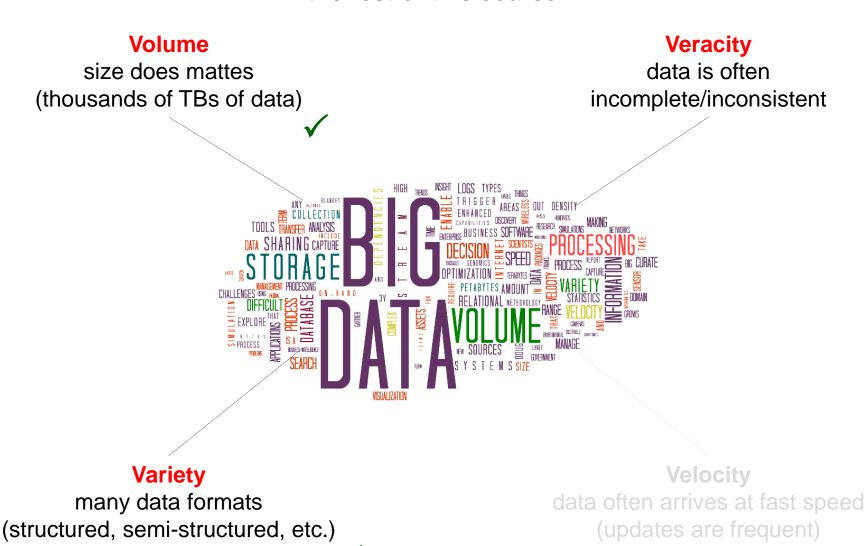
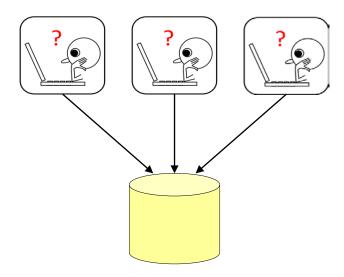
the rest of this course

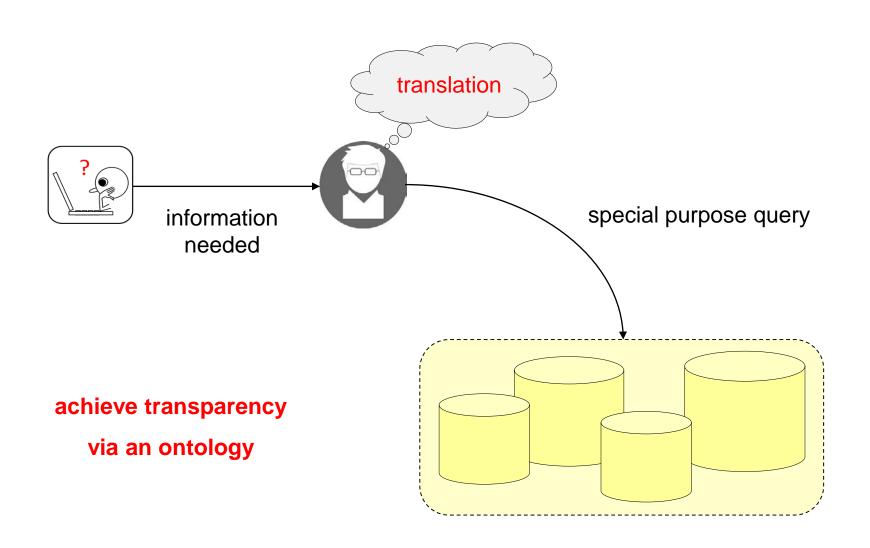


Ontology-Based Data Access



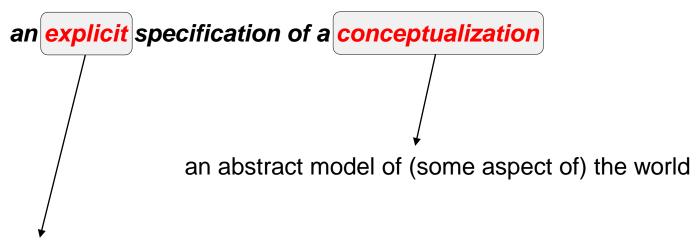
ideal information system

in many modern organizations



What is an Ontology?

An engineering artifact; its objective is to provide

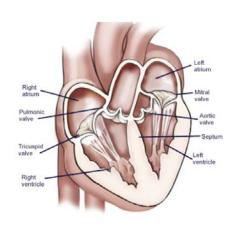


using unambiguous language, typically logic

What is an Ontology?

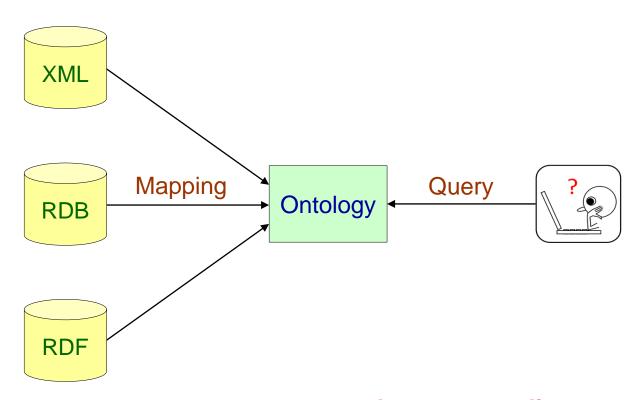
- 1. Introduces vocabulary relevant to a domain
- 2. Specifies the meaning (semantics) of the terms

Heart is a muscular organ that is part of the circulatory system



$$\forall x \text{ (Heart(x)} \rightarrow \text{MuscularOrgan(x)} \land \\ \exists y \text{ (isPartOf(x,y)} \land \\ \text{CirculatorySystem(y)))}$$

Ontology-Based Data Access (OBDA)



use an ontology as a mediator

What are Ontologies Good For?

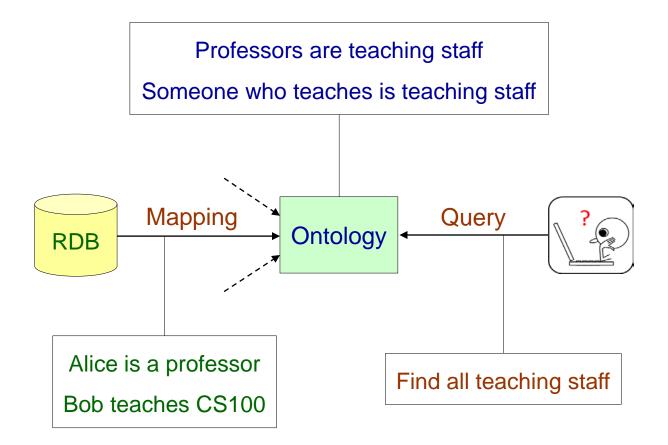
1. Integrate different data sources (variety)

- Conceptual "global view" of the data
- Access data in a uniform and transparent way

2. Support automated reasoning (incompleteness)

- Implicit consequences are taken into account
- More complete answers

Incomplete Data Sources



Expected answer = {Alice, Bob}

Ontology Σ - high level representation of the domain of interest

```
\forall x \ (Researcher(x) \rightarrow \exists y \ (worksFor(x,y) \land Project(y)))
\forall x \ (Project(x) \rightarrow \exists y \ (worksFor(y,x) \land Researcher(y)))
\forall x \forall y \ (worksFor(x,y) \rightarrow Researcher(x) \land Project(y))
\forall x \ (Project(x) \rightarrow \exists y \ (ProjectName(x,y)))
```

Relational database D - a single database that represents the sources

worksIn	SSN	Name
	100	AAA
	200	BBB
	300	CCC

Relational database D - a single database that represents the sources

worksIn	SSN	Name
	100	AAA
	200	BBB
	300	CCC

the researcher with SSN 100 works for the project with name "AAA"

Mapping *M* - semantically link data at the sources with the ontology

Researcher(person(SSN)) \(\times \)

ProjectName(proj(Name), Name)

Mapping M - semantically link data at the sources with the ontology

```
Researcher(person(SSN)) \land
SELECT SSN, Name

FROM worksIn

\subseteq

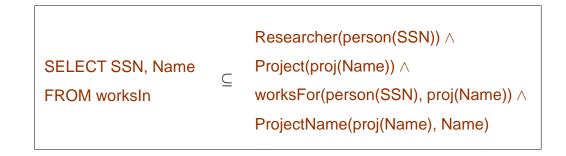
WorksFor(person(SSN), proj(Name)) \land

ProjectName(proj(Name), Name)
```

- Constructors to create objects from tuples of values in the database
- The constructors are simply Skolem functions

Virtual data layer M(D)

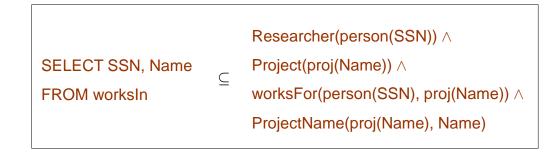
worksIn	SSN	Name
	100	AAA
	200	BBB
	300	CCC



Researcher(person(100)), Project(proj(AAA)), worksFor(person(100), proj(AAA)), ProjectName(proj(AAA), AAA),

Virtual data layer M(D)

worksIn	SSN	Name
	100	AAA
	200	BBB
	300	CCC



Researcher(person(100)), Project(proj(AAA)), worksFor(person(100), proj(AAA)), ProjectName(proj(AAA), AAA),

Researcher(person(200)), Project(proj(BBB)), worksFor(person(200), proj(BBB)), ProjectName(proj(BBB), BBB),

Virtual data layer M(D)

worksIn	SSN	Name
	100	AAA
	200	BBB
	300	CCC

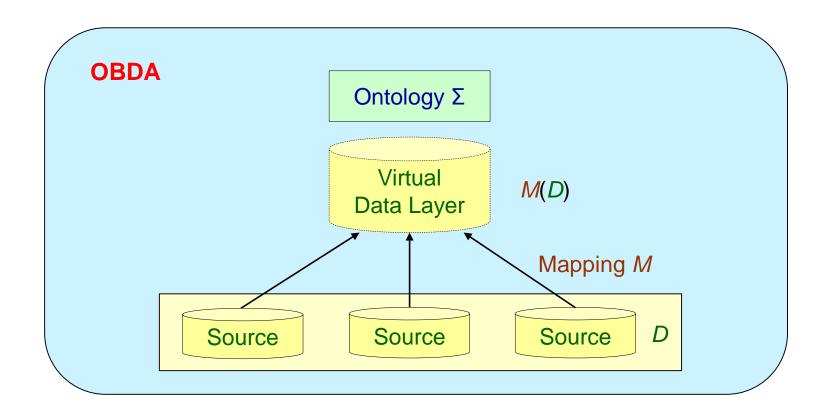
Researcher(person(100)), Project(proj(AAA)), worksFor(person(100), proj(AAA)), ProjectName(proj(AAA), AAA), Researcher(person(200)), Project(proj(BBB)), worksFor(person(200), proj(BBB)),

ProjectName(proj(BBB), BBB),

Researcher(person(300)), Project(proj(CCC)), worksFor(person(300), proj(CCC)),

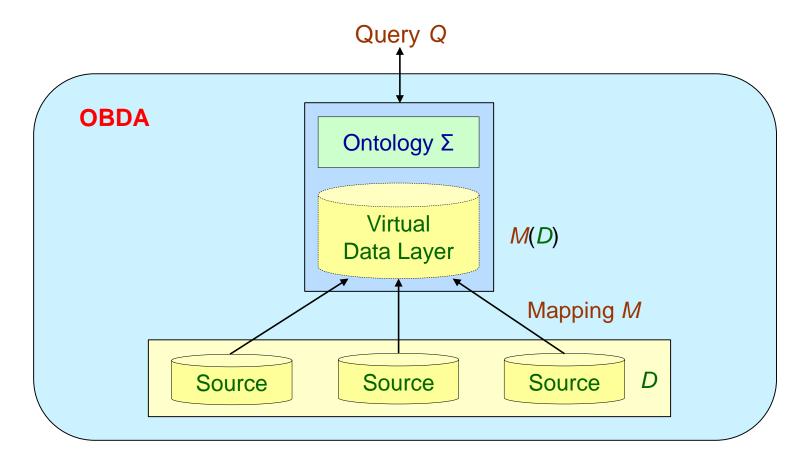
ProjectName(proj(CCC), CCC)

Query Answering in OBDA



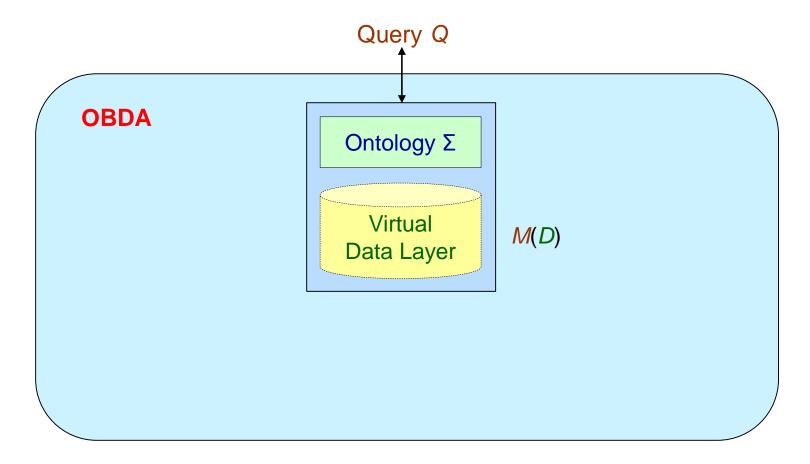
• The sources and the mapping define a virtual data layer M(D)

Query Answering in OBDA



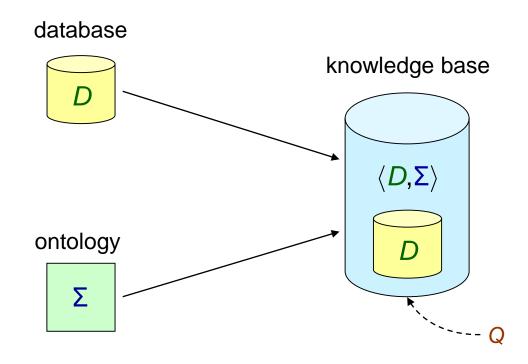
- The sources and the mapping define a virtual data layer *M(D)*
- Queries are answered against the knowledge base $\langle M(D), \Sigma \rangle$

Query Answering in OBDA



Ontology-Based Query Answering

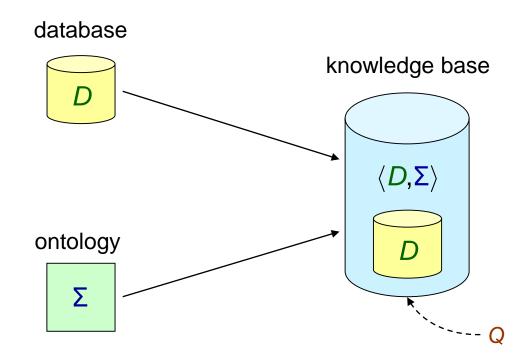
Ontology-Based Query Answering (OBQA)



certain-answers(
$$\mathbb{Q}$$
, $\langle D, \Sigma \rangle$) = $\bigcap_{J \in \mathsf{models}(D \land \Sigma)} \mathbb{Q}(J)$

(formal definitions later - once we fix the languages)

Ontology-Based Query Answering (OBQA)



NOTE: OBQA is not OBDA, but a crucial task in OBDA

We should talk about OBDA only in the presence of external sources and mappings

Issues in Ontology-Based Query Answering

What is the right ontology language?

- A wide spectrum of languages that differ in expressive power and computational complexity (e.g., description logics, existential rules)
- Scalability to very large amounts of data is a key

What is the right query language?

Well-known languages from database theory (e.g., conjunctive queries)

Few Words on Description Logics (DLs)

- DLs are well-behaved fragments of first-order logic
- Several DL-based languages exist (from lightweight to very expressive logics)
- Strongly influenced the W3C standard Web Ontology Language OWL

- Syntax: We start from a vocabulary with
 - Concept names: atomic classes or unary predicates, e.g., Parent, Person
 - Role names: atomic relations or binary predicates, e.g., hasParent

and we build axioms

- Person
 □ ∃hasParent.Parent each person has a parent
- Parent ⊆ Person each parent is a person
- **Semantics:** Via first-order interpretations

DL-Lite Family

DL-Lite: Popular family of DLs - at the basis of the OWL 2 QL profile of OWL 2

DL-Lite Axioms	First-order Representation
A ⊑ B	$\forall x \ (A(x) \to B(x))$
A ⊑ ∃R	$\forall x (A(x) \rightarrow \exists y R(x,y))$
∃R ⊑ A	$\forall x \forall y \ (R(x,y) \rightarrow A(x))$
∃R ⊑∃P	$\forall x \forall y \ (R(x,y) \rightarrow \exists z \ P(x,z))$
A ⊑ ∃R.B	$\forall x (A(x) \rightarrow \exists y (R(x,y) \land B(y)))$
R ⊑ P	$\forall x \forall y \ (R(x,y) \rightarrow P(x,y))$
A ⊑ ¬B	$\forall x \ (A(x) \land B(x) \rightarrow \bot)$

The Description Logic EL

EL: Popular DL for biological applications - at the basis of the OWL 2 EL profile

EL Axioms	First-order Representation
A ⊑ B	$\forall x \ (A(x) \rightarrow B(x))$
A⊓B⊑C	$\forall x \; (A(x) \land B(x) \to C(x))$
A ⊑ ∃R.B	$\forall x \ (A(x) \rightarrow \exists y \ (R(x,y) \land B(y)))$
∃R.B ⊑ A	$\forall x \forall y \ (R(x,y) \land B(y) \rightarrow A(x))$

...several other, more expressive, description logics exist

...but, in what follows we focus on existential rules an alternative way for representing ontologies

A Simple Example

```
\forall x \ (Researcher(x) \rightarrow \exists y \ (worksFor(x,y) \land Project(y)))
\forall x \ (Project(x) \rightarrow \exists y \ (worksFor(y,x) \land Researcher(y)))
\forall x \forall y \ (worksFor(x,y) \rightarrow Researcher(x) \land Project(y))
\forall x \ (Project(x) \rightarrow \exists y \ (ProjectName(x,y)))
```

Some Terminology

- Our basic vocabulary:
 - A countable set C of constants domain of a database
 - A countable set N of (labeled) nulls globally ∃-quantified variables
 - A countable set V of (regular) variables used in rules and queries
- A term is a constant, null or variable
- An atom has the form R(t₁, ..., t_n) R is an n-ary relation and t_i's are terms
- An instance is a (possibly infinite) set of atoms with constants and nulls
- A database is a finite instance with only constants

Syntax of Existential Rules

An existential rule is an expression

$$\forall \mathbf{x} \forall \mathbf{y} \ (\varphi(\mathbf{x}, \mathbf{y}) \to \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z}))$$
body head

- x,y and z are tuples of variables of V
- $\varphi(\mathbf{x},\mathbf{y})$ and $\psi(\mathbf{x},\mathbf{z})$ are (constant-free) conjunctions of atoms

...a.k.a. tuple-generating dependencies and Datalog[±] rules

Semantics of Existential Rules

An instance J is a model of the rule

$$\sigma = \forall \mathbf{x} \forall \mathbf{y} (\varphi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \psi(\mathbf{x}, \mathbf{z}))$$

written as $J \models \sigma$, if the following holds:

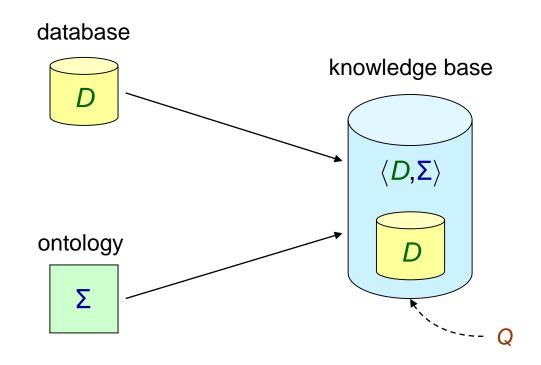
whenever there exists a homomorphism h such that $h(\varphi(\mathbf{x},\mathbf{y})) \subseteq J$,

then there exists $g \supseteq h_{|\mathbf{x}}$ such that $g(\psi(\mathbf{x},\mathbf{z})) \subseteq J$

 $\{t \to h(t) \mid t \in \mathbf{x}\}\$ - the restriction of h to \mathbf{x}

- Given a set Σ of existential rules, J is a model of Σ, written as J ⊨ Σ, if the following holds: for each σ ∈ Σ, J ⊨ σ
- $J \models \Sigma$ iff \mathfrak{J} is a model of the first-order theory $\bigwedge_{\sigma \in \Sigma} \sigma$

Ontology-Based Query Answering (OBQA)



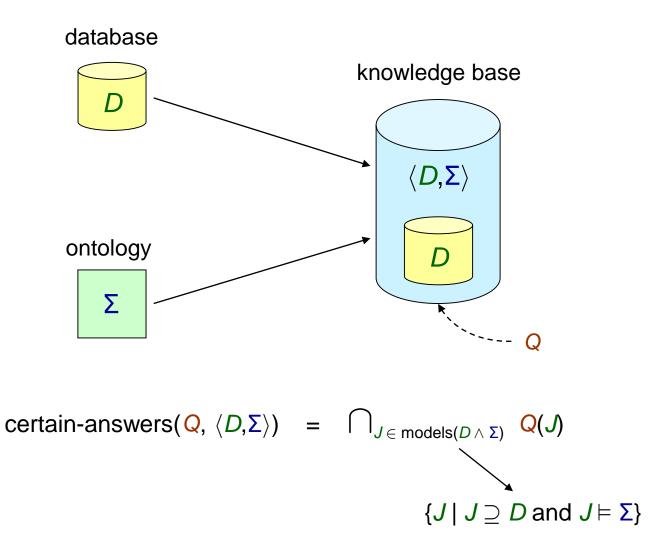
existential rules

$$\forall x \forall y \ (\varphi(x,y) \rightarrow \exists z \ \psi(x,z))$$

conjunctive queries

$$Q(\mathbf{x}) := R_1(\mathbf{v}_1), ..., R_m(\mathbf{v}_m)$$

Ontology-Based Query Answering (OBQA)



Exercise: Compute the Certain Answers

```
D = \{Person(john), Person(bob), Person(tom), \}
           hasFather(john,bob), hasFather(bob,tom)}
                      \Sigma = \{ \forall x (Person(x) \rightarrow \exists y hasFather(x,y)), \}
                                 \forall x \forall y \text{ (hasFather(x,y)} \rightarrow \text{Person(x)} \land \text{Person(y))}
            Q_1(x,y):- hasFather(x,y)
            Q_2(x):- hasFather(x,y)
            Q_3(x):- hasFather(x,y), hasFather(y,z), hasFather(z,w)
            Q_{\Delta}(x,w):- hasFather(x,y), hasFather(y,z), hasFather(z,w)
```

Exercise: Compute the Certain Answers

```
D = \{Person(john), Person(bob), Person(tom), \}
            hasFather(john,bob), hasFather(bob,tom)}
                        \Sigma = \{ \forall x (Person(x) \rightarrow \exists y hasFather(x,y)), \}
                                    \forall x \forall y \text{ (hasFather(x,y)} \rightarrow \text{Person(x)} \land \text{Person(y))}
    Q_1(x,y):- hasFather(x,y)
                                   {(john,bob), (bob,tom)}
```

Exercise: Compute the Certain Answers

```
D = \{Person(john), Person(bob), Person(tom), \}
            hasFather(john,bob), hasFather(bob,tom)}
                        \Sigma = \{ \forall x (Person(x) \rightarrow \exists y hasFather(x,y)), \}
                                    \forall x \forall y \text{ (hasFather(x,y)} \rightarrow \text{Person(x)} \land \text{Person(y))}
    Q_2(x):- hasFather(x,y)
                                     {(john), (bob), (tom)}
```

Exercise: Compute the Certain Answers

```
D = \{Person(john), Person(bob), Person(tom), \}
           hasFather(john,bob), hasFather(bob,tom)}
                       \Sigma = \{ \forall x (Person(x) \rightarrow \exists y hasFather(x,y)), \}
                                   \forall x \forall y \text{ (hasFather}(x,y) \rightarrow \text{Person}(x) \land \text{Person}(y))}
    Q_3(x):- hasFather(x,y), hasFather(y,z), hasFather(z,w)
                                    {(john), (bob), (tom)}
```

Exercise: Compute the Certain Answers

```
D = \{Person(john), Person(bob), Person(tom), \}
            hasFather(john,bob), hasFather(bob,tom)}
                       \Sigma = \{ \forall x (Person(x) \rightarrow \exists y hasFather(x,y)), \}
                                   \forall x \forall y \text{ (hasFather}(x,y) \rightarrow \text{Person}(x) \land \text{Person}(y))}
    Q_4(x,w):- hasFather(x,y), hasFather(y,z), hasFather(z,w)
```

OBQA: Formal Definition

ontology language based on existential rules

OBQA(L)

Input: database D, existential rules $\Sigma \in L$, CQ Q(x), tuple $t \in adom(D)^{|X|}$

Question: $\mathbf{t} \in \text{certain-answers}(\mathbf{Q}, \langle D, \Sigma \rangle) = \bigcap_{J \in \text{models}(D \wedge \Sigma)} \mathbf{Q}(J)$?

$$\textbf{t} \in \text{certain-answers}(\textbf{Q},\langle D \ \Sigma \rangle) \ \Leftrightarrow \ \forall J \in \text{models}(D \land \Sigma), \ \textbf{t} \in \textbf{Q}(J)$$

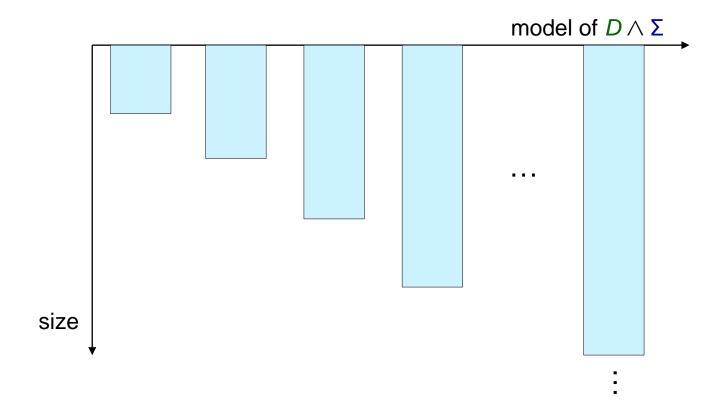
$$\Leftrightarrow \ \forall J \in \text{models}(D \land \Sigma), \ \textbf{()} \in \textbf{Q}_{\textbf{t}}(J), \ \text{where} \ \textbf{Q}_{\textbf{t}} = \textbf{Q}(\textbf{t})$$
 Boolean CQ - no output variables

Why is OBQA technically challenging?

What is the right tool for tackling this problem?

The Two Dimensions of Infinity

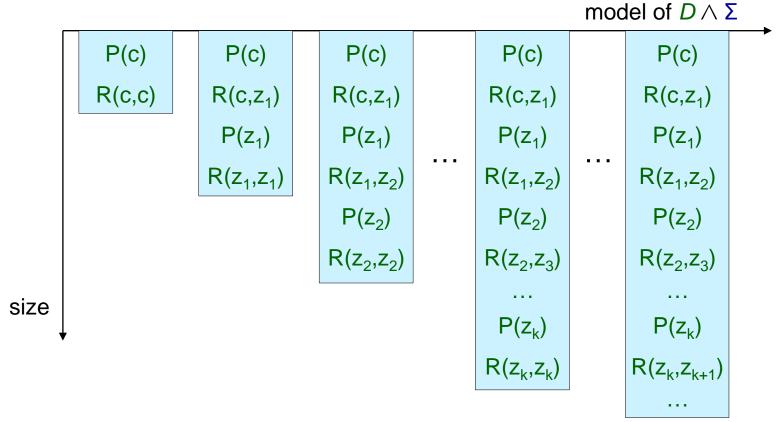
Consider the database D, and the set of existential rules Σ



 $D \wedge \Sigma$ admits infinitely many models, of possibly infinite size

The Two Dimensions of Infinity

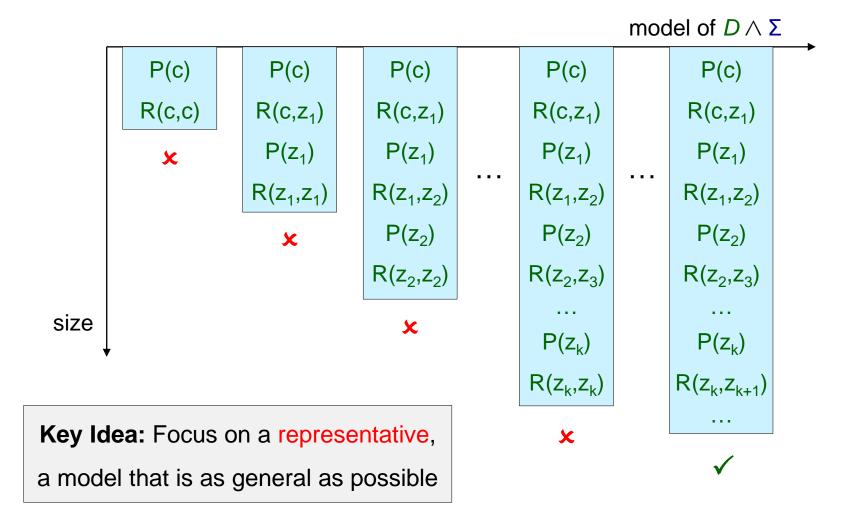
$$D = \{P(c)\} \qquad \Sigma = \{\forall x (P(x) \rightarrow \exists y (R(x,y) \land P(y)))\}$$



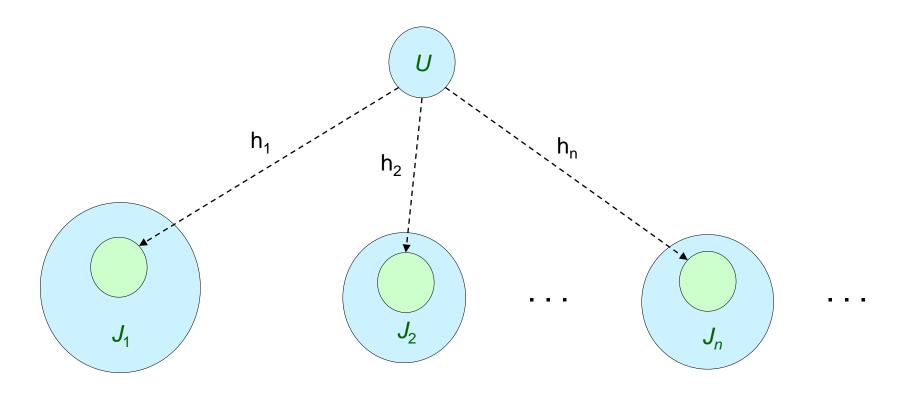
 z_1, z_2, z_3, \dots are nulls of **N**

Taming the First Dimension of Infinity

$$D = \{P(c)\} \qquad \Sigma = \{\forall x (P(x) \rightarrow \exists y (R(x,y) \land P(y)))\}$$



Universal Models (a.k.a. Canonical Models)



An instance U is a universal model of $D \wedge \Sigma$ if the following holds:

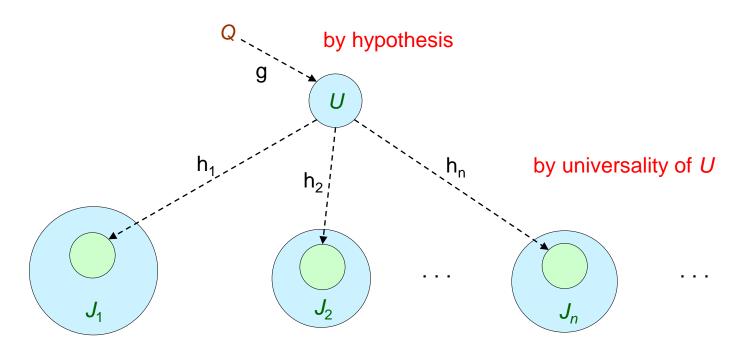
- 1. U is a model of $D \wedge \Sigma$
- 2. $\forall J \in \mathsf{models}(D \land \Sigma)$, there exists a homomorphism h_J such that $\mathsf{h}_J(U) \subseteq J$

Query Answering via Universal Models

Theorem: $D \wedge \Sigma \models \mathbb{Q}$ iff $U \models \mathbb{Q}$, where U is a universal model of $D \wedge \Sigma$

Proof: (\Rightarrow) Trivial since, for every $J \in \text{models}(D \land \Sigma)$, $J \models Q$

 (\Leftarrow) By exploiting the universality of U



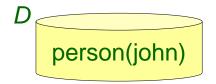
 $\forall J \in \mathsf{models}(D \land \Sigma), \exists h_J \mathsf{such that } h_J(\mathsf{g}(\mathsf{Q})) \subseteq J \quad \Rightarrow \quad \forall J \in \mathsf{models}(D \land \Sigma), J \models \mathsf{Q}$ $\Rightarrow \quad D \land \Sigma \models \mathsf{Q}$

- Fundamental algorithmic tool used in databases
- It has been applied to a wide range of problems:
 - Checking containment of queries under constraints
 - Computing data exchange solutions
 - Computing certain answers in data integration settings

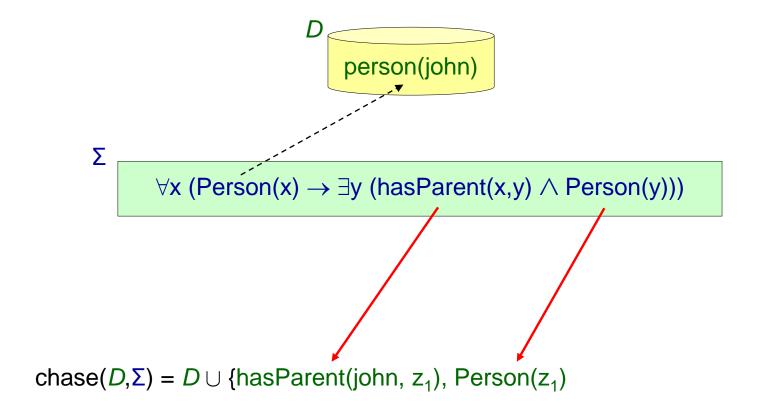
– ...

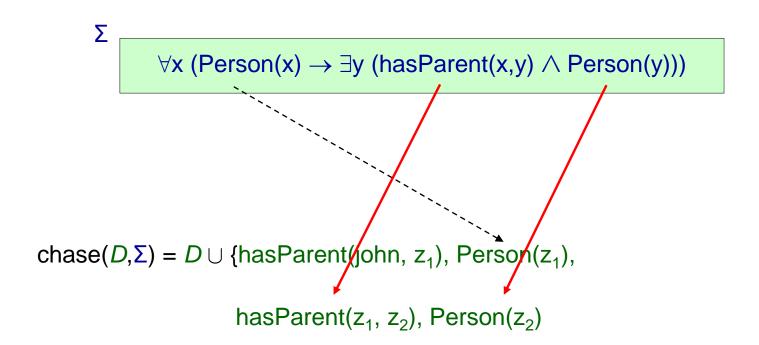
... what's the reason for the ubiquity of the chase in databases?

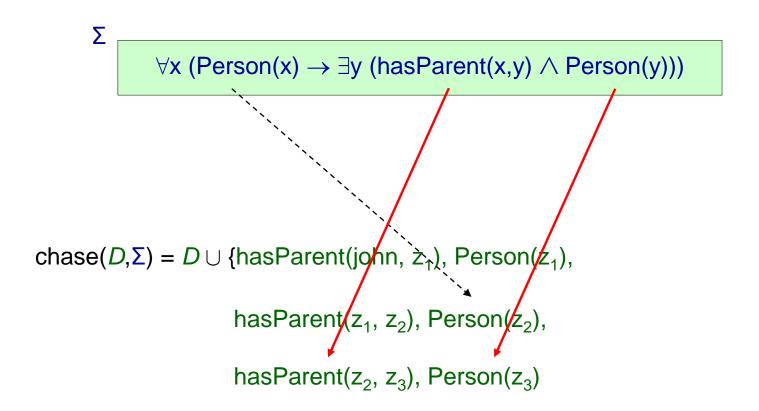
it constructs universal models



chase(
$$D$$
, Σ) = D ∪







chase(
$$D,\Sigma$$
) = $D \cup \{\text{hasParent(john, } z_1), \, \text{Person(} z_1), \,$
hasParent(z_1, z_2), Person(z_2),
hasParent(z_2, z_3), Person(z_3), ...

infinite instance

The Chase Procedure: Formal Definition

- Chase rule the building block of the chase procedure
- A rule $\sigma = \forall \mathbf{x} \forall \mathbf{y} (\varphi(\mathbf{x}, \mathbf{y}) \to \exists \mathbf{z} \psi(\mathbf{x}, \mathbf{z}))$ is applicable to instance J if:
 - 1. There exists a homomorphism h such that $h(\varphi(\mathbf{x},\mathbf{y})) \subseteq J$
 - 2. There is no g $\supseteq h_{|\mathbf{x}}$ such that $g(\psi(\mathbf{x},\mathbf{z})) \subseteq J$

The Chase Procedure: Formal Definition

Chase rule - the building block of the chase procedure

- A rule $\sigma = \forall \mathbf{x} \forall \mathbf{y} (\varphi(\mathbf{x}, \mathbf{y}) \to \exists \mathbf{z} \psi(\mathbf{x}, \mathbf{z}))$ is applicable to instance J if:
 - 1. There exists a homomorphism h such that $h(\varphi(\mathbf{x},\mathbf{y})) \subseteq J$
 - 2. There is no g $\supseteq h_{|\mathbf{x}}$ such that $g(\psi(\mathbf{x},\mathbf{z})) \subseteq J$

- Let $J_+ = J \cup \{g(\psi(\mathbf{x},\mathbf{z}))\}$, where $g \supseteq h_{|\mathbf{z}|}$ and $g(\mathbf{z})$ are "fresh" nulls not in J
- The result of applying σ to J is J_+ , denoted $J(\sigma,h)J_+$ single chase step

The Chase Procedure: Formal Definition

A finite chase of D w.r.t. Σ is a finite sequence

$$D\langle \sigma_1, h_1 \rangle J_1 \langle \sigma_2, h_2 \rangle J_2 \langle \sigma_3, h_3 \rangle J_3 \dots \langle \sigma_n, h_n \rangle J_n$$

and chase(D,Σ) is defined as the instance J_n

all applicable rules will eventually be applied

$$D\langle \sigma_1, h_1 \rangle J_1 \langle \sigma_2, h_2 \rangle J_2 \langle \sigma_3, h_3 \rangle J_3 \dots \langle \sigma_n, h_n \rangle J_n \dots$$

and chase (D,Σ) is defined as the instance $\bigcup_{k>0} J_k$ (with $J_0=D$)

least fixpoint of a monotonic operator - chase step

Chase: A Universal Model

Theorem: chase(D,Σ) is a universal model of $D\wedge\Sigma$

the result of the chase after k applications of the chase step

Proof:

- By construction, chase(D,Σ) ∈ models(D ∧ Σ)
- It remains to show that chase(D, Σ) can be homomorphically embedded into every other model of $D \wedge \Sigma$
- Fix an arbitrary instance $J \in \text{models}(D \land \Sigma)$. We need to show that there exists h such that $h(\text{chase}(D,\Sigma)) \subseteq J$
- By induction on the number of applications of the chase step, we show that for every $k \geq 0$, there exists h_k such that h_k (chase^[k](D, Σ)) $\subseteq J$, and h_k is compatible with h_{k-1}
- Clearly, $\bigcup_{k>0} h_k$ is a well-defined homomorphism that maps chase(D,Σ) to J
- The claim follows with h = ∪_{k >0} h_k

Chase: Uniqueness Property

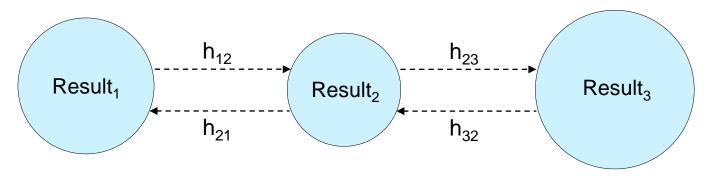
The result of the chase is not unique - depends on the order of rule application

$$D = \{P(a)\} \qquad \sigma_1 = \forall x \ (P(x) \to \exists y \ R(y)) \qquad \sigma_2 = \forall x \ (P(x) \to R(x))$$

$$Result_1 = \{P(a), \ R(z), \ R(a)\} \qquad \sigma_1 \ then \ \sigma_2$$

$$Result_2 = \{P(a), \ R(a)\} \qquad \sigma_2 \ then \ \sigma_1$$

But, it is unique up to homomorphic equivalence



• Thus, it is unique for query answering purposes

Query Answering via the Chase

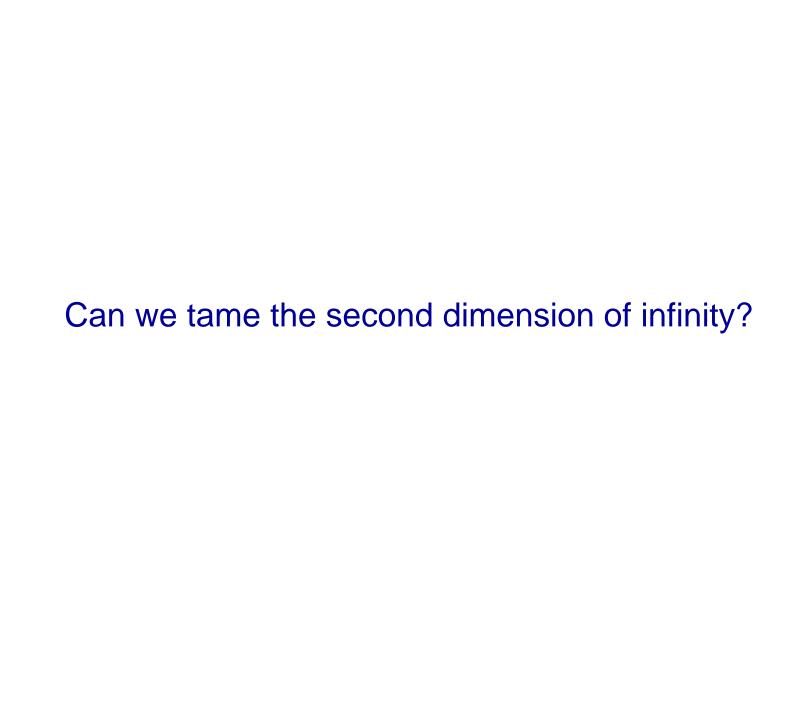
Theorem: $D \wedge \Sigma \models Q$ iff $U \models Q$, where U is a universal model of $D \wedge \Sigma$

Theorem: chase(D, Σ) is a universal model of $D \wedge \Sigma$

 $\downarrow \downarrow$

Corollary: $D \wedge \Sigma \vDash Q$ iff chase $(D,\Sigma) \vDash Q$

- We can tame the first dimension of infinity by exploiting the chase procedure
- What about the second dimension of infinity? the chase may be infinite



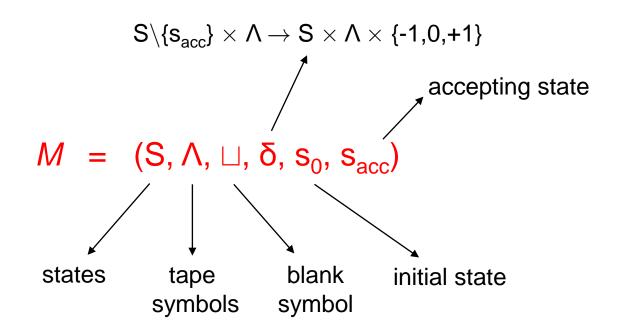
Undecidability of OBQA

arbitrary existential rules

Theorem: OBQA(∃RULES) is undecidable

Proof Idea: By simulating a deterministic Turing machine with an empty tape

Deterministic Turing Machine (DTM)



$$\delta(s_1, \alpha) = (s_2, \beta, +1)$$

IF at some time instant τ the machine is in sate s_1 , the cursor points to cell κ , and this cell contains α

THEN at instant $\tau+1$ the machine is in state s_2 , cell κ contains β , and the cursor points to cell $\kappa+1$

Undecidability of OBQA

arbitrary existential rules

Theorem: OBQA(∃RULES) is undecidable

Proof Idea: By simulating a deterministic Turing machine with an empty tape. Encode the computation of a DTM M with an empty tape using a database D, a set Σ of existential rules, and a BCQ Q such that $D \wedge \Sigma \models Q$ iff M accepts

How we ensure decidability of OBQA?

Gaining Decidability

By restricting the database

- $\{Start(c)\} \land \Sigma \models Q \text{ iff the DTM } M \text{ accepts}$
- The problem is undecidable already for singleton databases
- No much to do in this direction

By restricting the query language

- $D \wedge \Sigma \models Q$:- Accept(x) iff the DTM M accepts
- The problem is undecidable already for atomic queries
- No much to do in this direction

By restricting the ontology language

- Achieve a good trade-off between expressive power and complexity
- Field of intense research
- Any ideas?

What is the Source of Non-termination?

$$\forall x \; (\mathsf{Person}(\mathsf{x}) \to \exists \mathsf{y} \; (\mathsf{hasParent}(\mathsf{x}, \mathsf{y}) \land \mathsf{Person}(\mathsf{y})))$$

chase(D,Σ) = $D \cup \{\text{hasParent(john, } z_1), \text{Person}(z_1), \}$

hasParent(z_1 , z_2), Person(z_2),

hasParent(z_2 , z_3), Person(z_3), ...

- 1. Existential quantification
- 2. Recursive definitions

Termination of the Chase

- Drop the existential quantification
 - We obtain the class of full existential rules
 - Very close to Datalog

- Drop the recursive definitions
 - We obtain the class of acyclic existential rules
 - A.k.a. non-recursive existential rules

Full Existential Rules

A full existential rule is an existential rule of the form

$$\forall \mathbf{x} \forall \mathbf{y} \ (\varphi(\mathbf{x}, \mathbf{y}) \rightarrow \psi(\mathbf{x}))$$

We denote FULL the class of full existential rules

- A local property we can inspect one rule at a time
 - \Rightarrow given Σ , we can decide in linear time whether $\Sigma \in \mathsf{FULL}$
 - \Rightarrow closed under union $\Sigma_1 \in FULL$, $\Sigma_2 \in FULL \Rightarrow (\Sigma_1 \cup \Sigma_2) \in FULL$

But, is this a reasonable ontology language?

FULL and OWL 2 RL

- The acronym RL reflects its relation to rules
- FULL captures OWL 2 RL

```
Parent \sqcap Male \sqsubseteq Father \forall x \; (Parent(x) \land Male(x) \rightarrow Father(x))
```

```
\exists parentOf.\exists parentOf.T \sqsubseteq Grandfather
\forall x \forall y \ (parentOf(x,y) \land parentOf(y,z) \rightarrow Grandfather(x))
```

```
MetalDevice \sqsubseteq \forall \text{hasPart.Metal} \forall x \forall y \; (\text{MetalDevice}(x) \land \text{hasPart}(x,y) \rightarrow \text{Metal}(y))
```

FULL and OWL 2 RL

- The acronym RL reflects its relation to rules
- FULL captures OWL 2 RL

```
childOf \circ childOf \sqsubseteq grandchildOf \forall x \forall y \forall z \text{ (childOf(x,y) } \land \text{ childOf(y,z)} \rightarrow \text{grandchildOf(x,z))}
```

```
Person \sqsubseteq \exists_{\leq 1} hasPassport.Valid \forall x \forall y \forall z \; (Person(x) \land hasPassport(x,y) \land Valid(y) \land hasPassport(x,z) \land Valid(z) \rightarrow y = z)
```

Disj(childOf, parentOf) $\forall x \forall y \text{ (childOf}(x,y) \land parentOf(x,y) \rightarrow \bot)$

Full Existential Rules

A full existential rule is an existential rule of the form

$$\forall X \forall Y (\varphi(X,Y) \rightarrow \psi(X))$$

We denote FULL the class of full existential rules

- A local property we can inspect one rule at a time
 - \Rightarrow given Σ , we can decide in linear time whether $\Sigma \in \mathsf{FULL}$
 - \Rightarrow closed under union $\Sigma_1 \in FULL$, $\Sigma_2 \in FULL \Rightarrow (\Sigma_1 \cup \Sigma_2) \in FULL$

But, is this a reasonable ontology language? OWL 2 RL

Full Existential Rules

Consider a database D and a set Σ∈ FULL

• chase
$$(D,\Sigma)\subseteq \{P(c_1,\ldots,c_n)\mid (c_1,\ldots,c_n)\in adom(D)^n \text{ and } P\in sch(\Sigma)\}$$
 active domain - constants occurring in D schema - predicates occurring in Σ

maximum number of tuples with terms of adom(*D*)

•
$$|\operatorname{chase}(D,\Sigma)| \leq |\operatorname{sch}(\Sigma)| \cdot (|\operatorname{adom}(D)|)^{\operatorname{maxarity}}$$
 $\operatorname{maxarity} = \operatorname{max}_{P \in \operatorname{sch}(\Sigma)} \{\operatorname{arity}(P)\}$

maximum number of atoms with predicates of $sch(\Sigma)$ and terms of adom(D)

Complexity Measures for OBQA

OBQA(L)

Input: database D, existential rules $\Sigma \in L$, CQ $Q(\mathbf{x})$, tuple $\mathbf{t} \in \text{adom}(D)^{|\mathbf{X}|}$

Question: $\mathbf{t} \in \text{certain-answers}(\mathbf{Q}, \langle D, \Sigma \rangle) = \bigcap_{J \in \text{models}(D \wedge \Sigma)} \mathbf{Q}(J)$?

- Data complexity: is calculated by considering only the database as part of the input, while the ontology and the query are fixed OBQA_{Σ,Q}(L)
- Combined complexity: is calculated by considering, apart from the database,
 also the ontology and the query as part of the input

Data Complexity of FULL

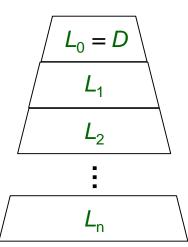
Theorem: OBQA_{Σ , \bigcirc}(**FULL**) is in PTIME

Proof: Consider a database D, a set $\Sigma \in FULL$, and a (Boolean) CQ Q

We apply the naïve algorithm:

- 1. Construct chase (D, Σ)
- 2. Check for the existence of a homomorphism h such that $h(Q) \subseteq chase(D,\Sigma)$

Step 1: We construct the chase level-by-level



- From L_k to L_{k+1}: for each σ ∈ Σ, find all the homomorphisms h such that h(body(σ)) ⊆ L_k, and add to L_k the set of atoms h(head(σ))
- **Stop** when $L_k = L_{k+1}$

$$|\Sigma| \cdot (|adom(D)|)^{maxvariables(\Sigma)} \cdot maxbody(\Sigma) \cdot |L_k|$$

Theorem: OBQA_{Σ ,Q}(**FULL**) is in PTIME

Proof: Consider a database D, a set $\Sigma \in FULL$, and a (Boolean) CQ Q

We apply the naïve algorithm:

- 1. Construct chase (D, Σ)
- 2. Check for the existence of a homomorphism h such that $h(Q) \subseteq chase(D, \Sigma)$

Step 1: We construct the chase level-by-level in time

$$(k-1) \cdot |\Sigma| \cdot (|adom(D)|)^{maxvariables(\Sigma)} \cdot maxbody(\Sigma) \cdot |L|$$

where $k, |L| \leq |chase(D,\Sigma)| \leq |sch(\Sigma)| \cdot (|adom(D)|)^{maxarity}$

Theorem: OBQA_{Σ ,Q}(**FULL**) is in PTIME

Proof: Consider a database D, a set $\Sigma \in FULL$, and a (Boolean) CQ Q

We apply the naïve algorithm:

- 1. Construct chase (D, Σ)
- 2. Check for the existence of a homomorphism h such that $h(Q) \subseteq chase(D, \Sigma)$

Step 2: By applying similar analysis, we can show that the existence of h can be checked in time

$$(|adom(D)|)^{\#variables(Q)} \cdot |Q| \cdot |chase(D,\Sigma)|$$

where $|\operatorname{chase}(D,\Sigma)| \leq |\operatorname{sch}(\Sigma)| \cdot (|\operatorname{adom}(D)|)^{\operatorname{maxarity}}$

Theorem: OBQA_{Σ , \bigcirc}(**FULL**) is in PTIME

Proof: Consider a database D, a set $\Sigma \in FULL$, and a (Boolean) CQ Q

We apply the naïve algorithm:

- 1. Construct chase (D, Σ)
- 2. Check for the existence of a homomorphism h such that $h(Q) \subseteq chase(D, \Sigma)$

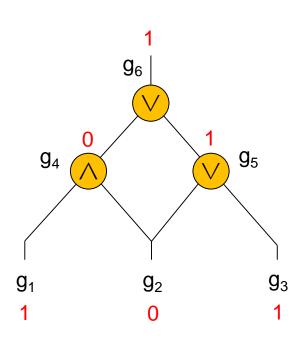
Consequently, in the worst case, the naïve algorithm runs in time

```
(|\mathrm{sch}(\Sigma)| \cdot (|\mathrm{adom}(D)|)^{\mathrm{maxarity}})^2 \cdot |\Sigma| \cdot (|\mathrm{adom}(D)|)^{\mathrm{maxvariables}(\Sigma)} \cdot \mathrm{maxbody}(\Sigma) \\ + \\ (|\mathrm{adom}(D)|)^{\mathrm{#variables}(Q)} \cdot |Q| \cdot |\mathrm{sch}(\Sigma)| \cdot (|\mathrm{adom}(D)|)^{\mathrm{maxarity}}
```

We cannot do better than the naïve algorithm

Theorem: OBQA_{Σ ,Q}(**FULL**) is PTIME-hard

Proof: By a LOGSPACE reduction from Monotone Circuit Value problem



Does the circuit evaluate to true?

encoding of the circuit as a database D

$$T(g_1) \quad T(g_3)$$

$$\mathsf{AND}(g_4,g_1,g_2) \quad \mathsf{OR}(g_5,g_2,g_3) \quad \mathsf{OR}(g_6,g_4,g_5)$$

evaluation of the circuit via a *fixed* set Σ

$$\forall x \forall y \forall z \ (T(x) \land OR(z,x,y) \rightarrow T(z))$$

$$\forall x \forall y \forall z \ (T(y) \land OR(z,x,y) \rightarrow T(z))$$

$$\forall x \forall y \forall z \ (T(x) \land T(y) \land AND(z,x,y) \rightarrow T(z))$$

Circuit evaluates to *true* iff $D \wedge \Sigma \models T(g_6)$

Combined Complexity of FULL

Theorem: OBQA(FULL) is in EXPTIME

Proof: Consider a database D, a set $\Sigma \in \text{FULL}$, and a BCQ Q

We apply the naïve algorithm:

- 1. Construct chase (D, Σ)
- 2. Check for the existence of a homomorphism h such that $h(Q) \subseteq chase(D, \Sigma)$

Consequently, in the worst case, the naïve algorithm runs in time

```
(|\mathrm{sch}(\Sigma)| \cdot (|\mathrm{adom}(D)|)^{\mathrm{maxarity}})^2 \cdot |\Sigma| \cdot (|\mathrm{adom}(D)|)^{\mathrm{maxvariables}(\Sigma)} \cdot \mathrm{maxbody}(\Sigma) \\ + \\ (|\mathrm{adom}(D)|)^{\mathrm{#variables}(Q)} \cdot |Q| \cdot |\mathrm{sch}(\Sigma)| \cdot (|\mathrm{adom}(D)|)^{\mathrm{maxarity}}
```

Combined Complexity of **FULL**

We cannot do better than the naïve algorithm

Theorem: OBQA(FULL) is in EXPTIME-hard

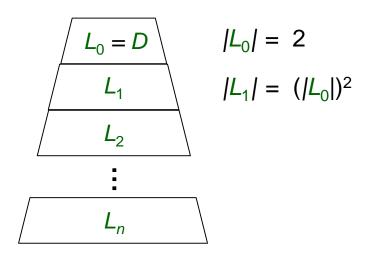
Proof: By simulating a deterministic exponential time Turing machine

Termination of the Chase

- Drop the existential quantification
 - We obtain the class of full existential rules
 - Very close to Datalog

- Drop the recursive definitions
 - We obtain the class of acyclic existential rules
 - A.k.a. non-recursive existential rules

...the naïve algorithm is not clever enough

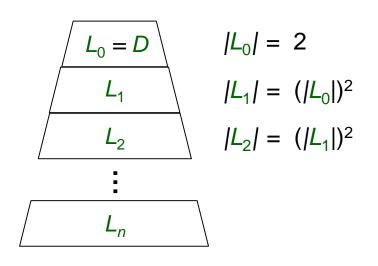


$$D = \{P_0(0), P_0(1)\}$$

$$\begin{split} \Sigma &= \{ \forall x \forall y \ (P_0(x) \land P_0(y) \rightarrow \exists z \ (S_1(x,y,z) \land P_1(z))) \\ &\forall x \forall y \ (P_1(x) \land P_1(y) \rightarrow \exists z \ (S_2(x,y,z) \land P_2(z))) \\ &\cdots \end{split}$$

 $\forall x \forall y \ (P_{n-1}(x) \land P_{n-1}(y) \rightarrow \exists z \ (S_n(x,y,z) \land P_n(z)))$

$$\begin{array}{c|cccc} & & & & & & \\ \hline 0 & 0 & z_{00} \\ 0 & 1 & z_{01} \\ 1 & 0 & z_{10} \\ 1 & 1 & z_{11} \\ \end{array}$$



$$\begin{split} D &= \{ \mathsf{P}_0(0), \, \mathsf{P}_0(1) \} \\ \Sigma &= \{ \forall x \forall y \, \left(\mathsf{P}_0(x) \land \mathsf{P}_0(y) \to \exists z \, \left(\mathsf{S}_1(x,y,z) \land \mathsf{P}_1(z) \right) \right) \\ &\forall x \forall y \, \left(\mathsf{P}_1(x) \land \mathsf{P}_1(y) \to \exists z \, \left(\mathsf{S}_2(x,y,z) \land \mathsf{P}_2(z) \right) \right) \\ &\cdots \\ &\forall x \forall y \, \left(\mathsf{P}_{n-1}(x) \land \mathsf{P}_{n-1}(y) \to \exists z \, \left(\mathsf{S}_n(x,y,z) \land \mathsf{P}_n(z) \right) \right) \} \end{split}$$

		L_2
z ₀₀	z ₀₀	z ₀₀₀₀
z ₀₀	Z ₀₁	Z ₀₀₀₁
z ₀₀	Z ₁₀	Z ₀₀₁₀
z ₀₀	Z ₁₁	Z ₀₀₁₁
Z ₀₁	Z ₀₀	Z ₀₁₀₀
Z ₀₁	Z ₀₁	Z ₀₁₀₁
Z ₀₁	Z ₁₀	Z ₀₁₁₀
Z ₀₁	Z ₁₁	Z ₀₁₁₁
Z ₁₀	Z ₀₀	Z ₁₀₀₀
Z ₁₀	Z ₀₁	Z ₁₀₀₁
Z ₁₀	Z ₁₀	Z ₁₀₁₀
Z ₁₀	Z ₁₁	Z ₁₀₁₁
Z ₁₁	z ₀₀	Z ₁₁₀₀
Z ₁₁	z ₀₁	Z ₁₁₀₁
Z ₁₁	Z ₁₀	Z ₁₁₁₀
Z ₁₁	Z ₁₁	Z ₁₁₁₁

$$D = \{P_0(0), P_0(1)\}$$

$$\begin{split} \Sigma &= \{ \forall x \forall y \ (P_0(x) \land P_0(y) \rightarrow \exists z \ (S_1(x,y,z) \land P_1(z))) \\ &\forall x \forall y \ (P_1(x) \land P_1(y) \rightarrow \exists z \ (S_2(x,y,z) \land P_2(z))) \\ &\cdots \end{split}$$

 $\forall x \forall y \ (P_{n-1}(x) \land P_{n-1}(y) \rightarrow \exists z \ (S_n(x,y,z) \land P_n(z)))$

$$Z_{0...0}$$
 $Z_{0...0}$ $Z_{0...00...0}$... $Z_{1,1}$ $Z_{1,1}$ $Z_{1,1}$ $Z_{1,1}$

$$|L_n| = 2^{(2^n)}$$

$$D = \{P_0(0), P_0(1)\}$$

$$\begin{split} \Sigma &= \{ \forall x \forall y \ (P_0(x) \land P_0(y) \rightarrow \exists z \ (S_1(x,y,z) \land P_1(z))) \\ &\forall x \forall y \ (P_1(x) \land P_1(y) \rightarrow \exists z \ (S_2(x,y,z) \land P_2(z))) \end{split}$$

...

$$\forall x \forall y \ (P_{n-1}(x) \land P_{n-1}(y) \rightarrow \exists z \ (S_n(x,y,z) \land P_n(z)))\}$$

Complexity of **ACYCLIC**

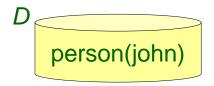
- The naïve algorithm shows OBQA(ACYCLIC) is
 - in PTIME w.r.t. the data complexity
 - in 2EXPTIME w.r.t. the combined complexity

...however, we can do better than the naïve algorithm

Theorem: It holds that

- OBQA_{Σ,Q}(FULL) is in LOGSPACE (data complexity)
- OBQA(FULL) is NEXPTIME-complete (combined complexity)

Our Simple Example



chase(
$$D,\Sigma$$
) = $D \cup \{\text{hasParent(john, } z_1), \text{Person}(z_1), \}$

hasParent(
$$z_1, z_2$$
), Person(z_2),

hasParent(
$$z_2$$
, z_3), Person(z_3), ...

Existential quantification & recursive definitions are key features for modelling ontologies

Research Challenge

We need classes of existential rules such that

- Existential quantification and recursive definition coexist
 - ⇒ the chase may be infinite
- OBQA is decidable, and tractable w.r.t. the data complexity

 \Downarrow

Tame the infinite chase:

Deal with infinite structures without explicitly building them

Linear Existential Rules

A linear existential rule is an existential rule of the form

$$\forall \mathbf{x} \forall \mathbf{y} \ (\mathsf{P}(\mathbf{x},\mathbf{y}) \to \exists \mathbf{z} \ \psi(\mathbf{x},\mathbf{z}))$$
 single atom

We denote LINEAR the class of linear existential rules

- A local property we can inspect one rule at a time
 - \Rightarrow given Σ , we can decide in linear time whether $\Sigma \in \mathsf{LINEAR}$
 - ⇒ closed under union

But, is this a reasonable ontology language?

LINEAR vs. DL-Lite

DL-Lite: Popular family of DLs - at the basis of the OWL 2 QL profile of OWL 2

DL-Lite Axioms	First-order Representation
A ⊑ B	$\forall x \ (A(x) \rightarrow B(x))$
A ⊑ ∃R	$\forall x (A(x) \rightarrow \exists y R(x,y))$
∃R ⊑ A	$\forall x \forall y \ (R(x,y) \rightarrow A(x))$
∃R ⊑∃P	$\forall x \forall y \ (R(x,y) \rightarrow \exists z \ P(x,z))$
A ⊑ ∃R.B	$\forall x \ (A(x) \rightarrow \exists y \ (R(x,y) \land B(y)))$
R ⊑ P	$\forall x \forall y \ (R(x,y) \rightarrow P(x,y))$
A ⊑ ¬B	$\forall x \ (A(x) \land B(x) \rightarrow \bot)$

Linear Existential Rules

A linear existential rule is an existential rule of the form

$$\forall \mathbf{X} \forall \mathbf{Y} \ (P(\mathbf{X}, \mathbf{Y}) \to \exists \mathbf{Z} \ \psi(\mathbf{X}, \mathbf{Z}))$$
 single atom

We denote LINEAR the class of linear existential rules

- A local property we can inspect one rule at a time
 - \Rightarrow given Σ , we can decide in linear time whether $\Sigma \in LINEAR$
 - ⇒ closed under union

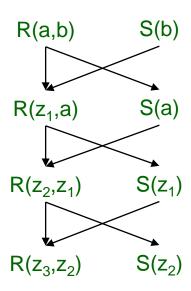
But, is this a reasonable ontology language? OWL 2 QL

Chase Graph

The chase can be naturally seen as a graph - chase graph

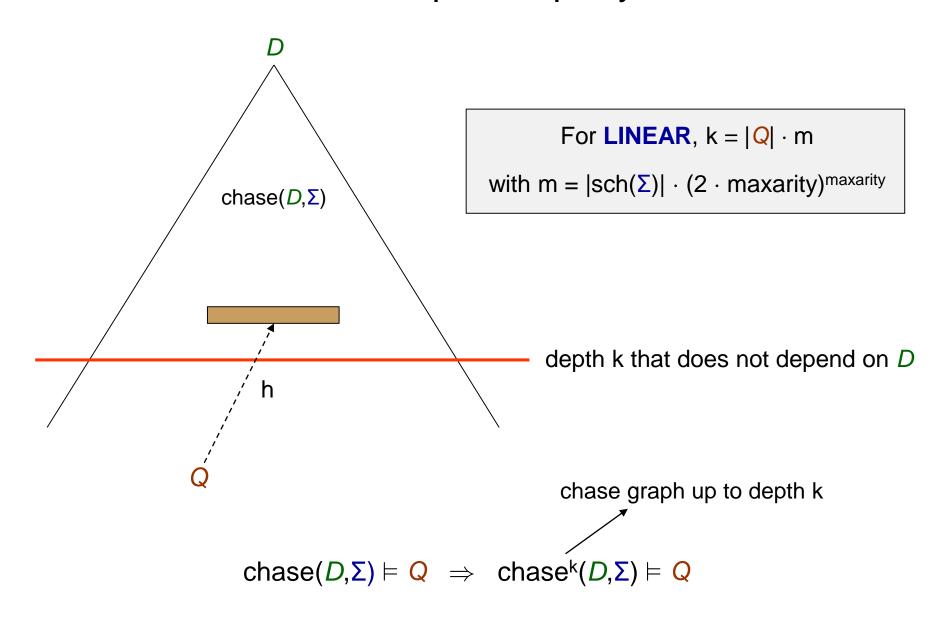
$$D = \{R(a,b), S(b)\}$$

$$\Sigma = \begin{cases} \forall x \forall y \ (R(x,y) \land S(y) \rightarrow \exists z \ R(z,x)) \\ \forall x \forall y \ (R(x,y) \rightarrow S(x)) \end{cases}$$



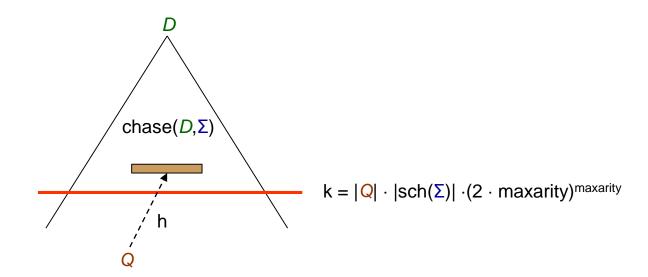
For LINEAR the chase graph is a forest

Bounded Derivation-Depth Property



The Blocking Algorithm for LINEAR

- The blocking algorithm shows that OBQA(LINEAR) is
 - in PTIME w.r.t. the data complexity
 - in 2EXPTIME w.r.t. the combined complexity



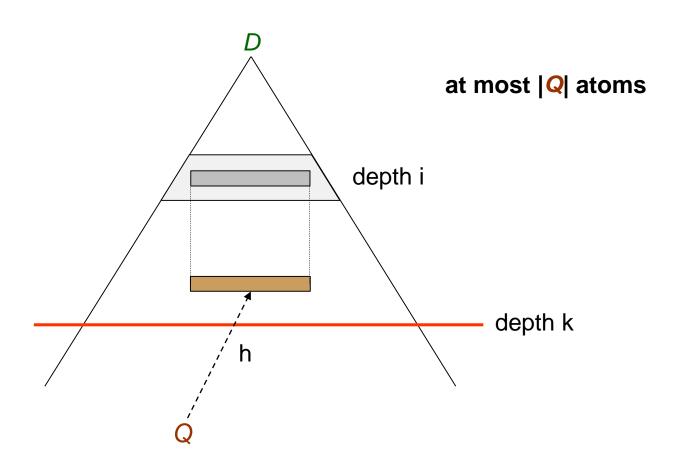
Complexity of LINEAR

...but, we can do better than the blocking algorithm

Theorem: It holds that

- OBQA_{Σ,Q}(LINEAR) is in LOGSPACE (data complexity)
- OBQA(LINEAR) is PSPACE-complete (combined complexity)

Key Observation



non-deterministic, level-by-level construction

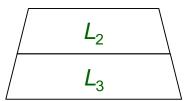
Theorem: OBQA(LINEAR) is in PSPACE

$$\begin{array}{|c|c|}
\hline
L_0 = D \\
\hline
L_1
\end{array}$$

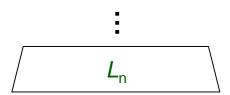
Theorem: OBQA(LINEAR) is in PSPACE

$$L_1$$
 L_2

Theorem: OBQA(LINEAR) is in PSPACE



Theorem: OBQA(LINEAR) is in PSPACE



Theorem: OBQA(LINEAR) is in PSPACE

- At each step we need to maintain
 - O(|Q|) atoms
 - A counter ctr $\leq |Q|^2 \cdot |\operatorname{sch}(\Sigma)| \cdot (2 \cdot \operatorname{maxarity})^{\operatorname{maxarity}}$
- Thus, we need polynomial space
- The claim follows since NPSPACE = PSPACE

We cannot do better than the previous algorithm

Theorem: OBQA(LINEAR) is PSPACE-hard

Proof: By simulating a deterministic polynomial space Turing machine

Our Goal: Encode the polynomial space computation of a DTM M on input string I

using a database D, a set $\Sigma \in LINEAR$, and a (Boolean) CQ Q such that

 $D \wedge \Sigma \models Q$ iff M accepts I using at most $n = |I|^k$ cells

- Assume that the tape alphabet is {0,1,□}
- Suppose that M halts on $I = \alpha_1 \dots \alpha_m$ using $n = m^k$ cells, for k > 0

Initial configuration - the database D

Config(
$$s_{init}, \alpha_1, ..., \alpha_m, \sqcup, ..., \sqcup, 1, 0, ..., 0$$
)
$$n - m \qquad n - 1$$

- Assume that the tape alphabet is {0,1,□}
- Suppose that M halts on $I = \alpha_1 \dots \alpha_m$ using $n = m^k$ cells, for k > 0

Transition rule -
$$\delta(s_1, \alpha) = (s_2, \beta, +1)$$

for each $i \in \{1,...,n\}$:

$$\forall \mathbf{x} \; (Config(s_1, x_1, ..., x_{i-1}, \alpha, x_{i+1}, ..., x_n, 0, ..., 0, 1, 0, ..., 0) \rightarrow$$

Config(
$$s_2, x_1, ..., x_{i-1}, \beta, x_{i+1}, ..., x_n, 0, ..., 0, 1, 0, ..., 0$$
)

- Assume that the tape alphabet is {0,1,□}
- Suppose that M halts on $I = \alpha_1 \dots \alpha_m$ using $n = m^k$ cells, for k > 0

$$D \wedge \Sigma \models Q$$
: - Config(s_{acc},**X**) iff *M* accepts *I*

...but, the rules are not constant-free we can eliminate the constants by applying a simple trick

Initial configuration - the database D

auxiliary constants for the states and the tape alphabet

Config(
$$s_{init}$$
, α_1 ,..., α_m , \sqcup ,..., \sqcup ,1,0,...,0, s_1 ,... s_ℓ ,0,1, \sqcup)
$$n-m \qquad n-1$$

Transition rule - $\delta(s_1,0) = (s_2, \sqcup, +1)$

for each $i \in \{1,...,n\}$:

$$Config(s_{1},x_{1},...,x_{i-1},z,x_{i+1},...,x_{n},z,...,z,o,z,...,z,s_{1},...,s_{\ell},z,o,b) \rightarrow \\ Config(s_{2},x_{1},...,x_{i-1},b,x_{i+1},...,x_{n},z,...,z,o,z,...,z,s_{1},...,s_{\ell},z,o,b) \\ i \quad n-i-1$$

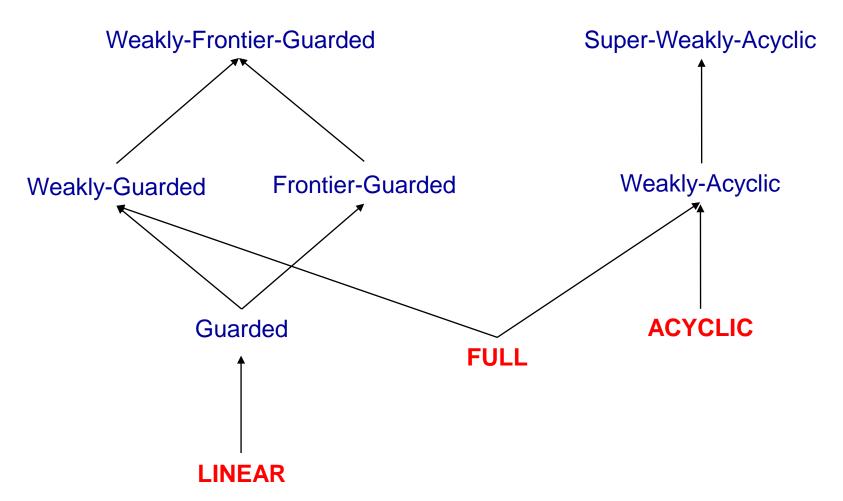
(∀-quantifiers are omitted)

Sum Up

	Data Complexity	
FULL	PTIME-c	Naïve algorithm
		Reduction from Monotone Circuit Value problem
ACYCLIC	in LOGSPACE	Query rewriting
LINEAR	III LOGSPACE	Query rewriting

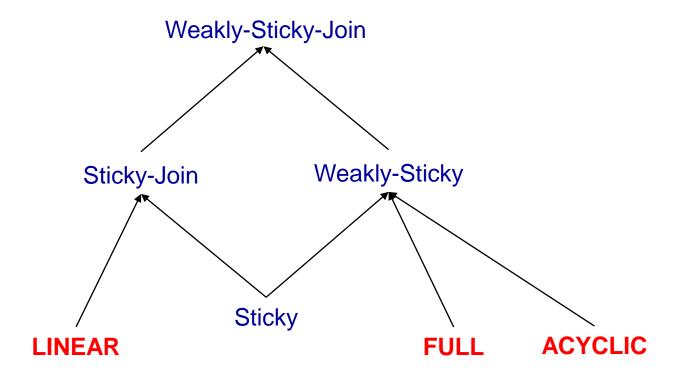
	Combined Complexity	
FULL	EXPTIME-c	Naïve algorithm
		Simulation of a deterministic exponential time TM
ACYCLIC	NEXPTIME-c	Small witness property
		Reduction from a Tiling problem
LINEAR	PSPACE-c	Level-by-level non-deterministic algorithm
		Simulation of a deterministic polynomial space TM

Several Other Languages Exist



Field of intense research

Several Other Languages Exist



Field of intense research

Additional Modelling Features

Counting quantifiers - very little is known

$$\forall x \ (Professor(x) \rightarrow \exists_{<4} y \ (supervisorOf(x,y) \land Student(y))$$

Default negation (or negation as failure) - relatively well-understood

$$\forall x \; (Number(x) \rightarrow \exists y \; (hasSucc(x,y) \land Number(y))$$

 $\forall x \; (Number(x) \land not \; Even(x) \rightarrow Odd(x))$
 $\forall x \; (Number(x) \land not \; Odd(x) \rightarrow Even(x))$

Disjunction - relatively well-understood

$$\forall x \ (Number(x) \rightarrow Even(x) \lor Odd(x))$$