A Crash Course on Complexity Theory

we are going to recall some fundamental notions from complexity theory that will be

heavily used in the context of this course — details can be found in the standard textbooks



Deterministic Turing Machine (DTM)

M = (S, /\, r, 6, So» Saccept’ Sreject)

« Sis the set of states

* Ais the input alphabet, not containing the blank symbol L
[ isthe tape alphabet, where LU el andAC T

e 0:SxI —» SxIx{LR}

* sy is the initial state

* S

accept is the accept state

*  Sreject is the reject state, where s, # Sreject



Deterministic Turing Machine (DTM)

M = (S,\,T,0, s s S

accepts reject)

O(s4, a) = (sy, B, R)

IF at some time instant 1 the machine is in sate s,, the cursor
points to cell K, and this cell contains a
THEN at instant 1+1 the machine is in state s,, cell k contains J3,

and the cursor points to cell k+1



Nondeterministic Turing Machine (NTM)

M = (S, /\, r, 6, So» Saccept’ Sreject)

« Sis the set of states

* Ais the input alphabet, not containing the blank symbol L
[ isthe tape alphabet, where LU el andAC T

° a:sxr_)Zle'x{L,R}

* sy is the initial state

* S

accept is the accept state

*  Sreject is the reject state, where s, # Sreject



Turing Machine Configuration

A perfect description of the machine at a certain point in the computation

1 0 1 1 0 1 1 - =

-

is represented as a string: 1011s011

« Initial configuration on input w,,...,w,, — SgW4,...,W,
* Accepting configuration — Uy,...,US,cceptUkets- s Ukem

* Rejecting configuration — uy,...,U S iectUie1s--sUkem



Turing Machine Computation

Deterministic Nondeterministic

SoW1, ..., W, SoW1,. .-, Wi,

computation path

the next configuration is unique computation tree



Deciding a Problem

(recall that an instance of a decision problem 1 is encoded as a word over a certain

alphabet A — thus, I is a set of words over A, i.e., [1 C A¥)

ADTM M = (S, A, T, B, Sp, Saceepts Sreject) dECIdES @ problem T if, for every w € A™

* Moninputw haltsin s, ifw €Tl

* Moninputw haltsin s if w &I
® SOW ® Sow
b 4 ) 4
® ®

w c [l

usacceptv usrejectv



Deciding a Problem

ANTM M = (S, A\, T, B, Sy, Saccept: Sreject) dECIdES @ problem T if, for every w € A™

The computation tree of M on input w is finite

There exists at least one accepting computation path if w € I

There is no accepting computation path if w & I

SoW SoW
w <[l w & [

u Srejectv
u Srejectv

u Sacc:eptv u SrejectV u Srejectv



Complexity Classes

Consider a functionf: N — N

TIME(f(n))

{M | Mis decided by some DTM in time O(f(n))}

NTIME(f(n)) = {1 |is decided by some NTM in time O(f(n))}

SPACE(f(n)) = {ll]is decided by some DTM using space O(f(n))}

NSPACE(f(n)) = {I1|is decided by some NTM using space O(f(n))}



Complexity Classes

« We can now recall the standard time and space complexity classes:

PTIME = Ueo TIME(nY)
NP =  Ueo NTIME(nK)
EXPTIME =  Uko TIME2™)
NEXPTIME =  Ueo NTIME(2™)
LOGSPACE =  SPACE(log n) } these definitions are relying on
two-tape Turing machines with a
NLOGSPACE =  NSPACE(log n) read-only and a read/write tape
PSPACE =  Uwo SPACE(nY)
EXPSPACE = Ueo SPACE(2™)

» For every complexity class C we can define its complementary class

coC = {A*\ N[N € C}



An Alternative Definition for NP

Theorem: Consider a problem 1 C A*. The following are equivalent:
 [1eNP
« There is a relation R C A* x A* that is polynomially decidable such that

M = {u | there exists w such that [w| < |u|kand (u,w) € R}

/

witness or certificate {xy e A*| (x,y) € R} € PTIME

Example:
3SAT ={o | ¢ is a 3CNF formula that is satisfiable}
={op | ¢ is a 3CNF for which 3 assignment a such that |a| < |¢| and (¢,a) € R}

where R = {(¢,0) | a is a satisfying assignment for ¢} € PTIME



Relationship Among Complexity Classes

LOGSPACE C NLOGSPACE C PTIME C NP, coNP C

PSPACE C EXPTIME C NEXPTIME, coNEXPTIME C ...

Some useful notes:

* For a deterministic complexity class C, coC =C

« coNLOGSPACE = NLOGSPACE

* Itis generally believed that PTIME # NP, but we don’t know

« PTIME c EXPTIME = at least one containment between them is strict
« PSPACE = NPSPACE, EXPSPACE = NEXPSPACE, etc.

* But, we don’t know whether LOGSPACE = NLOGSPACE




Complete Problems

* These are the hardest problems in a complexity class

« A problem that is complete for a class C, it is unlikely to belong in a lower class

A problem I'lis complete for a complexity class C, or simply C-complete, if:
1. MeC
2. llis C-hard, i.e., every problem [T € C can be efficiently reduced to I

/

there exists a polynomial time algorithm (resp., logspace algorithm)

that computes a function f such that w € [T < f(w) € I'1 —in this

case we write [T" <, N (resp., I <, N)

 To show that Il is C-hard it suffices to reduce some C-hard problem I to it



Some Complete Problems

 NP-complete
— SAT (satisfiability of propositional formulas)
— Many graph-theoretic problems (e.g., 3-colorability)
— Traveling salesman

— eftc.

« PSPACE-complete
— Quantified SAT (or simply QSAT)
— Equivalence of two regular expressions
— Many games (e.g., Geography)

— etc.



