :=  α, α 2 Λ | φ _ φ’ | : φ | Χd φ | invΧd φ | φ Ud φ’ | φ Sd φ’



Tree Temporal Logic – TLtree

Theorem: Consider a Boolean/unary query Q on labeled ordered unranked trees. Then:

Q is FO-definable   , Q is TLtree-definable

Syntax: with d 2 {ch,ns}

φ, φ’ :=  α, α 2 Λ | φ _ φ’ | : φ | Χd φ | invΧd φ | φ Ud φ’ | φ Sd φ’



Important Algorithmic Problems for XPath

XPathSAT

Input: an XPath expression E, a DTD D

Question: is there a tree T valid w.r.t. D so that E selects at 

least one node in it? 

XPathCONT

Input: two XPath expressions E, E’ and a DTD D

Question: does E µD E’, i.e., for every tree T valid w.r.t. D, each node 

selected by E is also selected by E’?



XPath Satisfiability

Theorem: Given an XPath expression E, and a DTD D, the problem of deciding 

whether E is satisfiable w.r.t. D is feasible in time |D| ¢ 2O(|E|)

Proof idea: exploit automata

• Translate E into a query automaton AE of exponential size in time 2O(|E|)

• Translate D into an automaton AD in linear time

• Let A = AE £ AD be the product of the two automata – exponential size

• Test A for emptiness – this can be done in polynomial time in the size of A



XPath Containment

Theorem: Given two XPath expressions E, E’ and a DTD D, the problem of deciding 

whether E µD E’ is feasible in time |D| ¢ 2O(|E| + |E’|)

Proof idea: exploit TLtree and automata

• Translate E and E’ into TLtree formulae φ and ψ, respectively

• Construct a query automaton A(φ^: ψ) for φ ^ : ψ

• Translate D into an automaton AD

• Let A = A(φ^: ψ) £ AD – a query automaton of size |D| ¢ 2O(|E| + |E’|)

• Test A for emptiness – this can be done in polynomial time in the size of A



A Quick Note on Unordered Trees

• Like ordered trees but the sibling ordering (Áns) is no longer available

• Without order, counting has to be introduced explicitly – order buys counting

α β α α β

Q(x)  = 9y9z(x Ách y ^ Pα(y) ^ y Áns* z ^ Pα(z))

select the nodes with at least two children labeled α



A Quick Note on Unordered Trees

• Like ordered trees but the sibling ordering (Áns) is no longer available

• Without order, counting has to be introduced explicitly – order buys counting

• We have counting NUTA and counting query automata

α β α α β

no way to say that there are at least two children labeled α
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