the rest of this course

Volume Veracity
size does mattes data is often

(thousands of TBs of data) incomplete/inconsistent

v

HGH g W5 LOBS TIPES e

T 1 ELAIEET — TRIGEER oo 22
= U0l LEcTon = ENRACED Dﬁms i Uﬂ”
TOOLS TRiNsFER MJM.YHS = mam:éﬂs'rNESS OFTWARE, 24 s MAKRS
ok SHARING ciiuze DECISION SIS PHUEESSlNE =
(1]

S .|- n H A E E P GENOMICS LUSFEEI] iq Fﬂ[][:ESS AEPORT = El} EUHME

I]PHMIZATIUH = TN
IAGEVET PROCESSIG

S TR E LN

PETABYTE sgmuumz VAHlETY = =

EH%LE“ﬁfFHE[f'[@ﬁ x 2 2 RO e 2 SIETES S5
= orruone't B g V = ol nguws
= eSS = '”,gv =0 mﬁiﬁﬁu

w g o SOURCES S Er—-
= SEARCH STSTEMSSIE

VISLALIZATION

Variety
many data formats
(structured, semi-structured, etc.)

v

Ontology-Based Data Access

Advanced Topics in Foundations of Databases, University of Edinburgh, 2017/18

ideal information system

HEH gy TSBT LOES THPES

B THNES
= %:NJLL'EEBTM = = Dt me 0T DENSITY
= RIS RIS
1O0LS s WS 1= ;M!é“u‘sfﬁs SESDHWﬂHE e sy 06
ot SHARING ciize - = s PROCESSING S
OECISI0 SPEEI] ERLR Rl
S .|- n H A E E =S B GENTMICS = mUEE K:) EUHME
g - . OPTIMIZATION = mouarres == = .>_— E =
EH&LLENGES‘\‘E“!FAEEWHMWG[H T o g PETBYTES WMOUNT = S VAH|E” gimﬁ
DIFF cRcn El = m = RELATIONAL werconoosy % STAIISTICS &5 =
EXPLI]HEW == = RANGE L1 s

aRuL e, wews

= L MMME
o SURCES 2 o

WSUALIZATION

iIn many modern organizations

information
needed

achieve transparency

via an ontology

special purpose guery

What is an Ontology?

An engineering artifact; its objective is to provide

an specification of ajconceptualization

an abstract model of (some aspect of) the world

using unambiguous language, typically logic

What is an Ontology?

1. Introduces vocabulary relevant to a domain

2. Specifies the meaning (semantics) of the terms

Heart is a muscular organ that is part of

the circulatory system

vx (Heart(x) — MuscularOrgan(x) A
3y (isPartOf(x,y) A
CirculatorySystem(y)))

Ontology-Based Data Access (OBDA)

XML

Mapping

A
O
o

v

Ontology

A

Query a7 i;

use an ontology as a mediator

What are Ontologies Good For?

RDB

~
~
~

Mapping \f

Ontology

1. Integrate different data sources (variety)

Conceptual “global view” of the data

Access data in a uniform and transparent way

2. Support automated reasoning (incompleteness)

Implicit consequences are taken into account

More complete answers

Incomplete Data Sources

Professors are teaching staff

Someone who teaches is teaching staff

~
~

Mapping ™
RDB PPIY » Ontology

7
7
7
7

) Query |

Alice is a professor

Bob teaches CS100

Find all teaching staff

Expected answer = {Alice, Bob}

Ontology-Based Data Access: Example

Ontology 2 - high level representation of the domain of interest

Vx (Researcher(x) — dy (worksFor(x,y) A Project(y)))
vx (Project(x) — dy (worksFor(y,x) A Researcher(y)))
VxVy (worksFor(x,y) — Researcher(x) A Project(y))

vx (Project(x) — 3y (ProjectName(x,y)))

Ontology-Based Data Access: Example

Relational database D - a single database that represents the sources

workslin SSN Name
100 AAA
200 BBB

300 CCC

Ontology-Based Data Access: Example

Relational database D - a single database that represents the sources

worksln SSN Name
100 AAA
200 BBB
300 CCC

the researcher with SSN 100 works for the project with name “AAA”

Ontology-Based Data Access: Example

Mapping M - semantically link data at the sources with the ontology

SELECT SSN, Name
FROM worksln

Researcher(person(SSN)) A
Project(proj(Name)) A
worksFor(person(SSN), proj(Name)) A

ProjectName(proj(Name), Name)

Ontology-Based Data Access: Example

Mapping M - semantically link data at the sources with the ontology

Researcher(person(SSN)) A
SELECT SSN, Name Project(proj(Name)) A
FROM workslIn worksFor(person(SSN), proj(Name)) A

ProjectName(proj(Name), Name)

» Constructors to create objects from tuples of values in the database

* The constructors are simply Skolem functions

Ontology-Based Data Access: Example

Virtual data layer M(D)

worksin | SSN Name Researcher(person(SSN)) A
100 AAA SELECT SSN, Name Project(proj(Name)) A
200 BBB FROM worksIn ~ worksFor(person(SSN), proj(Name)) A
300 CCC ProjectName(proj(Name), Name)

Researcher(person(100)), Project(proj(AAA)), worksFor(person(100), proj(AAA)),
ProjectName(proj(AAA), AAA),

Ontology-Based Data Access: Example

Virtual data layer M(D)

worksin | SSN Name

Researcher(person(SSN)) A

100 AAA SELECT SSN, Name Project(proj(Name)) A

200 BBB FROM worksIn worksFor(person(SSN), proj(Name)) A

ProjectName(proj(Name), Name)

300 CCC

Researcher(person(100)), Project(proj(AAA)), worksFor(person(100), proj(AAA)),
ProjectName(proj(AAA), AAA),
Researcher(person(200)), Project(proj(BBB)), worksFor(person(200), proj(BBB)),
ProjectName(proj(BBB), BBB),

Ontology-Based Data Access: Example

Virtual data layer M(D)

worksln N | Nam
orks SS ame Researcher(person(SSN)) A

100 AAA SELECT SSN, Name Project(proj(Name)) A
200 BBB FROM worksIn ~ worksFor(person(SSN), proj(Name)) A
300 CCC ProjectName(proj(Name), Name)

Researcher(person(100)), Project(proj(AAA)), worksFor(person(100), proj(AAA)),
ProjectName(proj(AAA), AAA),
Researcher(person(200)), Project(proj(BBB)), worksFor(person(200), proj(BBB)),
ProjectName(proj(BBB), BBB),
Researcher(person(300)), Project(proj(CCC)), worksFor(person(300), proj(CCC)),
ProjectName(proj(CCC), CCC)

Query Answering in OBDA

ﬂ)BDA

Ontology 2

Data Laye

M(D)

/ Napping M

"

/

 The sources and the mapping define a virtual data layer M(D)

Query Answering in OBDA
Query Q

ﬂ)BDA \

Ontology 2

Data Layer

M(D)

pad 4 AN

/ wappingl\/l
5 E souce |0 p

 The sources and the mapping define a virtual data layer M(D)

e Queries are answered against the knowledge base (M(D), Z)

Query Answering in OBDA
Query Q

/OBDA

Ontology 2

Data Laye

M(D)

Ontology-Based Query Answering

Ontology-Based Query Answering (OBQA)

database

knowledge base
Y
N
Ont0|0gy/ @
s \i/

certain-answers(Q, (D.E) = ;. pnodeiso 5y Q)

(formal definitions later - once we fix the languages)

Ontology-Based Query Answering (OBQA)

database

knowledge base
Y
N
Ont0|0gy/ @
s \i/

NOTE: OBQA is not OBDA, but a crucial task in OBDA

We should talk about OBDA only in the presence of external sources and mappings

Issues in Ontology-Based Query Answering

What is the right ontology language?

* A wide spectrum of languages that differ in expressive power and

computational complexity (e.g., description logics, existential rules)

« Scalability to very large amounts of data is a key

What is the right query language?

* Well-known languages from database theory (e.g., conjunctive queries)

Few Words on Description Logics (DLS)

DLs are well-behaved fragments of first-order logic
« Several DL-based languages exist (from lightweight to very expressive logics)

« Strongly influenced the W3C standard Web Ontology Language OWL

e Syntax: We start from a vocabulary with
— Concept names: atomic classes or unary predicates, e.g., Parent, Person
— Role names: atomic relations or binary predicates, e.g., hasParent
and we build axioms
— Person C dhasParent.Parent - each person has a parent

— Parent C Person - each parentis a person

« Semantics: Via first-order interpretations

DL-Lite Family

DL-Lite: Popular family of DLs - at the basis of the OWL 2 QL profile of OWL 2

DL-Lite Axioms First-order Representation

ACB VX (A(X) = B(X))

ALC 3R VX (A(X) = 3y R(X,Y))
JRCA Vxvy (R(X,Y) = A(X))

IR C 3P Vxvy (R(Xy) = 3z P(x,2))

ALC JR.B X (A(x) = 3y (R(x,y) A B(y)))
RCP vXvy (R(x,y) = P(xy))
AC -B VX (A(X) A B(X) > L)

The Description Logic EL

EL: Popular DL for biological applications - at the basis of the OWL 2 EL profile

EL Axioms First-order Representation
ACB VX (A(X) = B(X))
AMBLCC VX (A(X) A B(X) = C(X))
ACJR.B VX (A(x) = 3y (R(x,y) A B(y)))
SR.BCA VXYY (R(X,Y) A B(y) = A(X))

...several other, more expressive, description logics exist

...but, in what follows we focus on existential rules

an alternative way for representing ontologies

A Simple Example

Vx (Researcher(x) — dy (worksFor(x,y) A Project(y)))
vx (Project(x) —» dy (worksFor(y,x) A Researcher(y)))
VxVy (worksFor(x,y) — Researcher(x) A Project(y))

Vx (Project(x) — Jy (ProjectName(x,y)))

Some Terminology

Our basic vocabulary:

— Acountable set C of constants - domain of a database
— Acountable set N of (labeled) nulls - globally 3-quantified variables

— Acountable set V of (regular) variables - used in rules and queries

A term is a constant, null or variable

An atom has the form R(t,, ..., t)) - R s an n-ary relation and t’s are terms

An instance is a (possibly infinite) set of atoms with constants and nulls

A database is a finite instance with only constants

Syntax of Existential Rules

An existential rule is an expression

VXY ((x,Y) = 32 Y(x,2))
e

body head

* X,y and z are tuples of variables of V

* (X,y) and ¥(x,z) are (constant-free) conjunctions of atoms

...a.k.a. tuple-generating dependencies and Datalog* rules

Semantics of Existential Rules

 Aninstance Jis a model of the rule
0 = VXVY (p(X,y) = 3z ¥(x,2))
written as J F o, if the following holds:
whenever there exists a homomorphism h such that h(p(x,y)) C J,

then there exists g 2 h,, such that g(¥(x,z)) C J

\

{t > h(t) |t € x} - the restriction of h to x

e Given a set 2 of existential rules, J is a model of Z, written as J E 2, if the

following holds: foreachoc e 2, JF o

« JE 2 iff Jis amodel of the first-order theory /\0 cs O

Ontology-Based Query Answering (OBQA)

database

knowledge base
N
N
0nt0|09y/ @
3 \i/

~
~
~
‘~__ Q

existential rules conjunctive queries

VXYY (p(Xy) = 3z 1(X,2)) Q(X) - Ry(Va);.Ry(Vi)

Ontology-Based Query Answering (OBQA)

database

knowledge base
Y
N

(D,2)

ont0|09y/ @
z —

~
~
~
~~__ Q

certain-answers(Q, (D,2)) = ﬂjemodeB(D Ax QW)

\

{J1J>DandJE 2}

Exercise: Compute the Certain Answers

D = {Person(john), Person(bob), Person(tom),
hasFather(john,bob), hasFather(bob,tom)}

> = {vx (Person(x) — dy hasFather(x,y)),
VxVvy (hasFather(x,y) — Person(x) /A Person(y))}

Q.(x,y) :- hasFather(x,y)
Q,(x) :- hasFather(x,y)
Q;(x) :- hasFather(x,y), hasFather(y,z), hasFather(z,w)

Q,(x,w) :- hasFather(x,y), hasFather(y,z), hasFather(z,w)

Exercise: Compute the Certain Answers

D = {Person(john), Person(bob), Person(tom),
hasFather(john,bob), hasFather(bob,tom)}

2 = {vx (Person(x) — 3y hasFather(x,y)),
vxvy (hasFather(x,y) — Person(x) /\ Person(y))}

Q,(x,y) :- hasFather(x,y)

{(john,bob), (bob,tom)}

Exercise: Compute the Certain Answers

D = {Person(john), Person(bob), Person(tom),
hasFather(john,bob), hasFather(bob,tom)}

2 = {vx (Person(x) — 3y hasFather(x,y)),
vxvy (hasFather(x,y) — Person(x) /\ Person(y))}

Q,(x) :- hasFather(x,y)

{(john), (bob), (tom)}

Exercise: Compute the Certain Answers

D = {Person(john), Person(bob), Person(tom),
hasFather(john,bob), hasFather(bob,tom)}

2 = {vx (Person(x) — 3y hasFather(x,y)),
vxvy (hasFather(x,y) — Person(x) /\ Person(y))}

Q;(x) :- hasFather(x,y), hasFather(y,z), hasFather(z,w)

{(john), (bob), (tom)}

Exercise: Compute the Certain Answers

D = {Person(john), Person(bob), Person(tom),
hasFather(john,bob), hasFather(bob,tom)}

2 = {vx (Person(x) — Jy hasFather(x,y)),
vxvy (hasFather(x,y) — Person(x) /\ Person(y))}

Q,(x,w) :- hasFather(x,y), hasFather(y,z), hasFather(z,w)

{}

OBQA: Formal Definition

ontology language based on existential rules

a

OBQA(L) /

Input: database D, existential rules Z € L, CQ Q(x), tuple t € adom(D)X

Question: t € certain-answers(Q,(D,%)) = ﬂJ e modelsp A 5) Q(J)?

t € certain-answers(Q,(D %)) < VJ e models(D A £),t € Q(J)
& VI € models(D A %), () € Qu(J), where Q, = Q(t)

/

Boolean CQ - no output variables

Why is OBQA technically challenging?

What is the right tool for tackling this problem?

The Two Dimensions of Infinity

Consider the database D, and the set of existential rules %

model of D A 2

[
»

size

D /A 2 admits infinitely many models, of possibly infinite size

The Two Dimensions of Infinity

D = {P(c)} 2 = {Vx (P(x) = 3y (R(x.y) A P(Y)}
model of D A 2
P(c) P(c) P(c) P(c) P(c)
R(c,c) R(c,z,) R(c,z,) R(c,z,) R(c,z,)
P(z,) P(z,) P(z,) P(z,)
R(z1,2,) R(z1,2,) R(z1,2,) R(z1,2,)
P(z,) P(z,) P(z,)
R(z,,2,) R(z,,25) R(z,,25)
size
P(z,) P(z,)
R(zi.z)) R(ZiZy+1)

Z,, Z5, Z3, ... are nulls of N

Taming the First Dimension of Infinity

D = {P(c)} 2 = {Vx (P(x) = 3y (R(x.y) A P(Y)}
model of D A 2
P(c) P(c) P(c) P(c) P(c)
R(c,c) R(c,z,) R(c,z,) R(c,z,) R(c,z,)
X P(z,) P(z,) P(z,) P(z,)
R(z1,21) R(z1,2,) h R(z1,2,) h R(z1,2,)
X P(z,) P(z,) P(z,)
R(z2.2,) R(z2.25) R(z2.25)
we 8 Pz, Pz,
R(z.z,) R(Z,,Z+1)
Key Idea: Focus on a representative, X
a model that is as general as possible v

Universal Models (a.k.a. Canonical Models)

An instance U is a universal model of D A Z if the following holds:

1. Uisamodel of D A 2
2.¥J € models(D A %), there exists a homomorphism h; such that h,(U) C J

Query Answering via Universal Models

Theorem: D A Z EQ iff U EQ, where U is a universal model of D A\ £

(=) Trivial since, for every J € models(D A %), J EQ

Proof:
(<) By exploiting the universality of U

Q. . by hypothesis

T
> by universality of U

VJ € models(D A %), Jh; such that h,(g(Q)) CJ = VJemodels(DAZ),JEQ
= DAZEQ

The Chase Procedure

 Fundamental algorithmic tool used in databases

* |t has been applied to a wide range of problems:
— Checking containment of queries under constraints
— Computing data exchange solutions

— Computing certain answers in data integration settings

... What's the reason for the ubiquity of the chase in databases?

it constructs universal models

The Chase Procedure

D—
person(john)

vx (Person(x) — dy (hasParent(x,y) /A Person(y)))

chase(D,2) =D U

The Chase Procedure

D———
person(john)

VX (Perébn(x) — dy (hasParent(x,y) /A Person(y)))

/ /

chase(D,2) = D U {hasParent(john, z,), Person(z,)

The Chase Procedure

D———
person(john)

vx (Person(x) — dy (hasParent(x,y) /A Person(y)))
S, / /

chase(D,2) = D U {hasParentfjohn, z,), Pergo (z,),

hasParent(z,, z,), Person(z,)

The Chase Procedure

D———
person(john)

vx (Person(x) — dy (hasParent(x,y) /A Person(y)))

chase(D,2) = D U {hasParent(] n,\‘zI), Person

hasParent(z,, z,), Person(z,),

hasParent(z,, z;), Person(z,)

The Chase Procedure

D———
person(john)

vx (Person(x) — dy (hasParent(x,y) /A Person(y)))

chase(D,2) = D U {hasParent(john, z,), Person(z,),

hasParent(z,, z,), Person(z,),

hasParent(z,, z;), Person(z,), ...

Infinite instance

The Chase Procedure: Formal Definition

e Chase rule - the building block of the chase procedure

e Arule o = WxVYy (¢(X,y) > 3z ¢(x,z)) is applicable to instance J if:
1. There exists a homomorphism h such that h(o(x,y)) € J

2. Thereis no g 2 h, such that g(¥(x,z)) C J

J= {Fj(a), P(a,b)} J = {Fj(a), P(b,a)}
h = {x— a} g={Xx—a,y— b} h = {x— a} s
VX (Rl(x) — dy P(>\<,y)) VX (Rl(x) — 3Jy P(x,y))

% v

The Chase Procedure: Formal Definition

Chase rule - the building block of the chase procedure

Arule o = VxVy (o(X,y) = 3z ¢(x,z)) is applicable to instance J if:
1. There exists a homomorphism h such that h(o(x,y)) € J

2. Thereis no g 2 h, such that g(¥(x,z)) C J

Let J, = J U{9(¥(x,2))}, where g 2 h,, and g(z) are “fresh” nulls not in J

The result of applying o to Jis J,, denoted J{(o,h)J, - single chase step

The Chase Procedure: Formal Definition

« Afinite chase of D w.r.t. Z is a finite sequence

D{0;,h1)J1(0,,h,)J,(03,h3)d;5 .. {0,,hp) 3,

n»"'n

and chase(D,2) is defined as the instance J,

all applicable rules will eventually be applied

/

* Aninfinite chase of D w.r.t. Z is a fair finite sequence

D{0;,h1)31(0,,h5)J5(03,h3) 5 ... (O,,hp) I, -

n"'n

and chase(D,2) is defined as the instance Uy -, J, (with J5 = D)

/

least fixpoint of a monotonic operator - chase step

Chase: A Universal Model

Theorem: chase(D,2) is a universal model of D A\ X

Proof:

the result of the chase after k applications of the chase step

By construction, chase(D,2) € models(D A %)

It remains to show that chase(D, 2) can be homomoxphically embedded into
every other model of D A\ 2
Fix an arbitrary instance J € models(D A). We need to show that there
exists h such that h(chase(D,2)) C J
By induction on the number of applications of the chase step, we show
that for every k > 0, there exists h, such that h, (chaselXl(D,Z)) C J, and h,
IS compatible with h,

Clearly, Uy - hyis a well-defined homomorphism that maps chase(D,2) to J

The claim follows with h = U, ., h,

Chase: Uniqueness Property

» The result of the chase is not unique - depends on the order of rule application
D ={P(a)} o, = VX (P(x) = 3y R(y)) 0, = VX (P(X) = R(x))

Result, = {P(a), R(z), R(a)} 0, then o,

Result, = {P(a), R(a)} o,then o,

» But, it is unique up to homomorphic equivalence

* Thus, itis unique for query answering purposes

Query Answering via the Chase

Theorem: D A 2 EQ iff UE Q, where U is a universal model of D A 2

&

Theorem: chase(D, 2) is a universal model of D A X

4

Corollary: DA ZEFQ iff chase(D,2) FQ

* We can tame the first dimension of infinity by exploiting the chase procedure

* What about the second dimension of infinity? - the chase may be infinite

Can we tame the second dimension of infinity?

Undecidability of OBQA

arbitrary existential rules

/

Theorem: OBQA(JdRULES) is undecidable

Proof Idea : By simulating a deterministic Turing machine with an empty tape

Deterministic Turing Machine (DTM)

S\{Sqect X A= S x A x {-1,0,+1}

/ / accepting state

M - (81 /\1 |—|1 6’ SO’ Sacc)

/NN

states tape blank initial state
symbols symbol

O(sy, @) = (s, B, +1)

IF at some time instant T the machine is in sate s,, the cursor
points to cell k, and this cell contains a
THEN at instant 1+1 the machine is in state s,, cell k contains j3,

and the cursor points to cell k+1

Undecidability of OBQA

arbitrary existential rules

/

Theorem: OBQA(JdRULES) is undecidable

Proof Idea : By simulating a deterministic Turing machine with an empty tape.
Encode the computation of a DTM M with an empty tape using a database D,

a set 2 of existential rules, and a BCQ Q suchthat D A 2 EQ iff M accepts

How we ensure decidability of OBQA?

Gaining Decidabillity

By restricting the database
o {Start(c)} ANZF Q iff the DTM M accepts
 The problem is undecidable already for singleton databases
* No much to do in this direction

By restricting the query language
e DAZEQ:-Accept(x) iff the DTM M accepts

 The problem is undecidable already for atomic queries
* No much to do in this direction

By restricting the ontology language
» Achieve a good trade-off between expressive power and complexity
* Field of intense research
* Any ideas?

What is the Source of Non-termination?

D———
person(john)

vx (Person(x) — 3y (hasParent(x,y) /A Person(y)))

chase(D,2) = D U {hasParent(john, z,), Person(z,),

hasParent(z,, z,), Person(z,),

hasParent(z,, z;), Person(z,), ...

1. Existential quantification

2. Recursive definitions

Termination of the Chase

* Drop the existential quantification
— We obtain the class of full existential rules

— Very close to Datalog

» Drop the recursive definitions
— We obtain the class of acyclic existential rules

— A.k.a. non-recursive existential rules

Full Existential Rules

e Afull existential rule is an existential rule of the form
VXYY (p(X,y) = (X))

 We denote FULL the class of full existential rules
 Alocal property - we can inspect one rule at a time
= given 2, we can decide in linear time whether 2 € FULL

= closed under union - 2, € FULL, 2, € FULL = (£, U 2,) € FULL

e But, is this a reasonable ontology language?

FULL and OWL 2 RL

 The acronym RL reflects its relation to rules

e FULL captures OWL 2 RL

Parent 11 Male C Father
vx (Parent(x) /\ Male(x) — Father(x))

dparentOf.dparentOf. T C Grandfather
VxVy (parentOf(x,y) A parentOf(y,z) — Grandfather(x))

MetalDevice C YhasPart.Metal

Vxvy (MetalDevice(x) /A hasPart(x,y) — Metal(y))

FULL and OWL 2 RL

 The acronym RL reflects its relation to rules

e FULL captures OWL 2 RL

childOf o childOf = grandchildOf
VXVyVz (childOf(x,y) A childOf(y,z) — grandchildOf(x,z))

Person C dJ_, hasPassport.Valid
VxVyvz (Person(x) /A hasPassport(x,y) /\ Valid(y) /A
hasPassport(x,z) /A Valid(z) —» y = z)

Disj(childOf, parentOf)
vxvy (childOf(x,y) /\ parentOf(x,y) —» 1)

Full Existential Rules

o A full existential rule is an existential rule of the form
VXYY (o(X,Y) = (X))

 We denote FULL the class of full existential rules
 Alocal property - we can inspect one rule at a time
= given 2, we can decide in linear time whether 2 € FULL

= closed under union - 2, € FULL, 2, € FULL = (£, U 2,) € FULL

e But, is this a reasonable ontology language? OWL 2 RL

Full Existential Rules

e Consider a database D and aset 2 € FULL

« chase(D,2) C {P(c,,...,c,) |(cq,...,c,) € adom(D)" and P < sch(2)}

active domain - constants occurring in D /

schema - predicates occurring in 2

maximum number of tuples
with terms of adom(D)
A

« |chase(D,%)| < |sch(Z)| - (Jadom(D)|)maxarity maxarity = MmaXp ¢ sen(s) {arity(P)}
N— _
—~

maximum number of atoms with predicates of
sch(Z) and terms of adom(D)

Complexity Measures for OBQA

OBQA(L)
Input: database D, existential rules Z € L, CQ Q(x), tuple t € adom(D)X

Question: t € certain-answers(Q,(D,%)) = [, modelso A 5) Q(J)?

« Data complexity: is calculated by considering only the database as part of the

input, while the ontology and the query are fixed - OBQA; (L)

« Combined complexity: is calculated by considering, apart from the database,

also the ontology and the query as part of the input

Data Complexity of FULL

Theorem: OBQA; (FULL) is in PTIME
Proof: Consider a database D, a set 2 € FULL, and a (Boolean) CQ Q

We apply the naive algorithm:
1. Construct chase(D,2)

2. Check for the existence of a homomorphism h such that h(Q) C chase(D,2)

Step 1. We construct the chase level-by-level

e FromL,toL,,:foreacho ez, find all the

/] \ homomorphisms h such that h(body(o)) C L,, and
1

/ add to L, the set of atoms h(head(0))
L
’ « StopwhenlL, =L,

/ Ly \ |Z| - (Jadom(D)|)maxvariables(z) . maxbody(Z) - |L,]

Data Complexity of FULL

Theorem: OBQA; (FULL) is in PTIME

Proof: Consider a database D, a set 2 € FULL, and a (Boolean) CQ Q

We apply the naive algorithm:
1. Construct chase(D,2)

2. Check for the existence of a homomorphism h such that h(Q) C chase(D,2)

Step 1. We construct the chase level-by-level in time

(k-1) - |Z| -(Jadom(D)|)maxvariables(z) . maxbody(Z) - |L|

where K, |L| < |chase(D,2)| < |sch(Z)] - (jadom(D)|)maxarity

Data Complexity of FULL

Theorem: OBQA; (FULL) is in PTIME

Proof: Consider a database D, a set 2 € FULL, and a (Boolean) CQ Q

We apply the naive algorithm:
1. Construct chase(D,2)

2. Check for the existence of a homomorphism h such that h(Q) C chase(D,2)

Step 2: By applying similar analysis, we can show that the existence of h can be

checked in time

(ladom(D)[)#varablest) . Q] - |chase(D,)|

where |[chase(D,X)| < |sch(Z)| - (jadom(D)|)maxarity

Data Complexity of FULL

Theorem: OBQA; (FULL) is in PTIME

Proof: Consider a database D, a set 2 € FULL, and a (Boolean) CQ Q

We apply the naive algorithm:
1. Construct chase(D,2)

2. Check for the existence of a homomorphism h such that h(Q) C chase(D,2)

Consequently, in the worst case, the naive algorithm runs in time

(Isch(2)| - (Jadom(D)[)"@)z - |2 -(Jadom(D)[)mexvarablesz) . maxbody(Z)

+

(Jadom(D)|)#variables(Q) . |Q| - [sch(Z)| - (ladom(D)|)maxarity

Data Complexity of FULL

We cannot do better than the naive algorithm

Theorem: OBQA; (FULL) is PTIME-hard

Proof : By a LOGSPACE reduction from Monotone Circuit Value problem

Data Complexity of FULL

Js

J4 Os

J1 g O3

Does the circuit evaluate to true?

encoding of the circuit as a database D

T(91) T(g3)
AND(g4,gl,gz) OR(951g2!93) OR(g6’g4’g5)

evaluation of the circuit via a fixed set 2

vxvyvz (T(x) /A OR(z,x,y) — T(2))
vxvyvz (T(y) /A OR(z,x,y) — T(2))
Vxvyvz (T(x) /A T(y) A AND(z,x,y) — T(2))

Circuit evaluates to true iff D A 2 F T(gg)

Combined Complexity of FULL

Theorem: OBQA(FULL) is in EXPTIME

Proof: Consider a database D, aset 2 € FULL, and a BCQ Q

We apply the naive algorithm:
1. Construct chase(D,2)

2. Check for the existence of a homomorphism h such that h(Q) C chase(D,2)

Consequently, in the worst case, the naive algorithm runs in time

(Isch(2)| - (Jadom(D)[)"@)z - |2 -(Jadom(D)[)mexvarablesz) . maxbody(Z)

+

(Jadom(D)|)#variables(Q) . |Q| - [sch(Z)| - (ladom(D)|)maxarity

Combined Complexity of FULL

We cannot do better than the naive algorithm

Theorem: OBQA(FULL) is in EXPTIME-hard

Proof : By simulating a deterministic exponential time Turing machine

Termination of the Chase

* Drop the existential quantification
— We obtain the class of full existential rules

— Very close to Datalog v

» Drop the recursive definitions
— We obtain the class of acyclic existential rules

— A.k.a. non-recursive existential rules

...the naive algorithm is not clever enough

The Naive Algorithm for ACYCLIC

LO:D |L0|:2
I ()

D = {Py(0), Po(1)}

2 ={Vxvy (Po(x) A\ Po(y) = 3z (S1(X,Y,2) A\ P41(2)))
VXYY (P1(X) A\ Py(y) = 3z (Sy(x,¥,2) N\ Py(2)))

VX\V/y (Pn-l(x) /\ Pn-l(y) — EIZ (Sn(x,y,z) /\ Pn(Z)))}

O O

R O = O

The Naive Algorithm for ACYCLIC

L,=D Lol = 2
I ()
I

.

D = {Py(0), Po(1)}

2 ={Vxvy (Po(x) A\ Po(y) = 3z (S1(X,Y,2) A\ P41(2)))
VXYY (P1(X) A\ Py(y) = 3z (Sy(x,¥,2) N\ Py(2)))

VX\V/y (Pn-l(x) /\ Pn-l(y) — EIZ (Sn(x,y,z) /\ Pn(Z)))}

L,
Zoo Zoo | Zoooo
Zoo Zo1 | Zooo1
Zoo 210 | Zo010
Zoo 211 | Zoonn
Zor Zoo | Zo100
Zor Zo1 | Zo101
Zor 210 | Zowu10
Zor Z11 | Zow
Z10 Zoo | 41000
Z10 Zo1 | 41001
Z10 210 | 41010
Z1o Z1u | Z1011
Z11 Zoo | 21100
Z11 Zo1 | Zu01
Z11 210 | 41110
Zyy Zu | Zun

The Naive Algorithm for ACYCLIC

Lo=D Lol = 2
I ()
I

T W L,

Zo.o Zo.o | Zo..00..0

D = {Py(0), Po(1)}

Zy 1 Z1.1| 41111

2 ={Vxvy (Po(x) A\ Po(y) = 3z (S1(X,Y,2) A\ P41(2)))
VXYY (P1(X) A\ Py(y) = 3z (Sy(x,¥,2) N\ Py(2)))

VX\V/y (Pn-l(x) /\ Pn-l(y) — EIZ (Sn(x,y,z) /\ Pn(Z)))}

The Naive Algorithm for ACYCLIC

L,=D Lol = 2
I ()
I

T W

Lol = 20
D ={Py(0), Po(1)}

2 ={Vxvy (Po(x) A\ Po(y) = 3z (S1(X,Y,2) A\ P41(2)))
VXYY (P1(X) A\ Py(y) = 3z (Sy(x,¥,2) N\ Py(2)))

VX\V/y (Pn-l(x) /\ Pn-l(y) — EIZ (Sn(x,y,z) /\ Pn(Z)))}

Complexity of ACYCLIC

* The naive algorithm shows OBQA(ACYCLIC) is
— In PTIME w.r.t. the data complexity

— Iin 2EXPTIME w.r.t. the combined complexity

...however, we can do better than the naive algorithm

Theorem: It holds that
* OBQA;o(FULL) is in LOGSPACE (data complexity)

« OBQA(FULL) is NEXPTIME-complete (combined complexity)

Our Simple Example

D—
person(john)

vx (Person(x) — dy (hasParent(x,y) /A Person(y)))

chase(D,2) = D U {hasParent(john, z,), Person(z,),

hasParent(z,, z,), Person(z,),

hasParent(z,, z;), Person(z,), ...

Existential quantification & recursive definitions

are key features for modelling ontologies

Research Challenge

We need classes of existential rules such that

« Existential quantification and recursive definition coexist

= the chase may be infinite

« OBQAIs decidable, and tractable w.r.t. the data complexity

Tame the infinite chase:

Deal with infinite structures without explicitly building them

Linear Existential Rules

« Alinear existential rule is an existential rule of the form
Vxvy (P(X,y) — 3z 1(x,2))

/

single atom

« We denote LINEAR the class of linear existential rules
 Alocal property - we can inspect one rule at a time
= given 2, we can decide in linear time whether 2 € LINEAR

= closed under union

e But, is this a reasonable ontology language?

LINEAR vs. DL-Lite

DL-Lite: Popular family of DLs - at the basis of the OWL 2 QL profile of OWL 2

DL-Lite Axioms First-order Representation

ACB VX (A(X) = B(X))

ALC 3R VX (A(X) = 3y R(X,Y))
JRCA Vxvy (R(X,Y) = A(X))

IR C 3P Vxvy (R(Xy) = 3z P(x,2))

ALC JR.B X (A(x) = 3y (R(x,y) A B(y)))
RCP vXvy (R(x,y) = P(xy))
AC -B VX (A(X) A B(X) > L)

Linear Existential Rules

 Alinear existential rule is an existential rule of the form
VXYY (P(X,)Y) > JZ ¢(X,2))

/

single atom

« We denote LINEAR the class of linear existential rules
 Alocal property - we can inspect one rule at a time
= given 2, we can decide in linear time whether 2 € LINEAR

= closed under union

e But, is this a reasonable ontology language? OWL 2 QL

Chase Graph

The chase can be naturally seen as a graph - chase graph

R(a,b) S(b)
D = {R(a,b), S(H)} =
R(z,,a) S(a)

R(z,,2,) S(zy)

VXvy (R(X,y) = S(x)) ><

R(z3,2,) S(z,)

> =

{ WXy (R(XY) A S(y) = 32 R(Z,X)) =

For LINEAR the chase graph is a forest

Bounded Derivation-Depth Property

D

For LINEAR, k = Q|- m

chase(D,2) with m = |[sch(2)| - (2 - maxarity)maxarity

/ depth k that does not depend on D
! h \

Q chase graph up to depth k

d

chase(D,Z) E Q = chasek(D,2)EF Q

The Blocking Algorithm for LINEAR

« The blocking algorithm shows that OBQA(LINEAR) is
— In PTIME w.r.t. the data complexity

— In 2EXPTIME w.r.t. the combined complexity

chase(D,2)
,;

/S \

k =]Q]| - |sch(Z)| -(2 - maxarity)maxarity

Complexity of LINEAR

...but, we can do better than the blocking algorithm

Theorem: It holds that
* OBQA; o(LINEAR) is in LOGSPACE (data complexity)

« OBQA(LINEAR) is PSPACE-complete (combined complexity)

Key Observation

at most |Q| atoms

/ \ depth |

depth k

/
/
" h
/
/
/
/
/
/

Q

non-deterministic, level-by-level construction

Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is in PSPACE

Proof Idea;

Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is in PSPACE

Proof Idea;

Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is in PSPACE

Proof Idea;

Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is in PSPACE

Proof Idea;

Combined Complexity of LINEAR

Theorem: OBQA(LINEAR) is in PSPACE

Proof Idea:

« At each step we need to maintain
— O(|Q|) atoms

— A counter ctr < |QJ? - |sch(Z)] - (2 - maxarity)maxarity

* Thus, we need polynomial space

 The claim follows since NPSPACE = PSPACE

Combined Complexity of LINEAR

We cannot do better than the previous algorithm

Theorem: OBQA(LINEAR) is PSPACE-hard

Proof : By simulating a deterministic polynomial space Turing machine

PSPACE-hardness of LINEAR

Our Goal: Encode the polynomial space computation of a DTM M on input string |

using a database D, a set 2 € LINEAR, and a (Boolean) CQ Q such that

D A ZEQ iff Maccepts | using at most n = |I|¥ cells

PSPACE-hardness of LINEAR

« Assume that the tape alphabet is {0,1,L1}

e Suppose that M halts on | = a,... a,, using n = m« cells, for k >0

Initial configuration - the database D

Config(si,d4,---,0p,L,...,010,1,0,...,0)

PSPACE-hardness of LINEAR

Assume that the tape alphabet is {0,1,L1}

Suppose that M halts on | = a;... a,, using n = m¥ cells, for k > 0

Transition rule - 8(s,,q) = (S,,B,+1)

foreachi e {1,...,n}

Vx (Config(sy, Xy, -+ X 1,0, X5 -, %1,0,...,0,1,0,...

Config(s,,Xq,---,Xi.1,B:Xis1,--,X1,0,...,0,1,0,...,0))
W

[n-i-1

PSPACE-hardness of LINEAR

« Assume that the tape alphabet is {0,1,L1}

e Suppose that M halts on | = a,... a,, using n = m« cells, for k >0

DAZEQ:-Config(s,...X) iff Maccepts |

acc’

...but, the rules are not constant-free

we can eliminate the constants by applying a simple trick

PSPACE-hardness of LINEAR

Initial configuration - the database D

auxiliary constants for the states

and the tape alphabet

/

Config(s,,, 01, ---,0,,,4,...,1,1,0,...,0,S4,...S,,0,1,L1)

n-m n-1

PSPACE-hardness of LINEAR

Transition rule - 8(s;,0) = (s,,L,+1)

foreachie {1,...,n}

-1 n-i
~

Config(sy,Xq, -+, Xi.1,Z,Xis 15+ -1 X2, - -+, Z,0,2,...,2,S4, ...,S,Z,0,0) —
Config(s,,Xy,---,Xi.1,0, X1, -+ -, X2, - -,2,0,Z,...,Z,S4,...,5,,Z,0,D)

——

i n-i-1

(V-quantifiers are omitted)

Sum Up

Data Complexity

Naive algorithm

FULL PTIME-c) __

Reduction from Monotone Circuit Value problem
ACYCLIC

iIn LOGSPACE | Query rewriting
LINEAR
Combined Complexity

Naive algorithm

FULL EXPTIME-c

Simulation of a deterministic exponential time TM

Small witness property

ACYCLIC | NEXPTIME-c
Reduction from a Tiling problem

Level-by-level non-deterministic algorithm

LINEAR PSPACE-c

Simulation of a deterministic polynomial space TM

Several Other Languages Exist

Weakly-Frontier-Guarded Super-WeaikIy-AcycIic
Weakly-Guarded Frontier-Guarded Weakly;AcycIic
Guarded ACYCLIC
s FULL
LINEAR

Field of intense research

Several Other Languages Exist

Weakly-Sticky-Join

Sticky-Join Weakly-Sticky

Sticky
LINEAR FULL ACYCLIC

Field of intense research

Additional Modelling Features

« Counting quantifiers - very little is known

Vx (Professor(x) — J_,y (supervisorOf(x,y) /A Student(y))

» Default negation (or negation as failure) - relatively well-understood

vx (Number(x) — Jy (hasSucc(x,y) /A Number(y))
vx (Number(x) A not Even(x) — Odd(x))
vx (Number(x) /A not Odd(x) — Even(x))

» Disjunction - relatively well-understood

vX (Number(x) - Even(x) VV Odd(x))

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	What is an Ontology?
	What is an Ontology?
	Ontology-Based Data Access (OBDA)
	What are Ontologies Good For?
	Incomplete Data Sources
	Ontology-Based Data Access: Example
	Ontology-Based Data Access: Example
	Ontology-Based Data Access: Example
	Ontology-Based Data Access: Example
	Ontology-Based Data Access: Example
	Ontology-Based Data Access: Example
	Ontology-Based Data Access: Example
	Ontology-Based Data Access: Example
	Query Answering in OBDA
	Query Answering in OBDA
	Query Answering in OBDA
	Ontology-Based Query Answering (OBQA)
	Ontology-Based Query Answering (OBQA)
	Issues in Ontology-Based Query Answering
	Few Words on Description Logics (DLs)
	DL-Lite Family
	The Description Logic EL
	Slide Number 27
	A Simple Example
	Some Terminology
	Syntax of Existential Rules
	Semantics of Existential Rules
	Ontology-Based Query Answering (OBQA)
	Ontology-Based Query Answering (OBQA)
	Exercise: Compute the Certain Answers
	Exercise: Compute the Certain Answers
	Exercise: Compute the Certain Answers
	Exercise: Compute the Certain Answers
	Exercise: Compute the Certain Answers
	OBQA: Formal Definition
	Slide Number 40
	The Two Dimensions of Infinity
	The Two Dimensions of Infinity
	Taming the First Dimension of Infinity
	Universal Models (a.k.a. Canonical Models)
	Query Answering via Universal Models
	The Chase Procedure
	The Chase Procedure
	The Chase Procedure
	The Chase Procedure
	The Chase Procedure
	The Chase Procedure
	The Chase Procedure: Formal Definition
	The Chase Procedure: Formal Definition
	The Chase Procedure: Formal Definition
	Chase: A Universal Model
	Chase: Uniqueness Property
	Query Answering via the Chase
	Slide Number 58
	Undecidability of OBQA
	Deterministic Turing Machine (DTM)
	Undecidability of OBQA
	Slide Number 62
	Gaining Decidability
	What is the Source of Non-termination?
	Termination of the Chase
	Full Existential Rules
	FULL and OWL 2 RL
	FULL and OWL 2 RL
	Full Existential Rules
	Full Existential Rules
	Complexity Measures for OBQA
	Data Complexity of FULL
	Data Complexity of FULL
	Data Complexity of FULL
	Data Complexity of FULL
	Data Complexity of FULL
	Data Complexity of FULL
	Combined Complexity of FULL
	Combined Complexity of FULL
	Termination of the Chase
	The Naïve Algorithm for ACYCLIC
	The Naïve Algorithm for ACYCLIC
	The Naïve Algorithm for ACYCLIC
	The Naïve Algorithm for ACYCLIC
	Complexity of ACYCLIC
	Our Simple Example
	Research Challenge
	Linear Existential Rules
	LINEAR vs. DL-Lite
	Linear Existential Rules
	Chase Graph
	Bounded Derivation-Depth Property
	The Blocking Algorithm for LINEAR
	Complexity of LINEAR
	Key Observation
	Combined Complexity of LINEAR
	Combined Complexity of LINEAR
	Combined Complexity of LINEAR
	Combined Complexity of LINEAR
	Combined Complexity of LINEAR
	Combined Complexity of LINEAR
	PSPACE-hardness of LINEAR
	PSPACE-hardness of LINEAR
	PSPACE-hardness of LINEAR
	PSPACE-hardness of LINEAR
	PSPACE-hardness of LINEAR
	PSPACE-hardness of LINEAR
	Sum Up
	Several Other Languages Exist
	Several Other Languages Exist
	Additional Modelling Features

