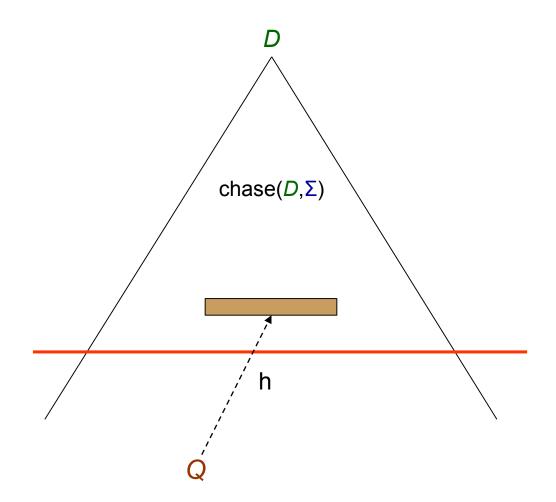
Query Rewriting in OBDA

Advanced Topics in Foundations of Databases, University of Edinburgh, 2016/17

Forward Chaining Techniques

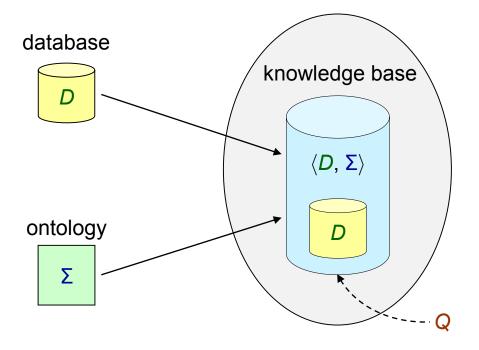


Useful techniques for establishing optimal upper boundsbut not practical - we need to store instances of very large size

How we achieve true scalability in OBQA?

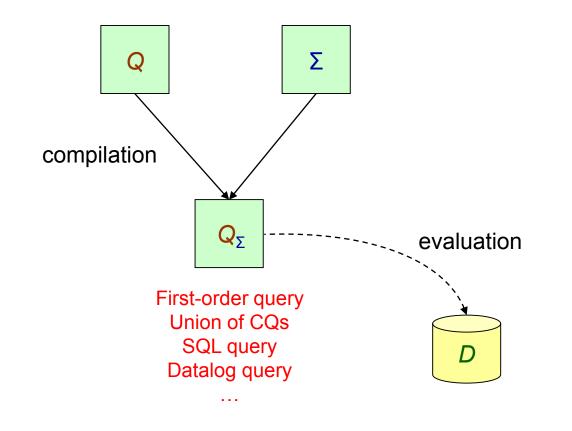
Scalability in OBQA

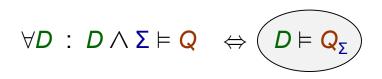
Exploit standard RDBMSs - efficient technology for answering CQs



But in the OBQA setting we have to query a knowledge base, not just a relational database

Query Rewriting





evaluated and optimized by exploiting existing technology

Query Rewriting: Formal Definition

Consider a class of existential rules L, and a query language Q.

OBQA(L) is Q-rewritable if, for every $\Sigma \in L$ and (Boolean) CQ Q,

we can construct a query $Q_{\Sigma} \in \mathbf{Q}$ such that,

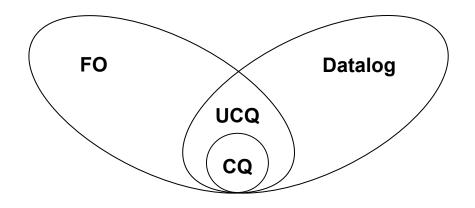
for every database *D*, $D \land \Sigma \vDash Q$ iff $D \vDash Q_{\Sigma}$

NOTE: The construction of Q_{Σ} is database-independent - the pure approach to query rewriting

Issues in Query Rewriting

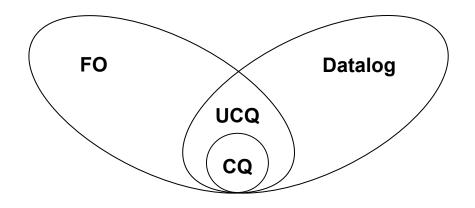
- How do we choose the target query language?
- How the ontology language and the target query language are related?
- How we construct such rewritings?
- What about the size of such rewritings?

we target the weakest query language



	CQ	UCQ	FO	Datalog
FULL	×	×	×	\checkmark
ACYCLIC	×	\checkmark	\checkmark	\checkmark
LINEAR	×	\checkmark	\checkmark	\checkmark

we target the weakest query language

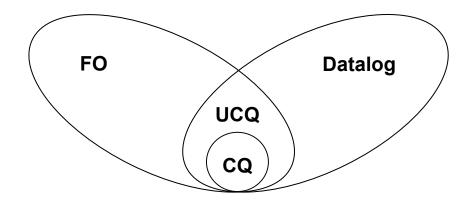


	CQ	UCQ	FO	Datalog
FULL	×	×	×	\checkmark
ACYCLIC	×	\checkmark	\checkmark	\checkmark
LINEAR	×	\checkmark	\checkmark	\checkmark

- $\Sigma \ = \ \{ \forall x \ (\mathsf{P}(x) \to \mathsf{T}(x)), \ \forall x \forall y \ (\mathsf{R}(x,y) \to \mathsf{S}(x)) \}$
- Q := S(x), U(x,y), T(y)

 $Q_{\Sigma} = \{Q := S(x), U(x,y), T(y), \\Q_{1} := S(x), U(x,y), P(y), \\Q_{2} := R(x,z), U(x,y), T(y), \\Q_{3} := R(x,z), U(x,y), P(y)\}$

we target the weakest query language



	CQ	UCQ	FO	Datalog
FULL	×	×	×	\checkmark
ACYCLIC	×	\checkmark	\checkmark	\checkmark
LINEAR	×	\checkmark	\checkmark	\checkmark

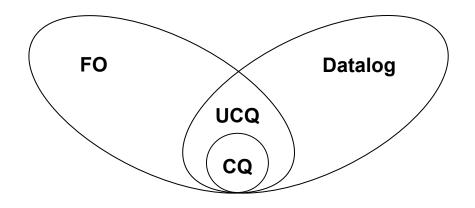
 $\Sigma \ = \ \{ \forall x \forall y \ (\mathsf{R}(x,y) \land \mathsf{P}(y) \to \mathsf{P}(x)) \}$

Q - P(c)

 $Q_{\Sigma} = \{Q := P(c), \\Q_{1} := R(c,y_{1}), P(y_{1}), \\Q_{2} := R(c,y_{1}), R(y_{1},y_{2}), P(y_{2}), \\Q_{3} := R(c,y_{1}), R(y_{1},y_{2}), R(y_{2},y_{3}), P(y_{3}), \\\dots \}$

- This cannot be written as a finite UCQ (or even FO query)
- It can be written as Q :- R(c,x), R*(x,y), P(y), but transitive closure is not
 FO-expressible

we target the weakest query language



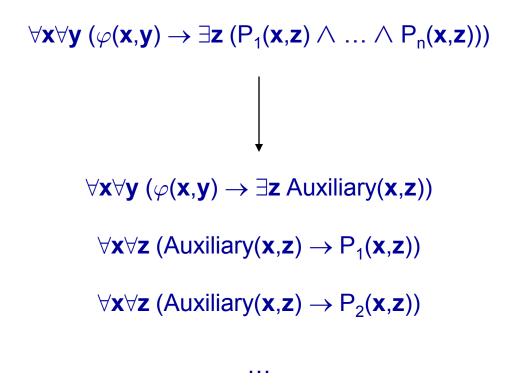
	CQ	UCQ	FO	Datalog
FULL	×	×	×	\checkmark
ACYCLIC	×	\checkmark	\checkmark	\checkmark
LINEAR	×	\checkmark	\checkmark	\checkmark

UCQ-Rewritings

- The standard algorithm for computing UCQ-rewritings performs an exhaustive application of the following two steps:
 - 1. Rewriting
 - 2. Minimization

• The standard algorithm is designed for normalized existential rules, where only one atom appears in the head

Normalization Procedure



$\forall \textbf{x} \forall \textbf{z} \text{ (Auxiliary}(\textbf{x}, \textbf{z}) \rightarrow \mathsf{P}_n(\textbf{x}, \textbf{z}))$

NOTE 1: Acyclicity and Linearity are preserved **NOTE 2:** We obtain an equivalent set w.r.t. query answering

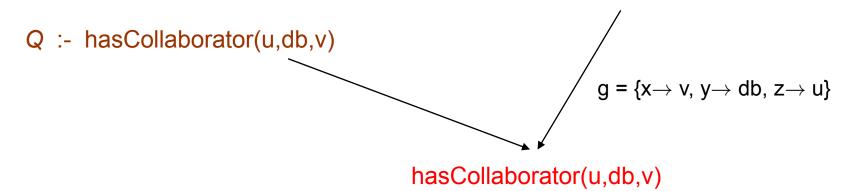
UCQ-Rewritings

- The standard algorithm for computing UCQ-rewritings performs an exhaustive application of the following two steps:
 - 1. Rewriting
 - 2. Minimization

• The standard algorithm is designed for normalized existential rules, where only one atom appears in the head

Rewriting Step

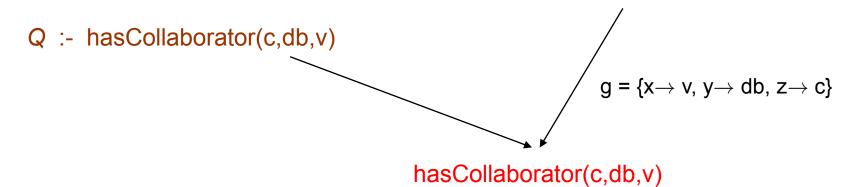
 $\Sigma = \{ \forall x \forall y \ (project(x) \land inArea(x,y) \rightarrow \exists z \ hasCollaborator(z,y,x)) \}$



Thus, we can simulate a chase step by applying a backward resolution step

 $Q_{\Sigma} = \{Q := hasCollaborator(u,db,v), Q_1 := project(v), inArea(v,db)\}$

 $\Sigma = \{ \forall x \forall y \ (project(x) \land inArea(x,y) \rightarrow \exists z \ hasCollaborator(z,y,x)) \}$



After applying the rewriting step we obtain the following UCQ

 $Q_{\Sigma} = \{Q :- hasCollaborator(c,db,v), Q_1 :- project(v), inArea(v,db)\}$

- $\Sigma = \{ \forall x \forall y \ (project(x) \land inArea(x,y) \rightarrow \exists z \ hasCollaborator(z,y,x)) \}$
- Q :- hasCollaborator(c,db,v)

 $Q_{\Sigma} = \{Q :- hasCollaborator(c,db,v), Q_1 :- project(v), inArea(v,db)\}$

- Consider the database D = {project(a), inArea(a,db)}
- Clearly, $D \models Q_{\Sigma}$
- However, D Λ Σ does not entail Q since there is no way to obtain an atom of the form hasCollaborator(c,db,_) during the chase

 $\Sigma = \{ \forall x \forall y \ (project(x) \land inArea(x,y) \rightarrow \exists z \ hasCollaborator(z,y,x)) \}$

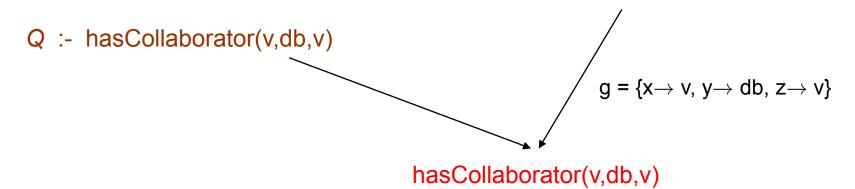
Q :- hasCollaborator(c,db,v)

 $Q_{\Sigma} = \{Q :- hasCollaborator(c,db,v),$

Q₁:-project(v), inArea(v,db)}

the information about the constant c in the original query is lost after the application of the rewriting step since c is unified with an ∃-variable

 $\Sigma = \{ \forall x \forall y \ (project(x) \land inArea(x,y) \rightarrow \exists z \ hasCollaborator(z,y,x)) \}$



After applying the rewriting step we obtain the following UCQ

 $Q_{\Sigma} = \{Q :- hasCollaborator(v,db,v), Q_1 :- project(v), inArea(v,db)\}$

- $\Sigma = \{ \forall x \forall y \ (project(x) \land inArea(x,y) \rightarrow \exists z \ hasCollaborator(z,y,x)) \}$
- Q :- hasCollaborator(v,db,v)

 $Q_{\Sigma} = \{Q :- hasCollaborator(v,db,v), Q_1 :- project(v), inArea(v,db)\}$

- Consider the database D = {project(a), inArea(a,db)}
- Clearly, $D \models Q_{\Sigma}$
- However, D Λ Σ does not entail Q since there is no way to obtain an atom of the form hasCollaborator(t,db,t) during the chase

 $\Sigma = \{ \forall x \forall y \text{ (project}(x) \land \text{ inArea}(x,y) \rightarrow \exists z \text{ hasCollaborator}(z,y,x)) \}$

Q :- hasCollaborator(v,db,v)

 $Q_{\Sigma} = \{Q :- hasCollaborator(v,db,v),$

Q₁ :- project(v), inArea(v,db)}

the fact that v in the original query participates in a join is lost after the application of the rewriting step since v is unified with an ∃-variable

Applicability Condition

Consider a (Boolean) CQ Q, an atom α in Q, and a (normalized) rule σ .

We say that σ is applicable to α if the following conditions hold:

- 1. head(σ) and α unify via h
- 2. For every variable x in head(σ):
 - 1. If h(x) is a constant, then x is a \forall -variable

2. If h(x) = h(y), where y is a shared variable of α , then x is a \forall -variable

 If x is an ∃-variable of head(σ), and y is a variable in head(σ) such that x ≠ y, then h(x) ≠ h(y)

...but, although is crucial for soundness, may destroy completeness

Incomplete Rewritings

 $\Sigma = \{ \forall x \forall y \text{ (project}(x) \land inArea(x,y) \rightarrow \exists z \text{ hasCollaborator}(z,y,x)), \}$

 $\forall x \forall y \forall z \text{ (hasCollaborator(x,y,z)} \rightarrow \text{collaborator(x))} \}$

Q :- hasCollaborator(u,v,w), collaborator(u))

 $Q_{\Sigma} = \{Q :- hasCollaborator(u,v,w), collaborator(u), Q_1 :- hasCollaborator(u,v,w), hasCollaborator(u,v',w') \}$

- Consider the database D = {project(a), inArea(a,db)}
- Clearly, chase(D, Σ) = $D \cup \{ hasCollaborator(z,db,a), collaborator(z) \} \models Q$
- However, D does not entail Q_Σ

Incomplete Rewritings

 $\Sigma = \{ \forall x \forall y \text{ (project}(x) \land inArea(x,y) \rightarrow \exists z \text{ hasCollaborator}(z,y,x)), \}$

 $\forall x \forall y \forall z \text{ (hasCollaborator(x,y,z)} \rightarrow \text{collaborator(x))} \}$

Q :- hasCollaborator(u,v,w), collaborator(u))

 $Q_{\Sigma} = \{Q := hasCollaborator(u,v,w), collaborator(u), Q_1 := hasCollaborator(u,v,w), hasCollaborator(u,v',w') Q_2 := project(u), inArea(u,v)$

...but, we cannot obtain the last query due to the applicablity condition

Incomplete Rewritings

 $\Sigma = \{ \forall x \forall y \text{ (project}(x) \land inArea(x,y) \rightarrow \exists z \text{ hasCollaborator}(z,y,x)), \}$

 $\forall x \forall y \forall z \text{ (hasCollaborator(x,y,z)} \rightarrow \text{collaborator(x))} \}$

Q :- hasCollaborator(u,v,w), collaborator(u))

 $Q_{\Sigma} = \{Q := hasCollaborator(u,v,w), collaborator(u),$ $Q_1 := hasCollaborator(u,v,w), hasCollaborator(u,v',w')$ $Q_2 := hasCollaborator(u,v,w) = by minimization$ $Q_3 := project(w), inArea(w,v) = by rewriting$

 $D = \{ \text{project}(a), \text{ inArea}(a, db) \} \models Q_{\Sigma}$

UCQ-Rewritings

- The standard algorithm for computing UCQ-rewritings performs an exhaustive application of the following two steps:
 - 1. Rewriting
 - 2. Minimization

• The standard algorithm is designed for normalized existential rules, where only one atom appears in the head

The Rewriting Algorithm

 $\begin{array}{l} Q_{\Sigma} := \{Q\};\\ \textbf{repeat}\\ Q_{aux} := Q_{\Sigma};\\ \textbf{foreach disjunct } q \text{ of } Q_{aux} \textbf{ do}\\ // \textbf{Rewriting Step}\\ \textbf{foreach atom } \alpha \text{ in } q \textbf{ do}\\ \textbf{foreach rule } \sigma \text{ in } \Sigma \textbf{ do}\\ \textbf{if } \sigma \text{ is applicable to } \alpha \textbf{ then}\\ q_{rew} := rewrite(q, \alpha, \sigma); // we \text{ resolve } \alpha \text{ using } \sigma\\ \textbf{if } q_{rew} \text{ does not appear in } Q_{\Sigma} \text{ (modulo variable renaming) then}\\ Q_{\Sigma} := Q_{\Sigma} \cup \{q_{rew}\}; \end{array}$

//Minimization Step

foreach pair of atoms α,β in *q* that <u>unify</u> **do**

 $q_{min} := minimize(q, \alpha, \beta);$ //we apply the MGU of α and β on qif q_{min} does not appear in Q_{Σ} (modulo variable renaming) then $Q_{\Sigma} := Q_{\Sigma} \cup \{q_{min}\};$

until $Q_{aux} = Q_{\Sigma}$; return Q_{Σ} ;

Termination

Theorem: The rewriting algorithm terminates under **ACYCLIC**

Proof Idea:

- Key observation: after arranging the disjuncts of the rewriting in a tree T, the branching of T is finite, and the depth of T is at most the number of predicates occurring in the rule set
- Therefore, only finitely many partial rewritings can be constructed in general, exponentially many

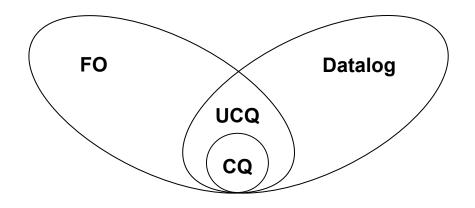
Termination

Theorem: The rewriting algorithm terminates under **LINEAR**

Proof Idea:

- Key observation: the size of each partial rewriting is at most the size of the given CQ Q
- Thus, each partial rewriting can be transformed into an equivalent query that contains at most (|Q| · maxarity) variables
- The number of queries that can be constructed using a finite number of predicates and a finite number of variables is finite
- Therefore, only finitely many partial rewritings can be constructed in general, exponentially many

we target the weakest query language



	CQ	UCQ	FO	Datalog
FULL	×	×	×	\checkmark
ACYCLIC	×	\checkmark	\checkmark	\checkmark
LINEAR	×	\checkmark	\checkmark	\checkmark

Back to Complexity

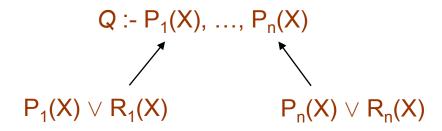
	Data Complexity		
FULL	PTIME-c	Naïve algorithm	
		Reduction from Monotone Circuit Value problem	
ACYCLIC		Via UCO rowriting	
LINEAR	Via UCQ-rewriting		

	Combined Complexity		
FULL	EXPTIME-c	Naïve algorithm	
		Simulation of a deterministic exponential time TM	
ACYCLIC	NEXPTIME-c	Small witness property	
		Reduction from a Tiling problem	
LINEAR	PSPACE-c	Level-by-level non-deterministic algorithm	
		Simulation of a deterministic polynomial space TM	

Size of the Rewriting

- Ideally, we would like to construct UCQ-rewritings of polynomial size
- But, the standard rewriting algorithm produces rewritings of exponential size
- Can we do better? NO!!!

$$\Sigma = \{ \forall x \ (\mathsf{R}_k(x) \to \mathsf{P}_k(x)) \}_{k \in \{1,...,n\}} \qquad Q := \mathsf{P}_1(x), \ ..., \ \mathsf{P}_n(x)$$



thus, we need to consider 2ⁿ disjuncts

Size of the Rewriting

- Ideally, we would like to construct UCQ-rewritings of polynomial size
- But, the standard rewriting algorithm produces rewritings of exponential size
- Can we do better? NO!!!

- Although the standard rewriting algorithm is worst-case optimal, it can be significantly improved
- Optimization techniques can be applied in order to compute efficiently small rewritings - field of intense research

Limitations of UCQ-Rewritability

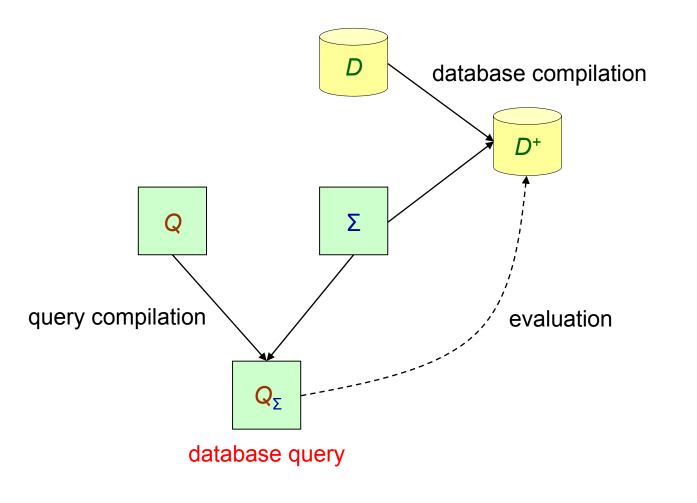
$$\forall D : D \land \Sigma \vDash \mathbf{Q} \iff \mathbf{D} \vDash \mathbf{Q}_{\Sigma}$$

evaluated and optimized by exploiting existing technology

- What about the size of Q_{Σ} ? very large, no rewritings of polynomial size
- What kind of ontology languages can be used for $\Sigma ?$ below PTIME

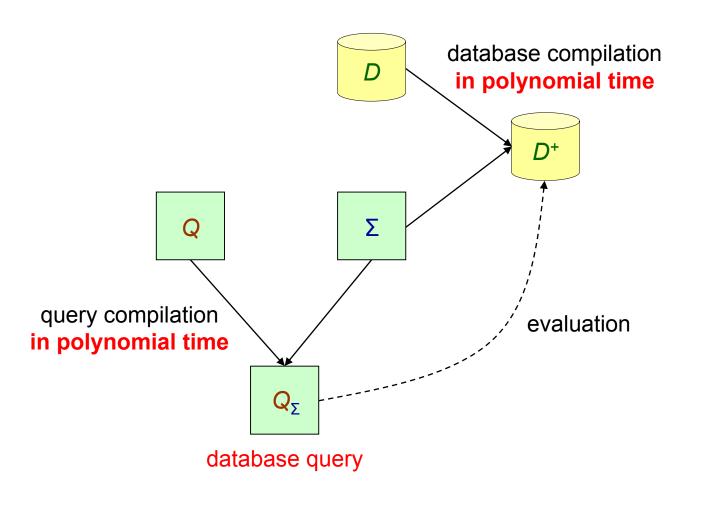
 \Rightarrow the combined approach to query rewriting

Combined Rewritability



 $\forall D : D \land \Sigma \vDash \mathbf{Q} \quad \Leftrightarrow \quad D^* \vDash \mathbf{Q}_{\Sigma}$

Polynomial Combined Rewritability



$\forall D : D \land \Sigma \vDash Q \quad \Leftrightarrow \quad D^{+} \vDash Q_{\Sigma}$