
Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

a standard database system

user queries (RA, SQL, etc.)

relational database

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

…but, we live in the era of big data

user queries (RA, SQL, etc.)

Volume

size does mattes

(thousands of TBs of data)

Variety

many data formats

(structured, semi-structured, etc.)

Veracity

data is often

incomplete/inconsistent

Velocity

data often arrives at fast speed

(updates are frequent)

Volume

size does mattes

(thousands of TBs of data)

Variety

many data formats

(structured, semi-structured, etc.)

Veracity

data is often

incomplete/inconsistent

Velocity

data often arrives at fast speed

(updates are frequent)

the rest of this course

Approximation of Conjunctive Queries

Advanced Topics in Foundations of Databases, University of Edinburgh, 2017/18

A Plausible Approach

replace the query with one that is much faster to execute!!!

…to address the challenges raised by the volume of big data

Minimizing Conjunctive Queries

• Database theory has developed principled methods for optimizing CQs:

‒ Find an equivalent CQ with minimal number of atoms (the core)

‒ Provides a notion of “true” optimality

Q(x) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

Q(x) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

{y ! b}

Q(x) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

{v ! c}

minimal query

Minimizing Conjunctive Queries

• But, a minimal equivalent CQ might not be easier to evaluate – query evaluation

remains NP-hard

• However, we know “good” classes of CQs for which query evaluation is tractable

(in combined complexity):

‒ Graph-based

‒ Hypergraph-based

(Hyper)graph of Conjunctive Queries

Q :- R(x,y,z), R(z,u,v), R(v,w,x)

graph of Q - G(Q) hypergraph of Q - H(Q)

x

y

u v

w

z

x

y

u v

w

z

“Good” Classes of Conjunctive Queries

• Graph-based

‒ CQs of bounded treewidth – their graph has bounded treewidth

• Hypergraph-based:

‒ CQs of bounded hypertree width – their hypergraph has bounded hypertree width

‒ Acyclic CQs – their hypegraph has hypertree width 1

measures how close a graph is to a tree

measures how close a hypergraph is to an acyclic one

Treewidth of a Graph

• A tree decomposition of a graph G = (V,E) is a labeled tree T = (N,F,λ), where

λ : N ! 2V such that:

1. For each node u 2 V of G, there exists n 2 N such that u 2 λ(n)

2. For each edge (u,v) 2 E, there exists n 2 N such that {u,v} µ λ(n)

3. For each node u 2 V of G, the set {n 2 N | u 2 λ(n)} induces a

connected subtree of T

1 6 7

3 4 8

5

2

{4,6}

{4,5} {3,4,6} {4,6,8}

{2,5} {1,3,6} {6,7,8}

Treewidth of a Graph

• A tree decomposition of a graph G = (V,E) is a labeled tree T = (N,F,λ), where

λ : N ! 2V such that:

1. For each node u 2 V of G, there exists n 2 N such that u 2 λ(n)

2. For each edge (u,v) 2 E, there exists n 2 N such that {u,v} µ λ(n)

3. For each node u 2 V of G, the set {n 2 N | u 2 λ(n)} induces a

connected subtree of T

1 6 7

3 4 8

5

2

{4,6}

{4,5} {3,4,6} {4,6,8}

{2,5} {1,3,6} {6,7,8}

Treewidth of a Graph

• A tree decomposition of a graph G = (V,E) is a labeled tree T = (N,F,λ), where

λ : N ! 2V such that:

1. For each node u 2 V of G, there exists n 2 N such that u 2 λ(n)

2. For each edge (u,v) 2 E, there exists n 2 N such that {u,v} µ λ(n)

3. For each node u 2 V of G, the set {n 2 N | u 2 λ(n)} induces a

connected subtree of T

1 6 7

3 4 8

5

2

{4,6}

{4,5} {3,4,6} {4,6,8}

{2,5} {1,3,6} {6,7,8}

Treewidth of a Graph

• A tree decomposition of a graph G = (V,E) is a labeled tree T = (N,F,λ), where

λ : N ! 2V such that:

1. For each node u 2 V of G, there exists n 2 N such that u 2 λ(n)

2. For each edge (u,v) 2 E, there exists n 2 N such that {u,v} µ λ(n)

3. For each node u 2 V of G, the set {n 2 N | u 2 λ(n)} induces a

connected subtree of T

• The width of a tree decomposition T = (N,F,λ) is maxn 2 N {|λ(n)| - 1}

• The treewidth of G is the minimum width over all tree decompositions of G

-1 so that the treewidth of a tree is 1

CQs of Bounded Treewidth

Theorem: For a fixed k ≥ 0, BQE(CQTWk) is in PTIME

{Q 2 CQ | the treewidth of G(Q) is at most k}

Actually, if G(Q) has treewidth k ≥ 0, then Q can be evaluated in time

O(|D|k) + time to compute a tree decomposition for G(Q) of optimal width,

which is feasible in linear time

“Good” Classes of Conjunctive Queries

• Graph-based

‒ CQs of bounded treewidth – their graph has bounded treewidth

 Evaluation is feasible in polynomial time

• Hypergraph-based:

‒ CQs of bounded hypertree width – their hypergraph has bounded hypertree width

‒ Acyclic CQs – their hypegraph has hypertree width 1

Acyclic Hypergraphs

• A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,λ), where

λ : N ! E such that:

1. For each hyperedge e 2 E of H, there exists n 2 N such that e = λ(n)

2. For each node u 2 V of H, the set {n 2 N | u 2 λ(n)} induces a

connected subtree of T

1

6
7

3
4

8

5

2

9

10
11

12

13

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Acyclic Hypergraphs

• A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,λ), where

λ : N ! E such that:

1. For each hyperedge e 2 E of H, there exists n 2 N such that e = λ(n)

2. For each node u 2 V of H, the set {n 2 N | u 2 λ(n)} induces a

connected subtree of T

• Definition: A hypergraph is acyclic if it has a join tree

1

32

prime example of a cyclic hypergraph

Acyclic Hypergraphs

• A join tree of a hypergraph H = (V,E) is a labeled tree T = (N,F,λ), where

λ : N ! E such that:

1. For each hyperedge e 2 E of H, there exists n 2 N such that e = λ(n)

2. For each node u 2 V of H, the set {n 2 N | u 2 λ(n)} induces a

connected subtree of T

• Definition: A hypergraph is acyclic if it has a join tree

1

32

but this is acyclic

Acyclic CQs

Theorem: BQE(ACQ) is in PTIME

{Q 2 CQ | H(Q) is acyclic}

Actually, if H(Q) is acyclic, then Q can be evaluated in time O(|D| ¢ |Q|),

i.e., linear time in the size of D and Q

“Good” Classes of Conjunctive Queries: Recap

• Graph-based

‒ CQs of bounded treewidth – their graph has bounded treewidth

 Evaluation is feasible in polynomial time

• Hypergraph-based:

‒ CQs of bounded hypertree width – their hypergraph has bounded hypertree width

 Evaluation is feasible in polynomial time

‒ Acyclic CQs – their hypegraph has hypertree width 1

 Evaluation is feasible in linear time

CQHTWk

ACQCQTWk

CQHTW1 = ACQ

CQTW1

Back to Our Goal

Replace a given CQ with one that is much faster to execute

or

Replace a given CQ with one that falls in “good” class of CQs

preferably, with an acyclic CQ

since evaluation is in linear time

Semantic Acyclicity

Definition: A CQ Q is semantically acyclic if there exists an acyclic CQ

Q’ such that Q ´ Q’

Q(x,z) :- R(x,y), R(y,z), R(x,w), R(w,z)

{w ! y, z ! y}

Q(x,z) :- R(x,y), R(y,z)

w

yx z

yx z

Semantic Acyclicity

Theorem: A CQ Q is semantically acyclic iff its core is acyclic

Theorem: Deciding whether a CQ Q is semantically acyclic is NP-complete

Proof idea (upper bound):

• We can show the following: if Q is semantically acyclic, then there exists an

acyclic CQ Q’ such that |Q’| ≤ |Q| and Q ´ Q’

• Then, we can guess in polynomial time:

‒ An acyclic CQ Q’ such that |Q’| ≤ |Q|

‒ A mapping h1 : terms(Q) ! terms(Q’)

‒ A mapping h2 : terms(Q’) ! terms(Q)

• And verify in polynomial time that h1 is a query homomorphism from Q to Q’

(i.e., Q’ µ Q), and h2 is a query homomorphism from Q’ to Q (i.e., Q µ Q’)

Semantic Acyclicity

Theorem: A CQ Q is semantically acyclic iff its core is acyclic

Theorem: Deciding whether a CQ Q is semantically acyclic is NP-complete

But, semantic acyclicity is rather weak:

• Not many CQs are semantically acyclic

•) consider acyclic approximations of CQs

• Semantic acyclicity is not an improvement over usual optimization – both

approaches are based on the core

•) exploit semantic information in the form of constraints

Acyclic Approximations of CQs

Acyclic Approximations

Definition: A CQ Q’ is an acyclic approximation of Q if:

1. Q’ is acyclic

2. Q’ µ Q

3. There is no acyclic CQ Q’’ such that Q’ ½ Q’’ µ Q

If our CQ Q is not semantically acyclic, we may target a CQ that is:

1. Easy to evaluate – acyclic

2. Provides sound answers – contained in Q

3. As “informative” as possible – “maximally” contained in Q

Do Acyclic Approximations Exist?

The cyclic CQ

Q :- R(x,y,z), R(z,u,v), R(v,w,x)

has several acyclic approximations

Q1 :- R(x,y,z), R(z,u,y), R(y,v,x)

Q2 :- R(x,y,z), R(z,u,v), R(v,w,x), R(x,z,v)

Q3 :- R(x,y,x)

Existence, Size and Computation

Theorem: Consider a CQ Q. Then:

1. Q has an acyclic approximation

2. Each acyclic approximation of Q has size polynomial in Q

3. An acyclic approximation of Q can be found in time 2O(|Q| ¢ log |Q|)

4. Q has at most exponentially many (non-equivalent) acyclic approximations

Evaluating Acyclic Approximations

• Recall that evaluating Q over D takes time |D|O(|Q|)

• Evaluating an acyclic approximation Q’ of Q over D takes time

2O(|Q|¢log |Q|) + |D| ¢ |Q|k

• Observe that 2O(|Q|¢log |Q|) + |D| ¢ |Q|k is dominated by |D| ¢ 2O(|Q|¢log |Q|)

•) fixed-parameter tractable

time for computing Q’ time for evaluating Q’

- |Q’| ≤ |Q|k

- Evaluation of an acyclic CQ QA

is feasible in time O(|D| ¢ |QA|)

Poor Approximations

Q :- E(x,y), E(y,z), E(z,x)

has only one acyclic approximation, that is, Q’ :- E(x,x)

x

y z

Proposition: Consider a Boolean CQ Q that contains a single

binary relation E(.,.). If G(Q) is not bipartite, then the only acyclic

approximation of Q is Q’ :- E(x,x)

Acyclic Approximations: Recap

• Acyclic approximations are useful when the CQ is not semantically acyclic

• Always exist, but are not unique

• Have polynomial size, and can be computed in exponential time

• Can be evaluated “efficiently” (fixed-parameter tractability)

• In some cases, acyclic approximations are not very informative

Back to Semantic Acyclicity

But, semantic acyclicity is rather weak:

• Not many CQs are semantically acyclic

•) consider acyclic approximations of CQs

• Semantic acyclicity is not an improvement over usual optimization – both

approaches are based on the core

•) exploit semantic information in the form of constraints



Associated Papers

• Pablo Barceló, Leonid Libkin, Miguel Romero: Efficient Approximations of Conjunctive

Queries. SIAM J. Comput. 43(3): 1085-1130 (2014)

• Eligible topics include static analysis of approximations

• Pablo Barceló, Miguel Romero, Moshe Y. Vardi: Semantic Acyclicity on Graph

Databases. SIAM J. Comput. 45(4): 1339-1376 (2016)

• Semantic acyclicity for CQs

• Hubie Chen, Víctor Dalmau: Beyond Hypertree Width: Decomposition Methods

Without Decompositions. CP 2005: 167-181

• Complexity of semantic acyclicity for CQs (in a different context)

• Víctor Dalmau, Phokion G. Kolaitis, Moshe Y. Vardi: Constraint Satisfaction, Bounded

Treewidth, and Finite-Variable Logics. CP 2002: 310-326

• Evaluation of semantically acyclic CQ (in a different context)

Associated Papers

• Joerg Flum, Martin Grohe: Fixed-Parameter Tractability, Definability, and Model-

Checking. SIAM J. Comput. 31(1): 113-145 (2001)

• A different way of measuring complexity, and its full analysis

• Joerg Flum, Markus Frick, Martin Grohe: Query evaluation via tree- decompositions.

Journal of the ACM 49(6): 716-752 (2002)

• Using tree decompositions to get faster query evaluation

• Markus Frick, Martin Grohe: Deciding first-order properties of locally tree-

decomposable structures. Journal of the ACM 48(6): 1184-1206 (2001)

• How to improve performance of relational queries on databases with special

properties

Associated Papers

• Georg Gottlob, Nicola Leone, Francesco Scarcello: The complexity of acyclic

conjunctive queries. Journal of the ACM 48(3):431-498 (2001)

• An in-depth study of acyclicity

• Georg Gottlob, Nicola Leone, Francesco Scarcello: Hypertree Decompositions and

Tractable Queries. J. Comput. Syst. Sci. 64(3):579-627 (2002)

• A hierarchy of classes of efficient CQs, the bottom level of which is acyclic queries

• Martin Grohe, Thomas Schwentick, Luc Segoufin: When is the evaluation of

conjunctive queries tractable? STOC 2001: 657-666

• Characterizing efficiency of CQs via the notion of bounded treewidth

• Mihalis Yannakakis: Algorithms for Acyclic Database Schemes. VLDB 1981: 82-94

• Notion of acyclicity of CQs and fast evaluation scheme based on it

