
Query Rewriting in OBDA

Advanced Topics in Foundations of Databases, University of Edinburgh, 2017/18

Forward Chaining Techniques

D

Q

h

chase(D,Σ)

Useful techniques for establishing optimal upper bounds

…but not practical - we need to store instances of very large size

How we achieve true scalability in OBQA?

Scalability in OBQA

D

Σ

hD, Σi

D

database

ontology

Q

knowledge base

But in the OBQA setting

we have to query a

knowledge base, not just a

relational database

Exploit standard RDBMSs - efficient technology for answering CQs

Query Rewriting

D

ΣQ

evaluation

8D : D ^ Σ ² Q , D ² QΣ

compilation

First-order query

Union of CQs

SQL query

Datalog query

…

QΣ

evaluated and optimized by

exploiting existing technology

Query Rewriting: Formal Definition

Consider a class of existential rules L, and a query language Q.

OBQA(L) is Q-rewritable if, for every Σ 2 L and (Boolean) CQ Q,

we can construct a query QΣ2 Q such that,

for every database D, D ^ Σ ² Q iff D ² QΣ

NOTE: The construction of QΣ is database-independent - the pure approach

to query rewriting

Issues in Query Rewriting

• How do we choose the target query language?

• How the ontology language and the target query language are related?

• How we construct such rewritings?

• What about the size of such rewritings?

Target Query Language

we target the weakest query language

FO Datalog

UCQ

CQ

CQ UCQ FO Datalog

FULL

ACYCLIC

LINEAR

Target Query Language

we target the weakest query language

FO Datalog

UCQ

CQ

CQ UCQ FO Datalog

FULL

ACYCLIC

LINEAR

Target Query Language

Σ = {8x (P(x) T(x)), 8x8y (R(x,y) S(x))}

Q :- S(x), U(x,y), T(y)

QΣ = {Q :- S(x), U(x,y), T(y),

Q1 :- S(x), U(x,y), P(y),

Q2 :- R(x,z), U(x,y), T(y),

Q3 :- R(x,z), U(x,y), P(y)}

Target Query Language

we target the weakest query language

FO Datalog

UCQ

CQ

CQ UCQ FO Datalog

FULL

ACYCLIC

LINEAR

Target Query Language

Σ = {8x8y (R(x,y) ^ P(y) P(x))}

Q :- P(c)

QΣ = {Q :- P(c),

Q1 :- R(c,y1), P(y1),

Q2 :- R(c,y1), R(y1,y2), P(y2),

Q3 :- R(c,y1), R(y1,y2), R(y2,y3), P(y3),

… }

• This cannot be written as a finite UCQ (or even FO query)

• It can be written as Q :- R(c,x), R*(x,y), P(y), but transitive closure is not

FO-expressible

Target Query Language

we target the weakest query language

FO Datalog

UCQ

CQ

CQ UCQ FO Datalog

FULL

ACYCLIC

LINEAR

UCQ-Rewritings

• The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:

1. Rewriting

2. Minimization

• The standard algorithm is designed for normalized existential rules, where

only one atom appears in the head

Normalization Procedure

8x8y (' (x,y) 9z (P1(x,z) ^ … ^ Pn(x,z)))

8x8y (' (x,y) 9z Auxiliary(x,z))

8x8z (Auxiliary(x,z) P1(x,z))

8x8z (Auxiliary(x,z) P2(x,z))

…

8x8z (Auxiliary(x,z) Pn(x,z))

NOTE 1: Acyclicity and Linearity are preserved

NOTE 2: We obtain an equivalent set w.r.t. query answering

UCQ-Rewritings

• The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:

1. Rewriting

2. Minimization

• The standard algorithm is designed for normalized existential rules, where

only one atom appears in the head

Rewriting Step

Σ = {8x8y (project(x) ^ inArea(x,y) 9z hasCollaborator(z,y,x))}

Q :- hasCollaborator(u,db,v)

hasCollaborator(u,db,v)

g = {x! v, y! db, z! u}

Thus, we can simulate a chase step by applying a backward resolution step

QΣ = {Q :- hasCollaborator(u,db,v),

Q1 :- project(v), inArea(v,db)}

Unsound Rewritings

Σ = {8x8y (project(x) ^ inArea(x,y) 9z hasCollaborator(z,y,x))}

Q :- hasCollaborator(c,db,v)

hasCollaborator(c,db,v)

g = {x! v, y! db, z! c}

After applying the rewriting step we obtain the following UCQ

QΣ = {Q :- hasCollaborator(c,db,v),

Q1 :- project(v), inArea(v,db)}

Unsound Rewritings

Σ = {8x8y (project(x) ^ inArea(x,y) 9z hasCollaborator(z,y,x))}

Q :- hasCollaborator(c,db,v)

QΣ = {Q :- hasCollaborator(c,db,v),

Q1 :- project(v), inArea(v,db)}

• Consider the database D = {project(a), inArea(a,db)}

• Clearly, D ² QΣ

• However, D ^ Σ does not entail Q since there is no way to obtain an atom of

the form hasCollaborator(c,db,_) during the chase

Unsound Rewritings

Σ = {8x8y (project(x) ^ inArea(x,y) 9z hasCollaborator(z,y,x))}

Q :- hasCollaborator(c,db,v)

QΣ = {Q :- hasCollaborator(c,db,v),

Q1 :- project(v), inArea(v,db)}

the information about the constant c in the original query is lost after the

application of the rewriting step since c is unified with an 9-variable

Unsound Rewritings

Σ = {8x8y (project(x) ^ inArea(x,y) 9z hasCollaborator(z,y,x))}

Q :- hasCollaborator(v,db,v)

hasCollaborator(v,db,v)

g = {x! v, y! db, z! v}

After applying the rewriting step we obtain the following UCQ

QΣ = {Q :- hasCollaborator(v,db,v),

Q1 :- project(v), inArea(v,db)}

Unsound Rewritings

Σ = {8x8y (project(x) ^ inArea(x,y) 9z hasCollaborator(z,y,x))}

Q :- hasCollaborator(v,db,v)

QΣ = {Q :- hasCollaborator(v,db,v),

Q1 :- project(v), inArea(v,db)}

• Consider the database D = {project(a), inArea(a,db)}

• Clearly, D ² QΣ

• However, D ^ Σ does not entail Q since there is no way to obtain an atom of

the form hasCollaborator(t,db,t) during the chase

Unsound Rewritings

Σ = {8x8y (project(x) ^ inArea(x,y) 9z hasCollaborator(z,y,x))}

Q :- hasCollaborator(v,db,v)

QΣ = {Q :- hasCollaborator(v,db,v),

Q1 :- project(v), inArea(v,db)}

the fact that v in the original query participates in a join is lost after the

application of the rewriting step since v is unified with an 9-variable

Applicability Condition

Consider a (Boolean) CQ Q, an atom α in Q, and a (normalized) rule σ.

We say that σ is applicable to α if the following conditions hold:

1. head(σ) and α unify via h

2. For every variable x in head(σ):

1. If h(x) is a constant, then x is a 8-variable

2. If h(x) = h(y), where y is a shared variable of α, then x is a 8-variable

3. If x is an 9-variable of head(σ), and y is a variable in head(σ) such that x ≠ y,

then h(x) ≠ h(y)

...but, although is crucial for soundness, may destroy completeness

Incomplete Rewritings

Σ = {8x8y (project(x) ^ inArea(x,y) 9z hasCollaborator(z,y,x)),

8x8y8z (hasCollaborator(x,y,z) collaborator(x))}

Q :- hasCollaborator(u,v,w), collaborator(u))

• Consider the database D = {project(a), inArea(a,db)}

• Clearly, chase(D,Σ) = D [{hasCollaborator(z,db,a), collaborator(z)} ² Q

• However, D does not entail QΣ

QΣ = {Q :- hasCollaborator(u,v,w), collaborator(u),

Q1 :- hasCollaborator(u,v,w), hasCollaborator(u,v’,w’)

Incomplete Rewritings

Σ = {8x8y (project(x) ^ inArea(x,y) 9z hasCollaborator(z,y,x)),

8x8y8z (hasCollaborator(x,y,z) collaborator(x))}

Q :- hasCollaborator(u,v,w), collaborator(u))

QΣ = {Q :- hasCollaborator(u,v,w), collaborator(u),

Q1 :- hasCollaborator(u,v,w), hasCollaborator(u,v’,w’)

Q2 :- project(u), inArea(u,v)

...but, we cannot obtain the last query due to the applicablity condition

Incomplete Rewritings

Σ = {8x8y (project(x) ^ inArea(x,y) 9z hasCollaborator(z,y,x)),

8x8y8z (hasCollaborator(x,y,z) collaborator(x))}

Q :- hasCollaborator(u,v,w), collaborator(u))

QΣ = {Q :- hasCollaborator(u,v,w), collaborator(u),

Q1 :- hasCollaborator(u,v,w), hasCollaborator(u,v’,w’)

Q2 :- hasCollaborator(u,v,w) - by minimization

Q3 :- project(w), inArea(w,v) - by rewriting

D = {project(a), inArea(a,db)} ² QΣ

UCQ-Rewritings

• The standard algorithm for computing UCQ-rewritings performs an exhaustive

application of the following two steps:

1. Rewriting

2. Minimization

• The standard algorithm is designed for normalized existential rules, where

only one atom appears in the head

The Rewriting Algorithm

QΣ := {Q};

repeat

Qaux := QΣ;

foreach disjunct q of Qaux do

//Rewriting Step

foreach atom α in q do

foreach rule σ in Σ do

if σ is applicable to α then

qrew := rewrite(q,α,σ); //we resolve α using σ

if qrew does not appear in QΣ (modulo variable renaming) then

QΣ := QΣ [{qrew};

//Minimization Step

foreach pair of atoms α,β in q that unify do

qmin := minimize(q,α,β); //we apply the MGU of α and β on q

if qmin does not appear in QΣ (modulo variable renaming) then

QΣ := QΣ [{qmin};

until Qaux = QΣ;

return QΣ;

Termination

Theorem: The rewriting algorithm terminates under ACYCLIC

Proof Idea:

• Key observation: after arranging the disjuncts of the rewriting in a tree T, the

branching of T is finite, and the depth of T is at most the number of predicates

occurring in the rule set

• Therefore, only finitely many partial rewritings can be constructed - in general,

exponentially many

Termination

Theorem: The rewriting algorithm terminates under LINEAR

Proof Idea:

• Key observation: the size of each partial rewriting is at most the size of the

given CQ Q

• Thus, each partial rewriting can be transformed into an equivalent query that

contains at most (|Q| ¢maxarity) variables

• The number of queries that can be constructed using a finite number of

predicates and a finite number of variables is finite

• Therefore, only finitely many partial rewritings can be constructed - in general,

exponentially many

Target Query Language

we target the weakest query language

FO Datalog

UCQ

CQ

CQ UCQ FO Datalog

FULL

ACYCLIC

LINEAR

Back to Complexity

Data Complexity

FULL PTIME-c
Naïve algorithm

Reduction from Monotone Circuit Value problem

ACYCLIC

in LOGSPACE Via UCQ-rewriting

LINEAR

Combined Complexity

FULL EXPTIME-c
Naïve algorithm

Simulation of a deterministic exponential time TM

ACYCLIC NEXPTIME-c
Small witness property

Reduction from a Tiling problem

LINEAR PSPACE-c
Level-by-level non-deterministic algorithm

Simulation of a deterministic polynomial space TM

Size of the Rewriting

• Ideally, we would like to construct UCQ-rewritings of polynomial size

• But, the standard rewritng algorithm produces rewritings of exponential size

• Can we do better? NO!!!

Σ = {8x (Rk(x) Pk(x))}k 2 {1,...,n} Q :- P1(x), …, Pn(x)

Q :- P1(X), …, Pn(X)

P1(X) _ R1(X) Pn(X) _ Rn(X)

thus, we need to consider 2n disjuncts

Size of the Rewriting

• Ideally, we would like to construct UCQ-rewritings of polynomial size

• But, the standard rewritng algorithm produces rewritings of exponential size

• Can we do better? NO!!!

• Although the standard rewriting algorithm is worst-case optimal, it can

be significantly improved

• Optimization techniques can be applied in order to compute efficiently

small rewritings - field of intense research

Limitations of UCQ-Rewritability

• What about the size of QΣ? - very large, no rewritings of polynomial size

• What kind of ontology languages can be used for Σ? - below PTIME

) the combined approach to query rewriting

8D : D ^ Σ ² Q , D ² QΣ

evaluated and optimized by

exploiting existing technology

Combined Rewritability

Q

evaluationquery compilation

database query

D

D+

database compilation in poly-time

8D : D ^ Σ ² Q , D+ ² QΣ

Σ

QΣ

Polynomial Combined Rewritability

ΣQ

evaluationquery compilation

in polynomial time

database query

QΣ

D

D+

database compilation

in polynomial time

8D : D ^ Σ ² Q , D+ ² QΣ

