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Volume

size does mattes

(thousands of TBs of data)

Variety

many data formats

(structured, semi-structured, etc.)

Veracity

data is often 

incomplete/inconsistent

Velocity

data often arrives at fast speed 

(updates are frequent)
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A Plausible Approach

replace the query with one that is much faster to execute!!!

…to address the challenges raised by the volume of big data



Minimizing Conjunctive Queries

• Database theory has developed principled methods for optimizing CQs:

‒ Find an equivalent CQ with minimal number of atoms (the core)

‒ Provides a notion of “true” optimality

Q(x)  :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

Q(x)  :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

{y ! b}

Q(x)  :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

{v ! c}

minimal query



Minimizing Conjunctive Queries

• But, a minimal equivalent CQ might not be easier to evaluate – query evaluation 

remains NP-hard

• However, we know “good” classes of CQs for which query evaluation is tractable 

(in combined complexity):

‒ Graph-based

‒ Hypergraph-based



(Hyper)graph of Conjunctive Queries

Q :- R(x,y,z), R(z,u,v), R(v,w,x)

graph of Q - G(Q) hypergraph of Q - H(Q) 
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“Good” Classes of Conjunctive Queries

• Graph-based

‒ CQs of bounded treewidth – their graph has bounded treewidth

• Hypergraph-based:

‒ CQs of bounded hypertree width – their hypergraph has bounded hypertree width

‒ Acyclic CQs – their hypegraph has hypertree width 1

measures how close a graph is to a tree

measures how close a hypergraph is to an acyclic one



Treewidth of a Graph

• A tree decomposition of a graph G = (V,E) is a labeled tree T = (N,F,λ), where

λ : N ! 2V such that:

1. For each node u 2 V of G, there exists n 2 N such that u 2 λ(n)

2. For each edge (u,v) 2 E, there exists n 2 N such that {u,v} µ λ(n)

3. For each node u 2 V of G, the set {n 2 N | u 2 λ(n)} induces a 

connected subtree of T

1 6 7

3 4 8

5

2

{4,6}

{4,5} {3,4,6} {4,6,8}

{2,5} {1,3,6} {6,7,8}
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Treewidth of a Graph

• A tree decomposition of a graph G = (V,E) is a labeled tree T = (N,F,λ), where

λ : N ! 2V such that:

1. For each node u 2 V of G, there exists n 2 N such that u 2 λ(n)

2. For each edge (u,v) 2 E, there exists n 2 N such that {u,v} µ λ(n)

3. For each node u 2 V of G, the set {n 2 N | u 2 λ(n)} induces a 

connected subtree of T

• The width of a tree decomposition T = (N,F,λ) is maxn 2 N {|λ(n)| - 1}

• The treewidth of G is the minimum width over all tree decompositions of G

-1 so that the treewidth of a tree is 1



CQs of Bounded Treewidth

Theorem: For a fixed k ≥ 0, BQE(CQTWk) is in PTIME

{Q 2 CQ | the treewidth of G(Q) is at most k}

Actually, if G(Q) has treewidth k ≥ 0, then Q can be evaluated in time 

O(|D|k)  +  time to compute a tree decomposition for G(Q) of optimal width,

which is feasible in linear time 



“Good” Classes of Conjunctive Queries

• Graph-based

‒ CQs of bounded treewidth – their graph has bounded treewidth

 Evaluation is feasible in polynomial time

• Hypergraph-based:

‒ CQs of bounded hypertree width – their hypergraph has bounded hypertree width

‒ Acyclic CQs – their hypegraph has hypertree width 1



Acyclic Hypergraphs

• A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,λ), where

λ : N ! E such that:

1. For each hyperedge e 2 E of H, there exists n 2 N such that e = λ(n)

2. For each node u 2 V of H, the set {n 2 N | u 2 λ(n)} induces a 

connected subtree of T

1
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Acyclic Hypergraphs

• A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,λ), where

λ : N ! E such that:

1. For each hyperedge e 2 E of H, there exists n 2 N such that e = λ(n)

2. For each node u 2 V of H, the set {n 2 N | u 2 λ(n)} induces a 

connected subtree of T

• Definition: A hypergraph is acyclic if it has a join tree

1

32

prime example of a cyclic hypergraph



Acyclic Hypergraphs

• A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,λ), where

λ : N ! E such that:

1. For each hyperedge e 2 E of H, there exists n 2 N such that e = λ(n)

2. For each node u 2 V of H, the set {n 2 N | u 2 λ(n)} induces a 

connected subtree of T

• Definition: A hypergraph is acyclic if it has a join tree

1

32

but this is acyclic



Acyclic CQs

Theorem: BQE(ACQ) is in PTIME

{Q 2 CQ | H(Q) is acyclic}

Actually, if H(Q) is acyclic, then Q can be evaluated in time O(|D| ¢ |Q|), 

i.e., linear time in the size of D and Q



“Good” Classes of Conjunctive Queries: Recap

• Graph-based

‒ CQs of bounded treewidth – their graph has bounded treewidth

 Evaluation is feasible in polynomial time

• Hypergraph-based:

‒ CQs of bounded hypertree width – their hypergraph has bounded hypertree width

 Evaluation is feasible in polynomial time

‒ Acyclic CQs – their hypegraph has hypertree width 1

 Evaluation is feasible in linear time

CQHTWk

ACQCQTWk

CQHTW1  = ACQ

CQTW1



Back to Our Goal

Replace a given CQ with one that is much faster to execute

or

Replace a given CQ with one that falls in “good” class of CQs

preferably, with an acyclic CQ 

since evaluation is in linear time



Semantic Acyclicity

Definition: A CQ Q is semantically acyclic if there exists an acyclic CQ 

Q’ such that Q ´ Q’

Q(x,z)  :- R(x,y), R(y,z), R(x,w), R(w,z)

{w ! y, z ! y}

Q(x,z)  :- R(x,y), R(y,z)

w

yx z

yx z



Semantic Acyclicity

Theorem: A CQ Q is semantically acyclic iff its core is acyclic

Theorem: Deciding whether a CQ Q is semantically acyclic is NP-complete

Proof idea (upper bound):

• We can show the following: if Q is semantically acyclic, then there exists an 

acyclic CQ Q’ such that |Q’| ≤ |Q| and Q ´ Q’

• Then, we can guess in polynomial time:

‒ An acyclic CQ Q’ such that |Q’| ≤ |Q|

‒ A mapping h1 : terms(Q) ! terms(Q’)

‒ A mapping h2 : terms(Q’) ! terms(Q)

• And verify in polynomial time that h1 is a query homomorphism from Q to Q’

(i.e., Q’ µ Q), and h2 is a query homomorphism from Q’ to Q (i.e., Q µ Q’)



Semantic Acyclicity

Theorem: A CQ Q is semantically acyclic iff its core is acyclic

Theorem: Deciding whether a CQ Q is semantically acyclic is NP-complete

But, semantic acyclicity is rather weak:

• Not many CQs are semantically acyclic

• ) consider acyclic approximations of CQs

• Semantic acyclicity is not an improvement over usual optimization – both 

approaches are based on the core

• ) exploit semantic information in the form of constraints



Acyclic Approximations of CQs



Acyclic Approximations

Definition: A CQ Q’ is an acyclic approximation of Q if:

1.  Q’ is acyclic

2.  Q’ µ Q

3.  There is no acyclic CQ Q’’ such that Q’ ½ Q’’ µ Q

If our CQ Q is not semantically acyclic, we may target a CQ that is:

1. Easy to evaluate – acyclic

2. Provides sound answers – contained in Q

3. As “informative” as possible – “maximally” contained in Q



Do Acyclic Approximations Exist?

The cyclic CQ

Q :- R(x,y,z), R(z,u,v), R(v,w,x)

has several acyclic approximations

Q1 :- R(x,y,z), R(z,u,y), R(y,v,x)

Q2 :- R(x,y,z), R(z,u,v), R(v,w,x), R(x,z,v)

Q3 :- R(x,y,x)



Existence, Size and Computation

Theorem: Consider a CQ Q. Then:

1.   Q has an acyclic approximation

2.   Each acyclic approximation of Q has size polynomial in Q

3.   An acyclic approximation of Q can be found in time 2O(|Q| ¢ log |Q|)

4.   Q has at most exponentially many (non-equivalent) acyclic approximations



Evaluating Acyclic Approximations

• Recall that evaluating Q over D takes time |D|O(|Q|)

• Evaluating an acyclic approximation Q’ of Q over D takes time

2O(|Q|¢log |Q|)   +   |D| ¢ |Q|k

• Observe that 2O(|Q|¢log |Q|) +  |D| ¢ |Q|k is dominated by |D| ¢ 2O(|Q|¢log |Q|)

• ) fixed-parameter tractable

time for computing Q’ time for evaluating Q’

- |Q’| ≤ |Q|k

- Evaluation of an acyclic CQ QA

is feasible in time O(|D| ¢ |QA|)



Poor Approximations

Q :- E(x,y), E(y,z), E(z,x)

has only one acyclic approximation, that is, Q’  :- E(x,x)

x

y z

Proposition: Consider a Boolean CQ Q that contains a single 

binary relation E(.,.). If G(Q) is not bipartite, then the only acyclic 

approximation of Q is Q’  :- E(x,x)



Acyclic Approximations: Recap

• Acyclic approximations are useful when the CQ is not semantically acyclic

• Always exist, but are not unique

• Have polynomial size, and can be computed in exponential time

• Can be evaluated “efficiently” (fixed-parameter tractability)

• In some cases, acyclic approximations are not very informative



Back to Semantic Acyclicity

But, semantic acyclicity is rather weak:

• Not many CQs are semantically acyclic

• ) consider acyclic approximations of CQs

• Semantic acyclicity is not an improvement over usual optimization – both 

approaches are based on the core

• ) exploit semantic information in the form of constraints


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