A Crash Course on Complexity Theory

we recall some fundamental notions from complexity theory that will be heavily used in the context of this course - further details can be found in the standard textbooks

Deterministic Turing Machine (DTM)

$$M = (S, Λ, Γ, δ, s_0, s_{accept}, s_{reject})$$

- S is the set of states
- Λ is the input alphabet, not containing the blank symbol ⊔
- Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Lambda \subseteq \Gamma$
- $\delta: S \times \Gamma \rightarrow S \times \Gamma \times \{L,R\}$
- s₀ is the initial state
- s_{accept} is the accept state
- s_{reject} is the reject state, where $s_{accept} \neq s_{reject}$

Deterministic Turing Machine (DTM)

$$M = (S, \Lambda, \Gamma, \delta, s_0, s_{accept}, s_{reject})$$

$$\delta(s_1, \alpha) = (s_2, \beta, R)$$

IF at some time instant τ the machine is in sate s_1 , the cursor points to cell κ , and this cell contains α

THEN at instant $\tau+1$ the machine is in state s_2 , cell κ contains β , and the cursor points to cell $\kappa+1$

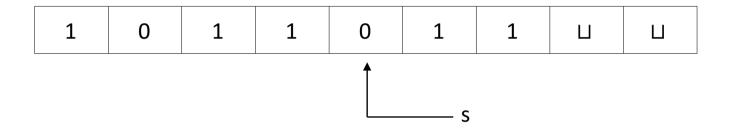
Nondeterministic Turing Machine (NTM)

$$M = (S, Λ, Γ, δ, s_0, s_{accept}, s_{reject})$$

- S is the set of states
- Λ is the input alphabet, not containing the blank symbol ⊔
- Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Lambda \subseteq \Gamma$
- $\delta: S \times \Gamma \rightarrow \text{power set of } S \times \Gamma \times \{L,R\}$
- s₀ is the initial state
- s_{accept} is the accept state
- s_{reject} is the reject state, where $s_{accept} \neq s_{reject}$

Turing Machine Configuration

A perfect description of the machine at a certain point in the computation

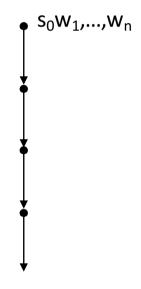


is represented as a string: 1011s011

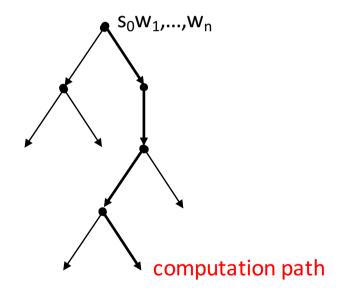
- Initial configuration on input w₁,...,w_n s₀w₁,...,w_n
- Accepting configuration u₁,...,u_kS_{accept}u_{k+1},...,u_{k+m}
- Rejecting configuration $u_1,...,u_k s_{reject} u_{k+1},...,u_{k+m}$

Turing Machine Computation

Deterministic



Nondeterministic



the next configuration is unique

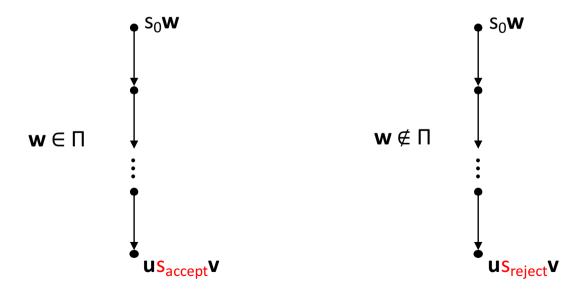
computation tree

Deciding a Problem

(recall that an instance of a decision problem Π is encoded as a word over a certain alphabet Λ - thus, Π is a set of words over Λ , i.e., $\Pi \subseteq \Lambda^*$)

A DTM M = (S, Λ , Γ , δ , s_0 , s_{accept} , s_{reject}) decides a problem Π if, for every $\mathbf{w} \in \Lambda^*$:

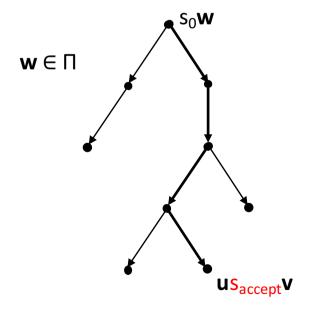
- M on input \mathbf{w} halts in $\mathbf{s}_{\text{accept}}$ if $\mathbf{w} \in \Pi$
- M on input w halts in s_{reject} if w ∉ Π

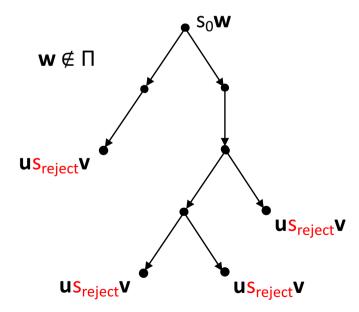


Deciding a Problem

A NTM M = (S, Λ , Γ , δ , s₀, s_{accept}, s_{reject}) decides a problem Π if, for every **w** 2 Λ *:

- The computation tree of M on input **w** is finite
- There exists at least one accepting computation path if **w** ∈ Π
- There is no accepting computation path if $\mathbf{w} \notin \Pi$





Complexity Classes

Consider a function $f: N \rightarrow N$

```
TIME(f(n)) = \{\Pi \mid \Pi \text{ is decided by some DTM in time O(f(n))}\}

NTIME(f(n)) = \{\Pi \mid \Pi \text{ is decided by some NTM in time O(f(n))}\}

SPACE(f(n)) = \{\Pi \mid \Pi \text{ is decided by some DTM using space O(f(n))}\}

NSPACE(f(n)) = \{\Pi \mid \Pi \text{ is decided by some NTM using space O(f(n))}\}
```

Complexity Classes

• We can now recall the standard time and space complexity classes:

$$\begin{array}{lll} \text{PTIME} & = & U_{k>0} \text{ TIME}(n^k) \\ & \text{NP} & = & U_{k>0} \text{ NTIME}(n^k) \\ & \text{EXPTIME} & = & U_{k>0} \text{ TIME}(2^{n^k}) \\ & \text{NEXPTIME} & = & U_{k>0} \text{ NTIME}(2^{n^k}) \\ & \text{LOGSPACE} & = & \text{SPACE}(\log n) \\ & \text{NLOGSPACE} & = & \text{NSPACE}(\log n) \\ & \text{PSPACE} & = & U_{k>0} \text{ SPACE}(n^k) \\ & \text{EXPSPACE} & = & U_{k>0} \text{ SPACE}(2^{n^k}) \end{array}$$

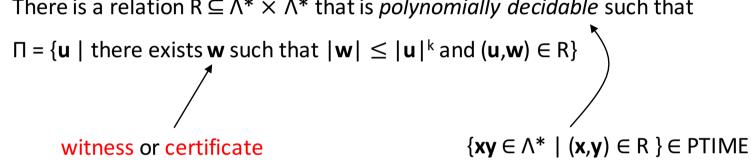
For every complexity class C we can define its complementary class coC

$$coC = \{\Lambda^* \setminus \Pi \mid \Pi \in C\}$$

An Alternative Definition for NP

Theorem: Consider a problem $\Pi \subseteq \Lambda^*$. The following are equivalent:

- Π∈NP
- There is a relation $R \subseteq \Lambda^* \times \Lambda^*$ that is *polynomially decidable* such that



Example:

 $3SAT = \{ \phi \mid \phi \text{ is a 3CNF formula that is satisfiable} \}$

= $\{ \phi \mid \phi \text{ is a 3CNF for which there is an assignment } \alpha \text{ such that } |\alpha| \leq |\phi| \text{ and } (\phi,\alpha) \in \mathbb{R} \}$

where $R = \{(\phi, \alpha) \mid \alpha \text{ is a satisfying assignment for } \phi\} \in PTIME$

Relationship Among Complexity Classes

```
\mathsf{LOGSPACE} \subseteq \mathsf{NLOGSPACE} \subseteq \mathsf{PTIME} \subseteq \mathsf{NP, conp} \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME} \subseteq \mathsf{NEXPTIME, conexptime} \subseteq \cdots
```

Some useful notes:

- For a deterministic complexity class C, coC = C
- coNLOGSPACE = NLOGSPACE
- It is generally believed that PTIME ≠ NP, but we don't know
- PSPACE = NPSPACE, EXPSPACE = NEXPSPACE, etc.
- But, we don't know whether LOGSPACE = NLOGSPACE

Complete Problems

- These are the hardest problems in a complexity class
- A problem that is complete for a class C, it is unlikely to belong in a lower class
- A problem Π is complete for a complexity class C, or simply C-complete, if:
 - 1. $\Pi \in C$
 - 2. Π is C-hard, i.e., every problem $\Pi' \in C$ can be efficiently reduced to Π

there exists a logspace algorithm that computes a function f such that $\mathbf{w}\in\Pi'\ \text{ iff }\ f(\mathbf{w})\in\Pi\ -\ \text{in this case we write }\Pi'\leq_L\Pi$

• To show that Π is C-hard it suffices to reduce some C-hard problem Π' to it

Some Complete Problems

NP-complete

- SAT (satisfiability of propositional formulas)
- Many graph-theoretic problems (e.g., 3-colorability)
- Traveling salesman
- etc.

PSPACE-complete

- Quantified SAT (or simply QSAT)
- Equivalence of two regular expressions
- Many games (e.g., Geography)
- etc.