
Volume

size does mattes

(thousands of TBs of data)

Variety

many data formats

(structured, semi-structured, etc.)

Veracity

data is often 

incomplete/inconsistent

Velocity

data often arrives at fast speed 

(updates are frequent)

the rest of this course




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ideal information system

in many modern organizations



information

needed

translation

special purpose query

achieve transparency

via an ontology



What is an Ontology?

An engineering artifact; its objective is to provide

an explicit specification of a conceptualization

an abstract model of (some aspect of) the world

using unambiguous language, typically logic



What is an Ontology?

Heart is a muscular organ that is part of

the circulatory system

8x (Heart(x)  MuscularOrgan(x)  ^

9y (isPartOf(x,y)  ^  

CirculatorySystem(y)))

1. Introduces vocabulary relevant to a domain

2. Specifies the meaning (semantics) of the terms



Ontology

Ontology-Based Data Access (OBDA)

RDB

XML

RDF

QueryMapping

use an ontology as a mediator



What are Ontologies Good For?

OntologyRDB
Mapping Query

1. Integrate different data sources (variety)

• Conceptual “global view” of the data

• Access data in a uniform and transparent way

2. Support automated reasoning (incompleteness)

• Implicit consequences are taken into account

• More complete answers



OntologyRDB
QueryMapping

Incomplete Data Sources

Alice is a professor

Bob teaches CS100

Professors are teaching staff

Someone who teaches is teaching staff

Find all teaching staff

Expected answer  =  {Alice, Bob}



Ontology-Based Data Access: Example

Ontology Σ - high level representation of the domain of interest

8x (Researcher(x)  9y (worksFor(x,y) ^ Project(y)))

8x (Project(x)  9y (worksFor(y,x) ^ Researcher(y)))

8x8y (worksFor(x,y)  Researcher(x) ^ Project(y))

8x (Project(x)  9y (ProjectName(x,y)))



Ontology-Based Data Access: Example

Relational database D - a single database that represents the sources

worksIn SSN Name

100 AAA

200 BBB

300 CCC



Ontology-Based Data Access: Example

worksIn SSN Name

100 AAA

200 BBB

300 CCC

the researcher with SSN 100 works for the project with name “AAA”

Relational database D - a single database that represents the sources



Ontology-Based Data Access: Example

Mapping M - semantically link data at the sources with the ontology

SELECT SSN, Name

FROM worksIn
µ

Researcher(person(SSN)) ^

Project(proj(Name)) ^

worksFor(person(SSN), proj(Name)) ^

ProjectName(proj(Name), Name)



Ontology-Based Data Access: Example

SELECT SSN, Name

FROM worksIn
µ

Researcher(person(SSN)) ^

Project(proj(Name)) ^

worksFor(person(SSN), proj(Name)) ^

ProjectName(proj(Name), Name)

• Constructors to create objects from tuples of values in the database

• The constructors are simply Skolem functions

Mapping M - semantically link data at the sources with the ontology



Ontology-Based Data Access: Example

worksIn SSN Name

100 AAA

200 BBB

300 CCC

Researcher(person(100)), Project(proj(AAA)), worksFor(person(100), proj(AAA)),

ProjectName(proj(AAA), AAA),

Virtual data layer M(D)

SELECT SSN, Name

FROM worksIn
µ

Researcher(person(SSN)) ^

Project(proj(Name)) ^

worksFor(person(SSN), proj(Name)) ^

ProjectName(proj(Name), Name)



Ontology-Based Data Access: Example

Researcher(person(100)), Project(proj(AAA)), worksFor(person(100), proj(AAA)),

ProjectName(proj(AAA), AAA),

Researcher(person(200)), Project(proj(BBB)), worksFor(person(200), proj(BBB)),

ProjectName(proj(BBB), BBB),

worksIn SSN Name

100 AAA

200 BBB

300 CCC

Virtual data layer M(D)

SELECT SSN, Name

FROM worksIn
µ

Researcher(person(SSN)) ^

Project(proj(Name)) ^

worksFor(person(SSN), proj(Name)) ^

ProjectName(proj(Name), Name)



Ontology-Based Data Access: Example

Researcher(person(100)), Project(proj(AAA)), worksFor(person(100), proj(AAA)),

ProjectName(proj(AAA), AAA),

Researcher(person(200)), Project(proj(BBB)), worksFor(person(200), proj(BBB)),

ProjectName(proj(BBB), BBB),

Researcher(person(300)), Project(proj(CCC)), worksFor(person(300), proj(CCC)),

ProjectName(proj(CCC), CCC)

worksIn SSN Name

100 AAA

200 BBB

300 CCC

SELECT SSN, Name

FROM worksIn
µ

Researcher(person(SSN)) ^

Project(proj(Name)) ^

worksFor(person(SSN), proj(Name)) ^

ProjectName(proj(Name), Name)

Virtual data layer M(D)



Source

Ontology Σ

Mapping M

Source Source

OBDA

Virtual

Data Layer

Query Answering in OBDA

• The sources and the mapping define a virtual data layer M(D)

D

M(D)



Source

Ontology Σ

Mapping M

Source Source

Query Q

OBDA

Virtual

Data Layer

Query Answering in OBDA

• The sources and the mapping define a virtual data layer M(D)

• Queries are answered against the knowledge base hM(D), Σi

D

M(D)



Ontology Σ

Query Q

OBDA

Virtual

Data Layer

Query Answering in OBDA

M(D)

Ontology-Based Query Answering 



Ontology-Based Query Answering (OBQA)

D

Σ

hD,Σi

D

database

ontology 

Q

knowledge base

certain-answers(Q, hD,Σi) =    \J 2 models(D ^ Σ) Q(J)

(formal definitions later - once we fix the languages)



Ontology-Based Query Answering (OBQA)

NOTE: OBQA is not OBDA, but a crucial task in OBDA 

We should talk about OBDA only in the presence of external sources and mappings

D

Σ

D

database

ontology 

Q

knowledge base

hD,Σi



Issues in Ontology-Based Query Answering

What is the right ontology language?

• A wide spectrum of languages that differ in expressive power and 

computational complexity (e.g., description logics, existential rules)

• Scalability to very large amounts of data is a key

What is the right query language?

• Well-known languages from database theory (e.g., conjunctive queries)



Few Words on Description Logics (DLs)

• DLs are well-behaved fragments of first-order logic

• Several DL-based languages exist (from lightweight to very expressive logics)

• Strongly influenced the W3C standard Web Ontology Language OWL

• Syntax: We start from a vocabulary with 

‒ Concept names: atomic classes or unary predicates, e.g., Parent, Person

‒ Role names: atomic relations or binary predicates, e.g., hasParent

and we build axioms

‒ Person  v 9hasParent.Parent  - each person has a parent

‒ Parent  v Person   - each parent is a person

• Semantics: Via first-order interpretations 



DL-Lite Family

DL-Lite: Popular family of DLs - at the basis of the OWL 2 QL profile of OWL 2

DL-Lite Axioms First-order Representation

A v B 8x (A(x)  B(x))

A v 9R 8x (A(x)  9y R(x,y))

9R v A 8x8y (R(x,y)  A(x))

9R v 9P 8x8y (R(x,y)  9z P(x,z))

A v 9R.B 8x (A(x)  9y (R(x,y) ^ B(y)))

R v P 8x8y (R(x,y)  P(x,y))

A v :B 8x (A(x) ^ B(x)  ?)



The Description Logic EL

EL: Popular DL for biological applications  - at the basis of the OWL 2 EL profile

EL Axioms First-order Representation

A v B 8x (A(x)  B(x))

A u B v C 8x (A(x) ^ B(x)  C(x))

A v 9R.B 8x (A(x)  9y (R(x,y) ^ B(y)))

9R.B v A 8x8y (R(x,y) ^ B(y)  A(x))

…several other, more expressive, description logics exist



…but, in what follows we focus on existential rules

an alternative way for representing ontologies



8x (Researcher(x)  9y (worksFor(x,y) ^ Project(y)))

8x (Project(x)  9y (worksFor(y,x) ^ Researcher(y)))

8x8y (worksFor(x,y)  Researcher(x) ^ Project(y))

8x (Project(x)  9y (ProjectName(x,y)))

A Simple Example



Some Terminology

• Our basic vocabulary:

‒ A countable set C of constants - domain of a database

‒ A countable set N of (labeled) nulls - globally 9-quantified variables

‒ A countable set V of (regular) variables - used in rules and queries

• A term is a constant, null or variable

• An atom has the form R(t1, …, tn)  - R is an n-ary relation and ti’s are terms

• An instance is a (possibly infinite) set of atoms with constants and nulls

• A database is a finite instance with only constants



Syntax of Existential Rules

• x,y and z are tuples of variables of V

• ' (x,y) and Ã(x,z) are (constant-free) conjunctions of atoms

An existential rule is an expression

body head

8x8y (' (x,y)  9z Ã(x,z))

…a.k.a. tuple-generating dependencies and Datalog§ rules



Semantics of Existential Rules

• An instance J is a model of the rule

written as J ² σ, if the following holds: 

whenever there exists a homomorphism h such that h(' (x,y)) µ J, 

then there exists g ¶ h|x such that g(Ã(x,z)) µ J

• Given a set Σ of existential rules, J is a model of Σ, written as J ² Σ,  if the 

following holds: for each σ 2 Σ, J ² σ

• J ² Σ iff J is a model of the first-order theory ^σ 2 Σ σ

σ = 8x8y (' (x,y)  9z Ã(x,z))

{t  h(t) | t 2 x}  - the restriction of h to x



Q(x)  :- R1(v1),…,Rm(vm)

Ontology-Based Query Answering (OBQA)

D

Σ

hD,Σi

D

database

ontology 

Q

knowledge base

existential rules

8x8y (' (x,y)  9z Ã(x,z))

conjunctive queries



Ontology-Based Query Answering (OBQA)

D

Σ

hD,Σi

D

database

ontology 

Q

knowledge base

certain-answers(Q, hD,Σi) =    \J 2 models(D ^ Σ) Q(J)

{J | J ¶ D and J ² Σ}



Exercise: Compute the Certain Answers

D = {Person(john), Person(bob), Person(tom),

hasFather(john,bob), hasFather(bob,tom)}

Σ = {8x (Person(x)  9y hasFather(x,y)),

8x8y (hasFather(x,y)  Person(x) ^ Person(y))}

Q1(x,y) :- hasFather(x,y)

Q2(x) :- hasFather(x,y)

Q3(x) :- hasFather(x,y), hasFather(y,z), hasFather(z,w)

Q4(x,w)  :- hasFather(x,y), hasFather(y,z), hasFather(z,w)



Exercise: Compute the Certain Answers

{(john,bob), (bob,tom)}

Q1(x,y) :- hasFather(x,y)

D = {Person(john), Person(bob), Person(tom),

hasFather(john,bob), hasFather(bob,tom)}

Σ = {8x (Person(x)  9y hasFather(x,y)),

8x8y (hasFather(x,y)  Person(x) ^ Person(y))}



Exercise: Compute the Certain Answers

{(john), (bob), (tom)}

Q2(x) :- hasFather(x,y)

D = {Person(john), Person(bob), Person(tom),

hasFather(john,bob), hasFather(bob,tom)}

Σ = {8x (Person(x)  9y hasFather(x,y)),

8x8y (hasFather(x,y)  Person(x) ^ Person(y))}



Exercise: Compute the Certain Answers

Q3(x) :- hasFather(x,y), hasFather(y,z), hasFather(z,w)

{(john), (bob), (tom)}

D = {Person(john), Person(bob), Person(tom),

hasFather(john,bob), hasFather(bob,tom)}

Σ = {8x (Person(x)  9y hasFather(x,y)),

8x8y (hasFather(x,y)  Person(x) ^ Person(y))}



Exercise: Compute the Certain Answers

Q4(x,w)  :- hasFather(x,y), hasFather(y,z), hasFather(z,w)

{ }

D = {Person(john), Person(bob), Person(tom),

hasFather(john,bob), hasFather(bob,tom)}

Σ = {8x (Person(x)  9y hasFather(x,y)),

8x8y (hasFather(x,y)  Person(x) ^ Person(y))}



OBQA: Formal Definition

OBQA(L)

Input: database D, existential rules Σ 2 L, CQ Q(x), tuple t 2 adom(D)|X|

Question: t 2 certain-answers(Q,hD,Σi) =  \J 2 models(D ^ Σ) Q(J)?

ontology language based on existential rules

t 2 certain-answers(Q,hD,Σi) , 8J 2 models(D ^ Σ), t 2 Q(J)

, 8J 2 models(D ^ Σ), () 2 Qt(J), where Qt = Q(t)

Boolean CQ - no output variables



Why is OBQA technically challenging?

What is the right tool for tackling this problem?



The Two Dimensions of Infinity

Consider the database D, and the set of existential rules Σ

model of D ^ Σ

size

…

…

D ^ Σ admits infinitely many models, of possibly infinite size



The Two Dimensions of Infinity

D  =  {P(c)} Σ = {8x (P(x)  9y (R(x,y) ^ P(y)))} 

model of D ^ Σ

size

…

P(c)

R(c,z1)

P(z1)

R(z1,z1)

P(c)

R(c,c)

P(c)

R(c,z1)

P(z1)

R(z1,z2)

P(z2)

R(z2,z2)

P(c)

R(c,z1)

P(z1)

R(z1,z2)

P(z2)

R(z2,z3)

…

P(zk)

R(zk,zk)

…

P(c)

R(c,z1)

P(z1)

R(z1,z2)

P(z2)

R(z2,z3)

…

P(zk)

R(zk,zk+1)

…

z1, z2, z3, … are nulls of N



Taming the First Dimension of Infinity

Key Idea: Focus on a representative, 

a model that is as general as possible  

model of D ^ Σ

size

…

P(c)

R(c,z1)

P(z1)

R(z1,z1)

P(c)

R(c,c)

P(c)

R(c,z1)

P(z1)

R(z1,z2)

P(z2)

R(z2,z2)

P(c)

R(c,z1)

P(z1)

R(z1,z2)

P(z2)

R(z2,z3)

…

P(zk)

R(zk,zk)

…

P(c)

R(c,z1)

P(z1)

R(z1,z2)

P(z2)

R(z2,z3)

…

P(zk)

R(zk,zk+1)

…











D  =  {P(c)} Σ = {8x (P(x)  9y (R(x,y) ^ P(y)))} 



Universal Models (a.k.a. Canonical Models)

U

J1
J2

. . . 

Jn

. . . 

h1
h2

hn

An instance U  is a universal model of D ^ Σ if the following holds:

1. U is a model of D ^ Σ

2. 8J 2 models(D ^ Σ), there exists a homomorphism hJ such that hJ(U) µ J



Query Answering via Universal Models

Theorem: D ^ Σ ² Q  iff U ² Q, where U is a universal model of D ^ Σ

Proof: ()) Trivial since, for every J 2 models(D ^ Σ), J ² Q

(() By exploiting the universality of U

U

J1
J2

. . . 

Jn

. . . 

h1
h2

hn

Q by hypothesis

by universality of U

g

8J 2 models(D ^ Σ), 9hJ such that hJ(g(Q)) µ J ) 8J 2 models(D ^ Σ), J ² Q
) D ^ Σ ² Q



The Chase Procedure

• Fundamental algorithmic tool used in databases

• It has been applied to a wide range of problems:

‒ Checking containment of queries under constraints

‒ Computing data exchange solutions

‒ Computing certain answers in data integration settings

‒ …

… what’s the reason for the ubiquity of the chase in databases?

it constructs universal models



The Chase Procedure

person(john)

8x (Person(x)  9y (hasParent(x,y) ^ Person(y)))

D

Σ

chase(D,Σ) = D [ 



The Chase Procedure

person(john)

D

Σ

chase(D,Σ) = D [ {hasParent(john, z1), Person(z1) 

8x (Person(x)  9y (hasParent(x,y) ^ Person(y)))



The Chase Procedure

person(john)

D

Σ

chase(D,Σ) = D [ {hasParent(john, z1), Person(z1),

hasParent(z1, z2), Person(z2)

8x (Person(x)  9y (hasParent(x,y) ^ Person(y)))



The Chase Procedure

person(john)

D

Σ

chase(D,Σ) = D [ {hasParent(john, z1), Person(z1),

hasParent(z1, z2), Person(z2),

hasParent(z2, z3), Person(z3)

8x (Person(x)  9y (hasParent(x,y) ^ Person(y)))



The Chase Procedure

person(john)

D

Σ

chase(D,Σ) = D [ {hasParent(john, z1), Person(z1),

hasParent(z1, z2), Person(z2),

hasParent(z2, z3), Person(z3), …

infinite instance

8x (Person(x)  9y (hasParent(x,y) ^ Person(y)))



The Chase Procedure: Formal Definition

J = {R(a), P(a,b)}

8x (R(x)  9y P(x,y))

h = {x! a} g = {x! a, y! b}



J = {R(a), P(b,a)}

8x (R(x)  9y P(x,y))

h = {x! a}



£

• Chase rule - the building block of the chase procedure

• A rule σ = 8x8y ('(x,y) 9z Ã(x,z)) is applicable to instance J if:

1. There exists a homomorphism h such that h('(x,y)) µ J

2. There is no g ¶ h|x such that g(Ã(x,z)) µ J



The Chase Procedure: Formal Definition

• Chase rule - the building block of the chase procedure

• A rule σ = 8x8y ('(x,y) 9z Ã(x,z)) is applicable to instance J if:

1. There exists a homomorphism h such that h('(x,y)) µ J

2. There is no g ¶ h|x such that g(Ã(x,z)) µ J

• Let J+ = J [ {g(Ã(x,z))}, where g ¶ h|z and g(z) are “fresh” nulls not in J

• The result of applying σ to J is J+, denoted Jhσ,hiJ+  - single chase step



The Chase Procedure: Formal Definition

• A finite chase of D w.r.t. Σ is a finite sequence

Dhσ1,h1iJ1hσ2,h2iJ2hσ3,h3iJ3  ... hσn,hniJn

and chase(D,Σ) is defined as the instance Jn

• An infinite chase of D w.r.t. Σ is a fair finite sequence

Dhσ1,h1iJ1hσ2,h2iJ2hσ3,h3iJ3  ... hσn,hniJn ...  

and chase(D,Σ) is defined as the instance [k ¸ 0 Jk (with J0 = D)

all applicable rules will eventually be applied

least fixpoint of a monotonic operator - chase step



Chase: A Universal Model

Theorem: chase(D,Σ) is a universal model of D ^ Σ

Proof:

• By construction, chase(D,Σ) 2 models(D ^ Σ) 

• It remains to show that chase(D, Σ) can be homomorphically embedded into 

every other model of D ^ Σ

• Fix an arbitrary instance J 2 models(D ^ Σ). We need to show that there 

exists h such that h(chase(D,Σ)) µ J

• By induction on the number of applications of the chase step, we show 

that for every k ¸ 0, there exists hk such that hk(chase[k](D,Σ)) µ J, and hk

is compatible with hk-1

• Clearly, [k ¸ 0  hk is a well-defined homomorphism that maps chase(D,Σ) to J

• The claim follows with h = [k ¸ 0  hk

the result of the chase after k applications of the chase step 



Chase: Uniqueness Property

• The result of the chase is not unique - depends on the order of rule application

• But, it is unique up to homomorphic equivalence

• Thus, it is unique for query answering purposes

D = {P(a)} σ1 = 8x (P(x)  9y R(y))

Result1 = {P(a), R(z), R(a)}

Result2 = {P(a), R(a)}

σ1 then σ2 

σ2 then σ1 

σ2 = 8x (P(x)  R(x))

Result1

h12

h21

h23

h32

Result2 Result3



Query Answering via the Chase

Theorem: D ^ Σ ² Q  iff U ² Q, where U is a universal model of D ^ Σ

&

Theorem: chase(D, Σ) is a universal model of D ^ Σ

+

Corollary: D ^ Σ ² Q   iff chase(D,Σ) ² Q

• We can tame the first dimension of infinity by exploiting the chase procedure

• What about the second dimension of infinity? - the chase may be infinite



Can we tame the second dimension of infinity?



Undecidability of OBQA

Theorem: OBQA(9RULES) is undecidable

Proof Idea : By simulating a deterministic Turing machine with an empty tape

arbitrary existential rules



Deterministic Turing Machine (DTM)

M =   (S, Λ, t, δ, s0, sacc)

states tape 

symbols

blank

symbol

Sn{sacc} £ Λ ! S £ Λ £ {-1,0,+1}

initial state

accepting state

δ(s1, α) = (s2, β, +1)

IF at some time instant τ the machine is in sate s1, the cursor 

points to cell κ, and this cell contains α

THEN at instant τ+1 the machine is in state s2, cell κ contains β, 

and the cursor points to cell κ+1



Undecidability of OBQA

Theorem: OBQA(9RULES) is undecidable

Proof Idea : By simulating a deterministic Turing machine with an empty tape.

Encode the computation of a DTM M with an empty tape using a database D, 

a set Σ of existential rules, and a BCQ Q such that D ^ Σ ² Q iff M accepts

arbitrary existential rules



How we ensure decidability of OBQA?



Gaining Decidability

By restricting the database

• {Start(c)} ^ Σ ² Q iff the DTM M accepts

• The problem is undecidable already for singleton databases

• No much to do in this direction

By restricting the query language

• D ^ Σ ²  Q :- Accept(x) iff the DTM M accepts

• The problem is undecidable already for atomic queries

• No much to do in this direction

By restricting the ontology language

• Achieve a good trade-off between expressive power and complexity

• Field of intense research

• Any ideas?



What is the Source of Non-termination?

D

Σ

chase(D,Σ) = D [ {hasParent(john, z1), Person(z1),

hasParent(z1, z2), Person(z2),

hasParent(z2, z3), Person(z3), …

1. Existential quantification

2. Recursive definitions

person(john)

8x (Person(x)  9y (hasParent(x,y) ^ Person(y)))



Termination of the Chase

• Drop the existential quantification

‒ We obtain the class of full existential rules

‒ Very close to Datalog

• Drop the recursive definitions

‒ We obtain the class of acyclic existential rules

‒ A.k.a. non-recursive existential rules



Full Existential Rules

• A full existential rule is an existential rule of the form

• We denote FULL the class of full existential rules

• A local property - we can inspect one rule at a time 

) given Σ, we can decide in linear time whether Σ2 FULL

) closed under union - Σ1 2 FULL, Σ2 2 FULL ) (Σ1 [ Σ2) 2 FULL

• But, is this a reasonable ontology language?

8x8y (' (x,y)  Ã(x))



FULL and OWL 2 RL

Parent u Male v Father

8x (Parent(x) ^ Male(x)  Father(x))

• The acronym RL reflects its relation to rules

• FULL captures OWL 2 RL

parentOf.parentOf.T v Grandfather

8x8y (parentOf(x,y) ^ parentOf(y,z)  Grandfather(x))

MetalDevice v 8hasPart.Metal

8x8y (MetalDevice(x) ^ hasPart(x,y)  Metal(y))



FULL and OWL 2 RL

childOf ± childOf v grandchildOf

8x8y8z (childOf(x,y) ^ childOf(y,z)  grandchildOf(x,z))

• The acronym RL reflects its relation to rules

• FULL captures OWL 2 RL

Person v 9∙1 hasPassport.Valid

8x8y8z (Person(x) ^ hasPassport(x,y) ^ Valid(y) ^

hasPassport(x,z) ^ Valid(z)  y = z)

Disj(childOf, parentOf)

8x8y (childOf(x,y) ^ parentOf(x,y)  ?)



Full Existential Rules

• A full existential rule is an existential rule of the form

• We denote FULL the class of full existential rules

• A local property - we can inspect one rule at a time 

) given Σ, we can decide in linear time whether Σ2 FULL

) closed under union - Σ1 2 FULL, Σ2 2 FULL ) (Σ1 [ Σ2) 2 FULL

• But, is this a reasonable ontology language?     OWL 2 RL

8X8Y (' (X,Y)  Ã(X))



Full Existential Rules

• Consider a database D and a set Σ2 FULL

• chase(D,Σ) µ {P(c1,…,cn) | (c1,…,cn) 2 adom(D)n and   P 2 sch(Σ)}

• |chase(D,Σ)| ∙ |sch(Σ)| ¢ (|adom(D)|)maxarity

active domain - constants occurring in D

schema - predicates occurring in Σ

maximum number of tuples 

with terms of adom(D) 

maximum number of atoms with predicates of

sch(Σ) and terms of adom(D)

maxarity = maxP 2 sch(Σ) {arity(P)}



Complexity Measures for OBQA

• Data complexity: is calculated by considering only the database as part of the 

input, while the ontology and the query are fixed - OBQAΣ,Q(L)

• Combined complexity: is calculated by considering, apart from the database, 

also the ontology and the query as part of the input

OBQA(L)

Input: database D, existential rules Σ 2 L, CQ Q(x), tuple t 2 adom(D)|X|

Question: t 2 certain-answers(Q,hD,Σi) =  \J 2 models(D ^ Σ) Q(J)?



Data Complexity of FULL

Theorem: OBQAΣ,Q(FULL) is in PTIME

Proof: Consider a database D, a set Σ2 FULL, and a (Boolean) CQ Q

We apply the naïve algorithm:

1. Construct chase(D,Σ)

2. Check for the existence of a homomorphism h such that h(Q) µ chase(D,Σ)

Step 1: We construct the chase level-by-level

L1

L0 = D

L2

Ln

…

• From Lk to Lk+1: for each σ 2 Σ, find all the 

homomorphisms h such that h(body(σ)) µ Lk, and 

add to Lk the set of atoms h(head(σ))

• Stop when Lk = Lk+1

|Σ| ¢ (|adom(D)|)maxvariables(Σ) ¢ maxbody(Σ) ¢ |Lk|



Data Complexity of FULL

Theorem: OBQAΣ,Q(FULL) is in PTIME

Proof: Consider a database D, a set Σ2 FULL, and a (Boolean) CQ Q

We apply the naïve algorithm:

1. Construct chase(D,Σ)

2. Check for the existence of a homomorphism h such that h(Q) µ chase(D,Σ)

Step 1: We construct the chase level-by-level in time

(k-1) ¢ |Σ| ¢ (|adom(D)|)maxvariables(Σ) ¢ maxbody(Σ) ¢ |L|

where k, |L| ∙ |chase(D,Σ)| ∙ |sch(Σ)| ¢ (|adom(D)|)maxarity



Data Complexity of FULL

Theorem: OBQAΣ,Q(FULL) is in PTIME

Proof: Consider a database D, a set Σ2 FULL, and a (Boolean) CQ Q

We apply the naïve algorithm:

1. Construct chase(D,Σ)

2. Check for the existence of a homomorphism h such that h(Q) µ chase(D,Σ)

Step 2: By applying similar analysis, we can show that the existence of h can be 

checked in time

(|adom(D)|)#variables(Q) ¢ |Q| ¢ |chase(D,Σ)|

where |chase(D,Σ)| ∙ |sch(Σ)| ¢ (|adom(D)|)maxarity



Data Complexity of FULL

Theorem: OBQAΣ,Q(FULL) is in PTIME

Proof: Consider a database D, a set Σ2 FULL, and a (Boolean) CQ Q

We apply the naïve algorithm:

1. Construct chase(D,Σ)

2. Check for the existence of a homomorphism h such that h(Q) µ chase(D,Σ)

Consequently, in the worst case, the naïve algorithm runs in time

(|sch(Σ)| ¢ (|adom(D)|)maxarity)2 ¢ |Σ| ¢ (|adom(D)|)maxvariables(Σ) ¢ maxbody(Σ)

+ 

(|adom(D)|)#variables(Q) ¢ |Q| ¢ |sch(Σ)| ¢ (|adom(D)|)maxarity



Data Complexity of FULL

Theorem: OBQAΣ,Q(FULL) is PTIME-hard

Proof : By a LOGSPACE reduction from Monotone Circuit Value problem

We cannot do better than the naïve algorithm



Data Complexity of FULL

Circuit evaluates to true iff D ^ Σ ² T(g6)

encoding of the circuit as a database D

T(g1)   T(g3)

AND(g4,g1,g2)   OR(g5,g2,g3)   OR(g6,g4,g5)

evaluation of the circuit via a fixed set Σ

8x8y8z (T(x) ^ OR(z,x,y)  T(z))

8x8y8z (T(y) ^ OR(z,x,y)  T(z))

8x8y8z (T(x) ^ T(y) ^ AND(z,x,y)  T(z))

Does the circuit evaluate to true? 

^ _

_

g4 g5

g6

g1 g2 g3

1 0 1

0 1

1



Combined Complexity of FULL

Theorem: OBQA(FULL) is in EXPTIME

Proof: Consider a database D, a set Σ2 FULL, and a BCQ Q

We apply the naïve algorithm:

1. Construct chase(D,Σ)

2. Check for the existence of a homomorphism h such that h(Q) µ chase(D,Σ)

Consequently, in the worst case, the naïve algorithm runs in time

(|sch(Σ)| ¢ (|adom(D)|)maxarity)2 ¢ |Σ| ¢ (|adom(D)|)maxvariables(Σ) ¢ maxbody(Σ)

+ 

(|adom(D)|)#variables(Q) ¢ |Q| ¢ |sch(Σ)| ¢ (|adom(D)|)maxarity



Theorem: OBQA(FULL) is in EXPTIME-hard

Proof : By simulating a deterministic exponential time Turing machine 

We cannot do better than the naïve algorithm

Combined Complexity of FULL



Termination of the Chase

• Drop the existential quantification

‒ We obtain the class of full existential rules

‒ Very close to Datalog

• Drop the recursive definitions

‒ We obtain the class of acyclic existential rules

‒ A.k.a. non-recursive existential rules



…the naïve algorithm is not clever enough



The Naïve Algorithm for ACYCLIC

L1

L0 = D

L2

Ln

… L1

0 0 z00

0 1 z01

1 0 z10

1 1 z11

|L1| =  (|L0|)
2

|L0| =  2

D = {P0(0), P0(1)}

Σ = {8x8y (P0(x) ^ P0(y)  9z (S1(x,y,z) ^ P1(z)))           

8x8y (P1(x) ^ P1(y)  9z (S2(x,y,z) ^ P2(z)))

…

8x8y (Pn-1(x) ^ Pn-1(y)  9z (Sn(x,y,z) ^ Pn(z)))}



The Naïve Algorithm for ACYCLIC

L1

L0 = D

L2

Ln

…

D = {P0(0), P0(1)}

Σ = {8x8y (P0(x) ^ P0(y)  9z (S1(x,y,z) ^ P1(z)))           

8x8y (P1(x) ^ P1(y)  9z (S2(x,y,z) ^ P2(z)))

…

8x8y (Pn-1(x) ^ Pn-1(y)  9z (Sn(x,y,z) ^ Pn(z)))}

L2

z00 z00 z0000

z00 z01 z0001

z00 z10 z0010

z00 z11 z0011

z01 z00 z0100

z01 z01 z0101

z01 z10 z0110

z01 z11 z0111

z10 z00 z1000

z10 z01 z1001

z10 z10 z1010

z10 z11 z1011

z11 z00 z1100

z11 z01 z1101

z11 z10 z1110

z11 z11 z1111

|L1| =  (|L0|)
2

|L0| =  2

|L2| =  (|L1|)
2



The Naïve Algorithm for ACYCLIC

Ln

z0...0 z0...0 z0...00...0

… … …

z1…1 z1…1 z1…11…1

|L1| =  (|L0|)
2

|L0| =  2

|L2| =  (|L1|)
2

L1

L0 = D

L2

Ln

…

|Ln| =  (|Ln-1|)
2

D = {P0(0), P0(1)}

Σ = {8x8y (P0(x) ^ P0(y)  9z (S1(x,y,z) ^ P1(z)))           

8x8y (P1(x) ^ P1(y)  9z (S2(x,y,z) ^ P2(z)))

…

8x8y (Pn-1(x) ^ Pn-1(y)  9z (Sn(x,y,z) ^ Pn(z)))}



The Naïve Algorithm for ACYCLIC

|L1| =  (|L0|)
2

|L0| =  2

|L2| =  (|L1|)
2

|Ln| =  (|Ln-1|)
2

|Ln| =  2(2^n)

L1

L0 = D

L2

Ln

…

D = {P0(0), P0(1)}

Σ = {8x8y (P0(x) ^ P0(y)  9z (S1(x,y,z) ^ P1(z)))           

8x8y (P1(x) ^ P1(y)  9z (S2(x,y,z) ^ P2(z)))

…

8x8y (Pn-1(x) ^ Pn-1(y)  9z (Sn(x,y,z) ^ Pn(z)))}



Complexity of ACYCLIC

• The naïve algorithm shows OBQA(ACYCLIC) is

‒ in PTIME w.r.t. the data complexity

‒ in 2EXPTIME w.r.t. the combined complexity

…however, we can do better than the naïve algorithm

Theorem: It holds that

• OBQAΣ,Q(FULL) is in LOGSPACE (data complexity)

• OBQA(FULL) is NEXPTIME-complete (combined complexity)



Our Simple Example

D

Σ

chase(D,Σ) = D [ {hasParent(john, z1), Person(z1),

hasParent(z1, z2), Person(z2),

hasParent(z2, z3), Person(z3), …

person(john)

8x (Person(x)  9y (hasParent(x,y) ^ Person(y)))

Existential quantification  &  recursive definitions 

are key features for modelling ontologies



Research Challenge

We need classes of existential rules such that 

• Existential quantification and recursive definition coexist

) the chase may be infinite

• OBQA is decidable, and tractable w.r.t. the data complexity

+

Tame the infinite chase:

Deal with infinite structures without explicitly building them



Linear Existential Rules

• A linear existential rule is an existential rule of the form

• We denote LINEAR the class of linear existential rules

• A local property - we can inspect one rule at a time 

) given Σ, we can decide in linear time whether Σ2 LINEAR

) closed under union

• But, is this a reasonable ontology language?

8x8y (P(x,y)  9z Ã(x,z))

single atom



LINEAR vs. DL-Lite

DL-Lite: Popular family of DLs - at the basis of the OWL 2 QL profile of OWL 2

DL-Lite Axioms First-order Representation

A v B 8x (A(x)  B(x))

A v 9R 8x (A(x)  9y R(x,y))

9R v A 8x8y (R(x,y)  A(x))

9R v 9P 8x8y (R(x,y)  9z P(x,z))

A v 9R.B 8x (A(x)  9y (R(x,y) ^ B(y)))

R v P 8x8y (R(x,y)  P(x,y))

A v :B 8x (A(x) ^ B(x)  ?)



Linear Existential Rules

• A linear existential rule is an existential rule of the form

• We denote LINEAR the class of linear existential rules

• A local property - we can inspect one rule at a time 

) given Σ, we can decide in linear time whether Σ2 LINEAR

) closed under union

• But, is this a reasonable ontology language?     OWL 2 QL

8X8Y (P(X,Y)  9Z Ã(X,Z))

single atom



Chase Graph

The chase can be naturally seen as a graph - chase graph

D = {R(a,b), S(b)}

8x8y (R(x,y) ^ S(y)  9z R(z,x))

8x8y (R(x,y)  S(x))
Σ =

R(a,b) S(b)

R(z1,a) S(a)

R(z2,z1) S(z1)

R(z3,z2) S(z2)

For LINEAR the chase graph is a forest



Bounded Derivation-Depth Property

D

Q

depth k that does not depend on D

chase(D,Σ) ² Q   ) chasek(D,Σ) ² Q

h

chase(D,Σ)

chase graph up to depth k

For LINEAR, k = |Q| ¢ m

with m = |sch(Σ)| ¢  (2 ¢ maxarity)maxarity



The Blocking Algorithm for LINEAR

• The blocking algorithm shows that OBQA(LINEAR) is

‒ in PTIME w.r.t. the data complexity

‒ in 2EXPTIME w.r.t. the combined complexity

D

Q

h

chase(D,Σ)

k = |Q| ¢ |sch(Σ)| ¢ (2 ¢ maxarity)maxarity



Complexity of LINEAR

Theorem: It holds that

• OBQAΣ,Q(LINEAR) is in LOGSPACE (data complexity)

• OBQA(LINEAR) is PSPACE-complete (combined complexity)

…but, we can do better than the blocking algorithm



Key Observation

at most |Q| atoms

D

Q

depth k

h

depth i

non-deterministic, level-by-level construction



Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is in PSPACE

Proof Idea:

L1

L0 = D



Combined Complexity of LINEAR

L1

L2

Theorem: OBQA(LINEAR) is in PSPACE

Proof Idea:



Combined Complexity of LINEAR

L2

L3

Theorem: OBQA(LINEAR) is in PSPACE

Proof Idea:



Combined Complexity of LINEAR

Ln

…

Theorem: OBQA(LINEAR) is in PSPACE

Proof Idea:



Combined Complexity of LINEAR

• At each step we need to maintain

‒ O(|Q|) atoms

‒ A counter ctr ∙ |Q|2 ¢ |sch(Σ)| ¢ (2 ¢ maxarity)maxarity

• Thus, we need polynomial space 

• The claim follows since NPSPACE = PSPACE

Theorem: OBQA(LINEAR) is in PSPACE

Proof Idea:



Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is PSPACE-hard

Proof : By simulating a deterministic polynomial space Turing machine 

We cannot do better than the previous algorithm



PSPACE-hardness of LINEAR

Our Goal: Encode the polynomial space computation of a DTM M on input string I 

using a database D, a set Σ 2 LINEAR, and a (Boolean) CQ Q such that 

D ^ Σ ² Q iff M accepts I using at most n = |I|k cells



PSPACE-hardness of LINEAR

Initial configuration - the database D

Config(sinit,α1,…,αm,t,…,t,1,0,…,0)

n - m n - 1

• Assume that the tape alphabet is {0,1,t}

• Suppose that M halts on I = α1… αm using n = mk cells, for k > 0



Transition rule - δ(s1,α) = (s2,β,+1)

for each i 2 {1,…,n}:

PSPACE-hardness of LINEAR

• Assume that the tape alphabet is {0,1,t}

• Suppose that M halts on I = α1… αm using n = mk cells, for k > 0

 8x (Config(s1,x1,…,xi-1,α,xi+1,…,xn,0,…,0,1,0,…,0) 

n - ii - 1

Config(s2,x1,…,xi-1,β,xi+1,…,xn,0,…,0,1,0,…,0))

i n - i - 1



PSPACE-hardness of LINEAR

• Assume that the tape alphabet is {0,1,t}

• Suppose that M halts on I = α1… αm using n = mk cells, for k > 0

D ^ Σ ² Q : - Config(sacc,X) iff M accepts I

…but, the rules are not constant-free

we can eliminate the constants by applying a simple trick



PSPACE-hardness of LINEAR

Initial configuration - the database D

Config(sinit,α1,…,αm,t,…,t,1,0,…,0,s1,…s`,0,1,t)

n - m n - 1

auxiliary constants for the states 

and the tape alphabet



Transition rule - δ(s1,0) = (s2,t,+1)

for each i 2 {1,…,n}:

PSPACE-hardness of LINEAR

 Config(s1,x1,…,xi-1,z,xi+1,…,xn,z,…,z,o,z,…,z,s1,…,s`,z,o,b)

n - ii -1

Config(s2,x1,…,xi-1,b,xi+1,…,xn,z,…,z,o,z,…,z,s1,…,s`,z,o,b) 

i n - i - 1

(8-quantifiers are omitted)



Sum Up

Data Complexity

FULL PTIME-c
Naïve algorithm

Reduction from Monotone Circuit Value problem

ACYCLIC

in LOGSPACE Query rewriting

LINEAR

Combined Complexity

FULL EXPTIME-c
Naïve algorithm

Simulation of a deterministic exponential time TM

ACYCLIC NEXPTIME-c
Small witness property

Reduction from a Tiling problem

LINEAR PSPACE-c
Level-by-level non-deterministic algorithm

Simulation of a deterministic polynomial space TM



Several Other Languages Exist

Field of intense research

LINEAR

Guarded

Weakly-Guarded Frontier-Guarded 

Weakly-Frontier-Guarded 

ACYCLIC

Weakly-Acyclic

Super-Weakly-Acyclic

FULL



Several Other Languages Exist

LINEAR

Sticky

Sticky-Join Weakly-Sticky

Weakly-Sticky-Join

FULL ACYCLIC

Field of intense research



Additional Modelling Features

• Counting quantifiers - very little is known

• Default negation (or negation as failure) - relatively well-understood

• Disjunction - relatively well-understood

8x (Professor(x)  9∙4y (supervisorOf(x,y) ^ Student(y))

8x (Number(x)  9y (hasSucc(x,y) ^ Number(y))

8x (Number(x) ^ not Even(x)  Odd(x))

8x (Number(x) ^ not Odd(x)  Even(x))

8x (Number(x)  Even(x) _ Odd(x))


