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Graph Databases and Applications

• Graph databases are crucial when topology is as important as the data

• Several modern applications

‒ Semantic Web and RDF

‒ Social networks

‒ Knowledge graphs

‒ etc.
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Graph Databases vs. Relational Databases

• Simply use standard relational databases

• Problems:

‒ We need to navigate the graph – recursion is needed

‒ We can use Datalog – performance issues (complexity mismatch, 

basic static analysis task are undecidable)
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Graph Data Model

• Different applications gave rise to different graph data models

• But, the essence is the same

finite, directed, edge labeled graphs



set of edges of the form v       u

where u,v 2 V and α 2 Λ

Graph Data Model

(V, E)

An graph database G over a finite alphabet Λ is a pair

finite set of node ids α

• Path in G:  π = v1 v2 v3       vk vk+1

• The label of π is λ(π) = α1α2α3...αk 2 Λ*

α1 α2 αk…



Graph Database: Example

A graph database representation of a fragment of DBLP

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series creator

creator

creator

creator



Regular Path Queries (RPQs)

Basic building block of graph queries

• First studied in 1989

• An RPQ is a regular expression over a finite alphabet Λ

• Given a graph database G = (V,E) over Λ and RPQ Q over Λ

Q(G) = {(v,u) | v,u 2 V  and

there is a path π from v to u such that λ(π) 2 L(Q)}



RPQs With Inverses (2RPQs)

Extension of RPQs with inverses  – two-way RPQs

• First studied in 2000

• 2RPQs over Λ  = RPQs over Λ§ = Λ [ {α¡ | α 2 Λ}

• Given a graph database G = (V,E) over Λ and 2RPQ Q over Λ

Q(G) = Q(G§)

obtained from G by adding  u       v  for each  v       u α¡ α



Querying Graph Database

Compute the pairs (c,d) such that author c has published in conference or journal d

(creator ‒ ((partOf ¢ series) [ journal))
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Querying Graph Database

Compute the pairs (c,d) such that author c has published in conference or journal d

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman
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creator

creator

creator

c
d



Evaluation of 2RPQs

EVAL(2RPQ)

Input: a graph database G, a 2RPQ Q, two nodes v,u of G

Question: (v,u) 2 Q(G)? 

RegularPath

Input: a graph database G over Λ, a regular expression Q over Λ§,

two nodes v,u of G

Question: is there a path π from v to u in G§ such that λ(π) 2 L(Q)

It boils down to the problem:



Complexity of RegularPath

Theorem: RegularPath can be solved in time O(|G| ¢ |Q|)

Proof Idea: by exploiting nondeterministic finite automata (NFA)

• Compute in linear time from Q an equivalent NFA AQ

• Compute in linear time an NFA AG obtained from G§ by setting v and u as 

initial and finite states, respectively

• There is a path π from v to u in G§ such that λ(π) 2 L(Q) iff L(AG) \ L(AQ) 

is non-empty

• Non-emptiness can be checked in time O(|AG| ¢ |AQ|) = O(|G| ¢ |Q|)

A graph database can be naturally seen as an NFA

• nodes are states

• edges are transitions



Complexity of 2RPQs

We immediately get that:

Theorem: EVAL(2RPQ) can be solved in time O(|G| ¢ |Q|)

Regarding the data complexity (i.e., Q is fixed):

Theorem: EVALQ(2RPQ) is in NLOGSPACE

(by exploiting the previous automata construction)



Limitation of RPQs

• RPQs are not able to express arbitrary patterns over graph databases 

(e.g., compute the pairs (c,d) that are coauthors of a conference paper)

• We need to enrich RPQs with joins and projections

‒ Conjunctive regular path queries (CRPQs)

‒ C2RPQs if we add inverses



C2RPQs: Example

Compute the pairs (c,d) that are coauthors of a conference paper

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89
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C2RPQs: Example

Compute the pairs (c,d) that are coauthors of a conference paper

Q(x,u) :- (x, creator ‒, y), (y, partOf ¢ series, z), (y, creator , u)

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series creator

creator

creator

creator

xy
z

u

(: Moshe_Y_Vardi, :Ronald_Fagin)



C2RPQs: Formal Definition

A C2RPQ over an alphabet Λ is a rule of the form

Q(z) :- (x1, Q1, y1), …, (xn, Qn, yn)

where  xi, yi are variables, 

Qi is a 2RPQ over Λ, 

z are the output variables from {x1, y1, …, xn, yn}

Remark: C2RPQs are more expressive than 2RPQs (previous example)



Evaluation of C2RPQs

To evaluate a C2RPQ of the form

Q(z) :- (x1, Q1, y1), …, (xn, Qn, yn)

we simply need to evaluate the conjunctive query

Q(z) :- Q1(x1, y1), …, Qn(xn, yn)

where each Qi stores the result of evaluating the 2RPQ Qi



Complexity of C2RPQs

Theorem: EVAL(C2RPQ) is NP-complete

Proof Hints:

• Upper bound: polynomial time reduction to EVAL(CQ)

• Lower bound: inherited from CQs over graphs

Regarding the data complexity (i.e., Q is fixed):

Theorem: EVALQ(C2RPQ) is in NLOGSPACE



Basic Graph Query Languages: Recap

• Two-way regular path queries (2RPQs)

‒ Can be evaluated in linear time in combined complexity, and in 

NLOGSPACE in data complexity

• Conjunctive 2RPQs (C2RPQs)

‒ Evaluation is NP-complete in combined complexity, and in 

NLOGSPACE in data complexity



Towards Tractable C2RPQs
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Recall acyclic conjunctive queries



A C2RPQ is acyclic if its underlying CQ is acyclic

Q :- (x, Q1, x), (x, Q2, y), (y, Q3, x)

Q :- (x, Q1, y), (y, Q2, z), (z, Q3, x)

Equivalently, the underlying graph does not contain cycles of length  ̧3

Acyclic C2RPQs

yx

z

yx



Complexity of Acyclic C2RPQs

Theorem: EVAL(AC2RPQ) can be solved in time O(|G|2 ¢ |Q|2)

Proof Idea: recall that we can reduce EVAL(C2RPQ) to EVAL(CQ)

{Q 2 C2RPQ | Q is acyclic}



Simple Path Semantics

RegularSimplePath

Input: a graph database G over Λ, a regular expression Q over Λ§,

two nodes v,u of G

Question: is there a simple path π from v to u in G§ such that λ(π) 2 L(Q)

Simple Path: No node is repeated

In this case, EVAL(2RPQ) boils down to the problem:



Simple Path Semantics

Theorem: RegularSimplePath is NP-complete

Theorem: RegularSimplePathQ is NP-complete (data complexity)

• RegularSimplePath(0¢0)*

• Is there a simple directed path of even length? NP-complete

• NP-complete data complexity means impractical



Containment of Graph Queries

CONT(L)

Input: two queries Q1 2 L and Q2 2 L

Question: Q1  µ Q2? (i.e., Q1(G) µ Q2(G) for every graph database G?)



Containment of Graph Queries

Theorem: CONT(RPQ) is PSPACE-complete

Proof Hint: exploit containment of regular expressions

Theorem: CONT(2RPQ) is PSPACE-complete

Proof Hint: exploit containment of two-way automata, while the lower bound 

is inherited from RPQs

Theorem: CONT(C2RPQ) is EXPSPACE-complete

Proof Hint: exploit containment of two-way automata, while the lower bound 

is by reduction from a tiling problem



Limitations of CRPQs

Compute the pairs (c,d) that are linked by a path labeled in {αnβn | n ¸ 0}

v w u
π1 π2

such that  λ(π1) 2 L(α*) and  λ(π2) 2 L(β*) and  |λ(π1)| = |λ(π2)|

Not expressible using CRPQs. We need:

• To define complex relationships among labels of paths

• To include paths in the output of a query



Comparing Paths With Regular Relations

• Regular languages for n-ary relations

• n-ary regular relations: set of n-tuples (w1,…,wn) of words over an alphabet Λ

• Accepted by a synchronous automaton over Λn

‒ The input strings are written in the n-tapes

‒ Shorter strings are padded with the symbol # not in Λ

‒ At each step, the automaton simultaneously reads the next symbol 

on each tape, terminating when it reads # on each tape



Synchronous Automata

w1 = α α β ... α β γ

w2 = α β α ... α

w3 = β β ...

...

wn = α β β ... α γ
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Regular Relations: Examples

• All regular languages – regular relations of arity 1

• Path equality: w1 = w2

• Length comparison: |w1| = |w2|, |w1| < |w2|, |w1| · |w2|

• Prefix: w1 is a prefix of w2



Extended CRPQs With Regular Relations (REG)

An ECRPQ(REG) is a rule obtained from a CRPQ as follows

Q(z) :- (x1, Q1, y1), …, (xn, Qn, yn)

Q(z) :- (x1, π1, y1), …, (xn, πn, yn)

annotate each 

pair (xi,yi) with a 

path variable πi

Q(z) :- (x1, π1, y1), …, (xn, πn, yn), ^j Sj(πj)
compare labels 

of paths in πj

w.r.t. Sj 2 REG

Q(z,π) :- (x1, π1, y1), …, (xn, πn, yn), ^j Sj(πj)
output some of 

πi’s as a tuple π

in the output



Evaluation of EC2RPQ(REG)

Same as CRPQs, but

• Each πi is mapped to a path ρi in the graph database

• For each j, if πj = (πj1,...,πjk) ) (λ(ρj1),...,λ(ρjk)) 2 Sj

Q(z,π) :- (x1, π1, y1), …, (xn, πn, yn), ^j Sj(πj)



Example of ECRPQ(REG)

Compute the pairs (c,d) that are linked by a path labeled in {αnβn | n ¸ 0}

v w u
π1 π2

such that  λ(π1) 2 L(α*) and  λ(π2) 2 L(β*) and  |λ(π1)| = |λ(π2)|

Q(x,y) :- (x, π1, z), (z, π2, y), α*(π1), β*(π2), Equal_Length(π1,π2)



ECRPQ(REG) vs. CRPQs

Q(z) :- (x1, Q1, y1), …, (xn, Qn, yn)

Q(z) :- (x1, π1, y1), …, (xn, πn, yn), Q1(π1), …, Qn(πn)

´



Complexity of ΕC2RPQ(REG)

Theorem: It holds that

• EVAL(ECRPQ(REG)) is PSPACE-complete

• EVALQ(ECRPQ(REG)) is in NLOGSPACE (data complexity)

• CONT(ECRPQ(REG)) is undecidable



Beyond Regular Relations

• Subsequences – w1 is a subsequence of w2, i.e., w1 can be obtained 

from w2 by deleting some letters

• Subword: w3¢w1¢ w4 = w2

…we can exploit rational relations (RAT) - ECRPQ(RAT)



Path Query Languages: Recap

• CRPQs do not allow to compare labels of paths and export paths

• This has led to the introduction of ECRPQ(REG)

‒ Preserves data tractability

‒ But containment becomes undecidable

• We can go beyond REG  – ECRPQ(RAT)

‒ Undecidability of query evaluation

‒ We obtain data tractability if we restrict the syntax



Querying Graphs With Data

• So far queries talk about the topology of the data

• However, graph databases contain data  – data graphs

• We have query languages that can talk about data paths

(obtained by replacing each node in a path by its value)
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 Adding data values to (C)RPQs
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