
Graph Databases

Advanced Topics in Foundations of Databases, University of Edinburgh, 2017/18

Graph Databases and Applications

• Graph databases are crucial when topology is as important as the data

• Several modern applications

‒ Semantic Web and RDF

‒ Social networks

‒ Knowledge graphs

‒ etc.
1

2

3 4

5

α

β

γ

α

β

Graph Databases vs. Relational Databases

• Simply use standard relational databases

• Problems:

‒ We need to navigate the graph – recursion is needed

‒ We can use Datalog – performance issues (complexity mismatch,

basic static analysis task are undecidable)

1

2

3 4

5

α

β

γ

α

β

Graph id_o label id_t
1 α 3
1 β 5
1 γ 2
2 β 5
2 α 4

Graph Data Model

• Different applications gave rise to different graph data models

• But, the essence is the same

finite, directed, edge labeled graphs

set of edges of the form v u

where u,v 2 V and α 2 Λ

Graph Data Model

(V, E)

An graph database G over a finite alphabet Λ is a pair

finite set of node ids α

• Path in G: π = v1 v2 v3 vk vk+1

• The label of π is λ(π) = α1α2α3...αk 2 Λ*

α1 α2 αk…

Graph Database: Example

A graph database representation of a fragment of DBLP

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series creator

creator

creator

creator

Regular Path Queries (RPQs)

Basic building block of graph queries

• First studied in 1989

• An RPQ is a regular expression over a finite alphabet Λ

• Given a graph database G = (V,E) over Λ and RPQ Q over Λ

Q(G) = {(v,u) | v,u 2 V and

there is a path π from v to u such that λ(π) 2 L(Q)}

RPQs With Inverses (2RPQs)

Extension of RPQs with inverses – two-way RPQs

• First studied in 2000

• 2RPQs over Λ = RPQs over Λ§ = Λ [{α¡ | α 2 Λ}

• Given a graph database G = (V,E) over Λ and 2RPQ Q over Λ

Q(G) = Q(G§)

obtained from G by adding u v for each v u α¡ α

Querying Graph Database

Compute the pairs (c,d) such that author c has published in conference or journal d

(creator ‒ ((partOf ¢ series) [journal))

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series creator

creator

creator

creator

Querying Graph Database

Compute the pairs (c,d) such that author c has published in conference or journal d

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series

(creator ‒ ((partOf ¢ series) [journal))

cd

creator

creator

creator

creator

Querying Graph Database

Compute the pairs (c,d) such that author c has published in conference or journal d

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series

(creator ‒ ((partOf ¢ series) [journal))

creator

creator

creator

creator

c
d

Evaluation of 2RPQs

EVAL(2RPQ)

Input: a graph database G, a 2RPQ Q, two nodes v,u of G

Question: (v,u) 2 Q(G)?

RegularPath

Input: a graph database G over Λ, a regular expression Q over Λ§,

two nodes v,u of G

Question: is there a path π from v to u in G§ such that λ(π) 2 L(Q)

It boils down to the problem:

Complexity of RegularPath

Theorem: RegularPath can be solved in time O(|G| ¢ |Q|)

Proof Idea: by exploiting nondeterministic finite automata (NFA)

• Compute in linear time from Q an equivalent NFA AQ

• Compute in linear time an NFA AG obtained from G§ by setting v and u as

initial and finite states, respectively

• There is a path π from v to u in G§ such that λ(π) 2 L(Q) iff L(AG) \ L(AQ)

is non-empty

• Non-emptiness can be checked in time O(|AG| ¢ |AQ|) = O(|G| ¢ |Q|)

A graph database can be naturally seen as an NFA

• nodes are states

• edges are transitions

Complexity of 2RPQs

We immediately get that:

Theorem: EVAL(2RPQ) can be solved in time O(|G| ¢ |Q|)

Regarding the data complexity (i.e., Q is fixed):

Theorem: EVALQ(2RPQ) is in NLOGSPACE

(by exploiting the previous automata construction)

Limitation of RPQs

• RPQs are not able to express arbitrary patterns over graph databases

(e.g., compute the pairs (c,d) that are coauthors of a conference paper)

• We need to enrich RPQs with joins and projections

‒ Conjunctive regular path queries (CRPQs)

‒ C2RPQs if we add inverses

C2RPQs: Example

Compute the pairs (c,d) that are coauthors of a conference paper

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series creator

creator

creator

creator

C2RPQs: Example

Compute the pairs (c,d) that are coauthors of a conference paper

Q(x,u) :- (x, creator ‒, y), (y, partOf ¢ series, z), (y, creator , u)

:Robert_E_Tarjan

:John_E_Hopcroft

:Jeffrey_Ullman

:Ronald_Fagin

:Moshe_Y_Vardi

Jacm:HopcroftT74

Focs:HopU67a

Pods:Ullman89

Pods:FaginUV83

journal:jacm

inFocs:FOCS8

inPods:89

inPods:83

conf:focs

conf:pods

journal

partOf

partOf

partOf

series creator

creator

creator

creator

xy
z

u

(: Moshe_Y_Vardi, :Ronald_Fagin)

C2RPQs: Formal Definition

A C2RPQ over an alphabet Λ is a rule of the form

Q(z) :- (x1, Q1, y1), …, (xn, Qn, yn)

where xi, yi are variables,

Qi is a 2RPQ over Λ,

z are the output variables from {x1, y1, …, xn, yn}

Remark: C2RPQs are more expressive than 2RPQs (previous example)

Evaluation of C2RPQs

To evaluate a C2RPQ of the form

Q(z) :- (x1, Q1, y1), …, (xn, Qn, yn)

we simply need to evaluate the conjunctive query

Q(z) :- Q1(x1, y1), …, Qn(xn, yn)

where each Qi stores the result of evaluating the 2RPQ Qi

Complexity of C2RPQs

Theorem: EVAL(C2RPQ) is NP-complete

Proof Hints:

• Upper bound: polynomial time reduction to EVAL(CQ)

• Lower bound: inherited from CQs over graphs

Regarding the data complexity (i.e., Q is fixed):

Theorem: EVALQ(C2RPQ) is in NLOGSPACE

Basic Graph Query Languages: Recap

• Two-way regular path queries (2RPQs)

‒ Can be evaluated in linear time in combined complexity, and in

NLOGSPACE in data complexity

• Conjunctive 2RPQs (C2RPQs)

‒ Evaluation is NP-complete in combined complexity, and in

NLOGSPACE in data complexity

Towards Tractable C2RPQs

1

6
7

3
4

8

5

2

9

10
11

12

13

{8,9}

{1,3,4,5,6,7,8} {9,10,11}

{11,12}

{12,13}

{1,2,3}

Recall acyclic conjunctive queries

A C2RPQ is acyclic if its underlying CQ is acyclic

Q :- (x, Q1, x), (x, Q2, y), (y, Q3, x)

Q :- (x, Q1, y), (y, Q2, z), (z, Q3, x)

Equivalently, the underlying graph does not contain cycles of length ̧3

Acyclic C2RPQs

yx

z

yx

Complexity of Acyclic C2RPQs

Theorem: EVAL(AC2RPQ) can be solved in time O(|G|2 ¢ |Q|2)

Proof Idea: recall that we can reduce EVAL(C2RPQ) to EVAL(CQ)

{Q 2 C2RPQ | Q is acyclic}

Simple Path Semantics

RegularSimplePath

Input: a graph database G over Λ, a regular expression Q over Λ§,

two nodes v,u of G

Question: is there a simple path π from v to u in G§ such that λ(π) 2 L(Q)

Simple Path: No node is repeated

In this case, EVAL(2RPQ) boils down to the problem:

Simple Path Semantics

Theorem: RegularSimplePath is NP-complete

Theorem: RegularSimplePathQ is NP-complete (data complexity)

• RegularSimplePath(0¢0)*

• Is there a simple directed path of even length? NP-complete

• NP-complete data complexity means impractical

Containment of Graph Queries

CONT(L)

Input: two queries Q1 2 L and Q2 2 L

Question: Q1 µ Q2? (i.e., Q1(G) µ Q2(G) for every graph database G?)

Containment of Graph Queries

Theorem: CONT(RPQ) is PSPACE-complete

Proof Hint: exploit containment of regular expressions

Theorem: CONT(2RPQ) is PSPACE-complete

Proof Hint: exploit containment of two-way automata, while the lower bound

is inherited from RPQs

Theorem: CONT(C2RPQ) is EXPSPACE-complete

Proof Hint: exploit containment of two-way automata, while the lower bound

is by reduction from a tiling problem

Limitations of CRPQs

Compute the pairs (c,d) that are linked by a path labeled in {αnβn | n ¸ 0}

v w u
π1 π2

such that λ(π1) 2 L(α*) and λ(π2) 2 L(β*) and |λ(π1)| = |λ(π2)|

Not expressible using CRPQs. We need:

• To define complex relationships among labels of paths

• To include paths in the output of a query

Comparing Paths With Regular Relations

• Regular languages for n-ary relations

• n-ary regular relations: set of n-tuples (w1,…,wn) of words over an alphabet Λ

• Accepted by a synchronous automaton over Λn

‒ The input strings are written in the n-tapes

‒ Shorter strings are padded with the symbol # not in Λ

‒ At each step, the automaton simultaneously reads the next symbol

on each tape, terminating when it reads # on each tape

Synchronous Automata

w1 = α α β ... α β γ

w2 = α β α ... α

w3 = β β ...

...

wn = α β β ... α γ

Synchronous Automata

w1 = α α β ... α β γ

w2 = α β α ... α # #

w3 = β β # ... # # #

...

wn = α β β ... α γ #

Synchronous Automata

w1 = α α β ... α β γ

w2 = α β α ... α # #

w3 = β β # ... # # #

...

wn = α β β ... α γ #

Synchronous Automata

w1 = α α β ... α β γ

w2 = α β α ... α # #

w3 = β β # ... # # #

...

wn = α β β ... α γ #

Synchronous Automata

w1 = α α β ... α β γ

w2 = α β α ... α # #

w3 = β β # ... # # #

...

wn = α β β ... α γ #

Regular Relations: Examples

• All regular languages – regular relations of arity 1

• Path equality: w1 = w2

• Length comparison: |w1| = |w2|, |w1| < |w2|, |w1| · |w2|

• Prefix: w1 is a prefix of w2

Extended CRPQs With Regular Relations (REG)

An ECRPQ(REG) is a rule obtained from a CRPQ as follows

Q(z) :- (x1, Q1, y1), …, (xn, Qn, yn)

Q(z) :- (x1, π1, y1), …, (xn, πn, yn)

annotate each

pair (xi,yi) with a

path variable πi

Q(z) :- (x1, π1, y1), …, (xn, πn, yn), ^j Sj(πj)
compare labels

of paths in πj

w.r.t. Sj 2 REG

Q(z,π) :- (x1, π1, y1), …, (xn, πn, yn), ^j Sj(πj)
output some of

πi’s as a tuple π

in the output

Evaluation of EC2RPQ(REG)

Same as CRPQs, but

• Each πi is mapped to a path ρi in the graph database

• For each j, if πj = (πj1,...,πjk)) (λ(ρj1),...,λ(ρjk)) 2 Sj

Q(z,π) :- (x1, π1, y1), …, (xn, πn, yn), ^j Sj(πj)

Example of ECRPQ(REG)

Compute the pairs (c,d) that are linked by a path labeled in {αnβn | n ¸ 0}

v w u
π1 π2

such that λ(π1) 2 L(α*) and λ(π2) 2 L(β*) and |λ(π1)| = |λ(π2)|

Q(x,y) :- (x, π1, z), (z, π2, y), α*(π1), β*(π2), Equal_Length(π1,π2)

ECRPQ(REG) vs. CRPQs

Q(z) :- (x1, Q1, y1), …, (xn, Qn, yn)

Q(z) :- (x1, π1, y1), …, (xn, πn, yn), Q1(π1), …, Qn(πn)

´

Complexity of ΕC2RPQ(REG)

Theorem: It holds that

• EVAL(ECRPQ(REG)) is PSPACE-complete

• EVALQ(ECRPQ(REG)) is in NLOGSPACE (data complexity)

• CONT(ECRPQ(REG)) is undecidable

Beyond Regular Relations

• Subsequences – w1 is a subsequence of w2, i.e., w1 can be obtained

from w2 by deleting some letters

• Subword: w3¢w1¢ w4 = w2

…we can exploit rational relations (RAT) - ECRPQ(RAT)

Path Query Languages: Recap

• CRPQs do not allow to compare labels of paths and export paths

• This has led to the introduction of ECRPQ(REG)

‒ Preserves data tractability

‒ But containment becomes undecidable

• We can go beyond REG – ECRPQ(RAT)

‒ Undecidability of query evaluation

‒ We obtain data tractability if we restrict the syntax

Querying Graphs With Data

• So far queries talk about the topology of the data

• However, graph databases contain data – data graphs

• We have query languages that can talk about data paths

(obtained by replacing each node in a path by its value)

Associated Papers

• Mariano P. Consens, Alberto O. Mendelzon: Low Complexity Aggregation in
GraphLog and Datalog. Theor. Comput. Sci. 116(1): 95-116 (1993)

• One of the papers introducing (C)RPQs

• Pablo Barcelo: Querying graph databases. PODS 2013: 175-188

• Renzo Angles, Claudio Gutierrez: Survey of graph database models. ACM Comput.
Surv. 40(1) (2008)

• Two surveys of graph languages, two are more theoretical, one more practical

Associated Papers

• Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Moshe Y. Vardi:
Rewriting of Regular Expressions and Regular Path Queries. J. Comput. Syst. Sci.
64(3): 443-465 (2002)

• Introducing two-way queries

• Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Moshe Y. Vardi:
Reasoning on regular path queries. SIGMOD Record 32(4): 83-92 (2003)

• Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Moshe Y. Vardi:
Containment of Conjunctive Regular Path Queries with Inverse. KR 2000: 176-185

• Static analysis of regular path queries

• Leonid Libkin, Wim Martens, Domagoj Vrgoc: Querying graph databases with
XPath. ICDT 2013: 129-140

 Adding data values to (C)RPQs

Associated Papers

• Pablo Barcelo, Leonid Libkin, Anthony Widjaja Lin, Peter T. Wood: Expressive
Languages for Path Queries over Graph-Structured Data. ACM Trans. Database Syst.
37(4): 31 (2012)

• Extending RPQs with regular relations

• Pablo Barcelo, Diego Figueira, Leonid Libkin: Graph Logics with Rational Relations.
Logical Methods in Computer Science 9(3) (2013)

• Extending RPQs with rational relations

• Dominik D. Freydenberger, Nicole Schweikardt: Expressiveness and Static Analysis of
Extended Conjunctive Regular Path Queries. AMW 2011

• Resolving some of the questions on the containment of path queries

• Jelle Hellings, Bart Kuijpers, Jan Van den Bussche, Xiaowang Zhang: Walk logic as a
framework for path query languages on graph databases. ICDT 2013: 117-128

• A different approach to expanding the power of path languages

Associated Papers

• Pablo Barcelo, Leonid Libkin, Juan L. Reutter: Querying Regular Graph Patterns.
Journal of the ACM 61(1): 8:1-8:54 (2014)

• Incomplete information in graph databases and querying it

• Wenfei Fan, Xin Wang, Yinghui Wu: Querying big graphs within bounded resources.
SIGMOD Conference 2014: 301-312

• Wenfei Fan: Graph pattern matching revised for social network analysis. ICDT
2012: 8-21

• Two papers on making graph queries scalable

	Slide Number 1
	Graph Databases and Applications
	Graph Databases vs. Relational Databases
	Graph Data Model
	Graph Data Model
	Graph Database: Example
	Regular Path Queries (RPQs)
	RPQs With Inverses (2RPQs)
	Querying Graph Database
	Querying Graph Database
	Querying Graph Database
	Evaluation of 2RPQs
	Complexity of RegularPath
	Complexity of 2RPQs
	Limitation of RPQs
	C2RPQs: Example
	C2RPQs: Example
	C2RPQs: Formal Definition
	Evaluation of C2RPQs
	Complexity of C2RPQs
	Basic Graph Query Languages: Recap
	Towards Tractable C2RPQs
	Acyclic C2RPQs
	Complexity of Acyclic C2RPQs
	Simple Path Semantics
	Simple Path Semantics
	Containment of Graph Queries
	Containment of Graph Queries
	Limitations of CRPQs
	Comparing Paths With Regular Relations
	Synchronous Automata
	Synchronous Automata
	Synchronous Automata
	Synchronous Automata
	Synchronous Automata
	Regular Relations: Examples
	Extended CRPQs With Regular Relations (REG)
	Evaluation of EC2RPQ(REG)
	Example of ECRPQ(REG)
	ECRPQ(REG) vs. CRPQs
	Complexity of ΕC2RPQ(REG)
	Beyond Regular Relations
	Path Query Languages: Recap
	Querying Graphs With Data
	Associated Papers
	Associated Papers
	Associated Papers
	Associated Papers

