Accelerated Finite State Machine Test Execution
Using GPUs

Vanya Yaneva
School of Informatics
University of Edinburgh
Edinburgh, UK
vanya.yaneva@ed.ac.uk

Arnav Kapoor
International Institute
of Information Technology
Hyderabad, India
arnav.kapoor @research.iiit.ac.in

Abstract—Model-based development has emerged as a popular
approach aiding automation of the software development process,
where software is implemented and tested based on a model
of the required system. Finite State Machines (FSMs) are a
widely used model representation for a variety of systems,
including control systems, signal processing and communications
protocols. Ensuring that the model accurately represents the
required behaviour involves the generation and execution of a
large number of tests that is time consuming and expensive.

In this paper, we focus on test execution and propose exploiting
Graphics Processing Units (GPUs) for accelerating FSM testing
by executing the tests in parallel on GPU threads. Our approach
includes methods to encode the FSM efficiently and optimise
the layout of tests in GPU memory for fast execution. We
compare speedup achieved by our approach against parallel test
execution on a multi-core CPU with 16 cores. We also assess the
improvement in speedup using the proposed FSM encoding and
test layouts. We use large FSMs from the networking domain
and a large industry FSM from Keysight, who provide electronic
measurement solutions, in our evaluation. We accelerate the
execution of test suites providing all-transition pair coverage for
each of the FSMs. Speedup achieved is subject to characteristics
of the FSM and associated tests, and is greatly improved with
efficient FSM encoding and test layout in memory. We find
our approach on the GPU achieves a maximum test execution
speedup of 12x over a 16-core CPU.

Index Terms—software testing, finite state machines, gpus

I. INTRODUCTION

In model-based software development, the traditional testing
process is split into two distinct activities: one activity that
tests the model to validate that it accurately captures the high
level requirements, and another testing activity that verifies
whether the code generated (manually or automatically) from
the model is behaviourally equivalent to the model [24]. Note
that, in this paper, we use the term ‘model’ to refer to a finite
state machine (FSM) that is widely used to model systems
in diverse areas, including sequential circuits, control systems
and communication protocols [[19].

The problem of testing FSMs (for state identification, state
verification, conformance testing) has received a lot of atten-
tion over the past decades since brute force testing of FSMs
with a large number of states and transitions is infeasible.
Several techniques for automatically generating and selecting
tests have been proposed in the literature. Nevertheless, even

Ajitha Rajan
School of Informatics
University of Edinburgh
Edinburgh, UK
arajan@ed.ac.uk

Christophe Dubach
School of Informatics
University of Edinburgh
Edinburgh, UK
christophe.dubach@ed.ac.uk

after test selection, the number of tests that needs to be
executed is very high, requiring time consuming test runs.

A. Motivating Example

The problem with time consuming FSM test runs was first
brought to us by a company - Keysight Technologies [2].
Keysight provide electronic measurement solutions to the
wireless communications, aerospace and semiconductor indus-
tries. Their systems are modelled using FSMs that get tested
extensively. Owing to the large sizes of their FSMs and the
numerous tests that need to be executed, test execution is an
extremely time-consuming task, often becoming a bottleneck
in the development and testing process.

Fig. 1: Keysight example (taken from [20]])

Figure [1| shows one of their FSMs, presented in [20]. This
FSM is used to identify and trigger particular measurements
of interest performed by a digital oscilloscope. The inputs L,
M and H correspond to Low, Medium and High frequencies
and this particular FSM is designed to identify a rising edge
in the digital signal. In order to ensure that the FSM identifies
exactly the required type of digital pattern, Keysight perform
black-box tests, similar to those used in functional testing.
They execute different input sequences and observe the output
behaviour, checking both for false positives and false nega-
tives. While this is a simple example, the aforementioned test
execution problem is encountered with large scale Keysight
FSMs with thousands of states, depending on the input pattern
they are designed to identify. Such FSMs require thousands of
tests to ensure correctness and take arbitrarily long times for
executing all the tests.

B. Contributions

In this paper, we present automatic execution of functional
FSM tests in parallel using graphics processing units (GPUs).
We present the following contributions:

« An efficient encoding to represent finite state machines in
GPU memory. We accept FSMs in a format that is both
intuitive to the user and allows FSMs to be generated into
valid OpenCL code. We then efficiently encode the FSM
so it fits in GPU memory allowing fast access.

¢ An OpenCL implementation which executes FSM tests in
parallel on the GPU in such a way that expert knowledge
of GPU programming is not required.

o Optimisations targeting the memory layout of tests to
enhance the achieved speedup on the GPU.

o Evaluation using large FSMs and assessment of the
speedup achieved on the GPU when compared to parallel
testing on a multi-core CPU.

The rest of this paper is organised as follows. Section
discusses relevant background and related work. Section
presents our approach for parallel test execution of FSMs
on the GPU and the performance optimisations implemented
in our framework. We discuss the research questions and
experiment setup for our evaluation in Section Speedup
results and the effect of optimisations are presented and
analysed in Section [V] Section discusses the threats to
validity of our experiment and finally, Section concludes.

II. BACKGROUND & RELATED WORK

A. Finite State Machines

Finite state machines are widely used to model a variety
of computer systems, including control circuits, signal pro-
cessing, communications protocols and pattern matching. They
are also the basis of many industry tools, including Simulink
[4], IBM Rational Rhapsody [3] and Sparx Systems Enterprise
Architect [1f]. In this work we consider models based on Mealy
machines that have a finite number of states and produce
outputs on state transitions based on current state and inputs.
Lee et al. [19] provide the following definition of an FSM.

Definition. A finite state machine M is a quintuple

M =(1,0,5,6,\) (1)

where I, O and S are finite non-empty sets of input symbols,
output symbols and states, respectively.

0 : 5 x I — S is the state transition function and

A: S x I — O is the output function.

When the machine is in a state s in S and receives an input
a from I it moves to the next state specified by (s, a) and
produces an output A(s, a).

B. GPU Architecture, Programming & Performance

GPUs are parallel accelerators, designed for graphics com-
putations, which have been successfully employed in many
areas of general purpose computing.

a) Architecture: GPUs consist of one or more compute
units, each of which contains one or more processing elements,
which execute the individual threads. The functions executed
by the GPU threads are called kernels and each thread runs
the same kernel over different input data (Single Instruction
Multiple Data programming model). This makes GPUs suited
to functional testing, as functional testing consists of running
the same tested functionality over multiple test inputs. Our
prior work showed that GPUs are well suited to parallelising
test suite execution for C programs [25], [28].

b) Programming: GPUs require the use of specialist
programming models, such as CUDA [22] and OpenCL [12].
Based on the C/C++ programming languages, they expose
low-level hardware details, which require the programmer to
explicitly express the parallelism in terms of the architecture.

c) Performance: GPUs have a memory hierarchy, out-
lined below. The placement of data during GPU execution
can have significant impact on performance.

+ Global memory. Large and slow, accessed by all threads
in all compute units. Performance is greatly improved,
when accesses are coalesced during execution, i.e. when
threads access consecutive addresses in global memory.

o Constant memory. A read-only portion of global mem-
ory, which contains a special cache allowing much faster
Memory access.

e Local memory. Local to compute units, shared among
the threads in a single unit.

o Private memory. Private to individual threads.

All threads in a compute unit share the same instruction
counter, thus execution on a single compute unit is done in
lock-step - at each step all threads execute the same instruction.
In OpenCL terminology such a group of threads is called a
work-group. If there is control-flow divergence across threads
within the same work-group, divergent instructions will be
serialised, negatively impacting performance. Similarly, when
the workload is not balanced across the threads in a work-
group, this will lead to idle threads, reducing performance.

C. Related Work

Comprehensive review on testing of finite state machines
can be found in [[19] and [8]]. These surveys focus on functional
testing, also known as conformance testing, which is used
to demonstrate that system implementation conforms to an
FSM model. The FSM is used to generate test cases for the
implementation, by using techniques based on the construction
of distinguishing, identifying or unique I/O sequences. While
powerful, these techniques have high computational complex-
ity and can lead to exponentially long testing sequences,
incurring significant execution costs. As a result, there is a
body of research focused on generating minimised testing
sequences [[16]-[18]], [27].

A practical alternative often employed in industry is gen-
erating test suites based on some type of coverage criteria of
the FSM. Popular choices are all-transition, all-transition pair
and full predicate, formalised in [23]], as well as transition
tree [5], based on the W-method introduced by Chow [9].

Briand et al. [7] present an empirical investigation into the
cost and fault detection effectiveness of the four criteria. They
conclude that simply using all-transition coverage provides
weak fault detection capabilities, while full predicate and
transition tree lead to huge increases in cost. In contrast, all-
transition pair offers strong fault detection guarantees while
maintaining lower costs relative to the other criteria. In this
paper we use all-transition pair coverage to generate test suites
for our experimental setup. We discuss test generation in more
detail in Section

In recent years, Hierons and Trker have been using GPUs to
accelerate the generation of testing sequences for FSMs based
on unique I/O sequences [14]], state harmonised state identifiers
and characterising sets [[13]] and distinguishing sequences [/15].
As far as we are aware, there is no existing work in using
GPUs to accelerate the execution of FSM tests.

III. APPROACH

A functional test checking the behaviour of an FSM is
represented as a sequence of inputs. Executing such a test
involves applying the inputs in the sequence one by one, com-
mencing at the specified starting state, transitioning through
the states of the FSM, and recording the outputs associated
with each transition. The test passes if the output sequence is
the expected one and fails otherwise.

The executions of individual test sequences are independent
of one another, allowing them to be executed in parallel. Our
approach executes each test sequence on an individual GPU
thread. It involves the following steps:

1. Take the FSM and test suite as inputs.

2. Transfer the FSM and test inputs to the GPU memory.

3. Launch test execution in parallel on the GPU.

4. Transfer test outputs back to CPU memory.

We perform steps 1 and 2 as part of preparation for test exe-
cution. The speedup reported in Section [V]uses time taken for
step 3. We also discuss the time taken for transferring the test
inputs and results in steps 2 and 4 in Section The speed
with which the test suite executes on the GPU is determined by
a number of different factors - the characteristics of the FSM
and the test suite, as well as particular design considerations
in our test execution framework. In the following subsections
we present these design considerations and the optimisations
we used to enhance test execution speedup.

A. Placement of FSM and Tests in GPU Memory

The FSM and tests are placed in the following locations in

the GPU memory hierarchy:

o The FSM is needed by all tests, thus it is necessary to
be placed in global memory. However, since accesses to
global memory are slow and the tests do not modify
the FSM, we try to place it in the read-only constant
memory when it is small enough to fit. In Section
we observe that all of the FSMs used in our experiments
fit in constant memory.

o Test inputs and outputs are transferred to/from GPU
memory in two arrays, which are shared across threads.

Therefore, they are placed in global memory, but each
thread reads/writes to different portions of the arrays. In
order to mitigate the performance penalty of accessing
large test arrays in global memory, we consider different
test layouts in Section [[II-C] and evaluate them in Sec-

tion V-G

B. FSM Layout in Memory

Consider the FSM as a two-dimensional matrix, in which
each row represents a state and each column represents an
input from the input set. Then each element of the matrix
is a tuple (next state, output), which encodes a transition
of the FSM. In other words, the element for row s and
column « of the matrix is the tuple (4(s, a), A(s,a)). A sparse
matrix indicates that there are many state/input pairs for which
transitions are not defined, while a dense matrix indicates that
there is a transition for most state/input pairs.

We consider two possible layouts for the FSM, which we
call sparse and dense.

1) Sparse FSM Layout: The sparse FSM layout consists
of a one-dimensional array, indexed by state, in which each
element is a list of (input, next state, output) triplets. Given a
state s and an input a, we pick the list of triplets corresponding
to s in constant time and then perform a search to find the
correct triplet based on a. Figure 2] illustrates the sparse FSM
layout for the motivating example shown in Figure [I]

The sparse FSM layout has the advantage of using memory
only for the transitions present in the FSM since it does not use
any padding. It could be beneficial for sparse FSM matrices,
as it can encode them compactly and allow them to fit into
constant GPU memory. The downside of using the sparse FSM
layout is the potentially slow execution time - for each input in
a test sequence, finding the (next state, output) tuple requires
a potentially expensive search for the matching input in the
list of triplets for the current state.

BO | (L, B1, 0), (M, BO, 0), (H, B0, 0)
Bl | (L, B1, 0), (M, B2, 0), (H, B3, 1)
B2 | (M, B2, 0), (H, B3, 1)

Fig. 2: Sparse FSM layout for the motivating example shown
in Figure [T}

2) Dense FSM Layout: The dense FSM layout consists of
a two-dimensional array, indexed by state and input, in which
each element is a single (next state, output) tuple. Given a
state s and an input a, we pick the corresponding tuple in
constant time. Figure [3] illustrates the dense FSM layout for
the motivating example shown in Figure [1]

The benefit of using the dense FSM layout is the fast
execution time, as for each input in a test sequence, the lookup

for (next state, output) happens in constant time. On the other
hand, the drawback is the need to allocate memory for every
possible state/input pair in the FSM in the form of padding.
This could incur a large overhead in memory space compared
to the sparse layout, particularly for sparse FSM matrices.

L M H
BO | (B1,0) | (BO,0) | (BO, 0)
Bl | (B1,0) | (B2,0) | (B3, 1)
B2 | padding | (B2,0) | (B3, 1)
B3 | padding | padding | padding

Fig. 3: Dense FSM layout for the motivating example shown
in Figure [I] indexed by state and input.

Note that for a dense FSM matrix, the size of the sparse
FSM layout would be the same as that for the dense FSM
layout or even greater. This is the case because a dense matrix
would require memory for the same amount of transitions
(|S| x |I|) in both layouts, but in the sparse layout each
transition needs to encode the input as well as the next state
and output. In the case of a sparse matrix, the benefit of fast
memory accesses, provided the sparse layout fits in constant
memory, may be offset by the extra time needed to perform a
search for each input in the test sequence.

C. Test Layout in Memory

Each test in the FSM test suite is a sequence of inputs.
Generally, input sequences representing tests are of different
lengths and their layout in memory affects the GPU execution
time. We consider three possible memory layouts, which we
call padded, padded-transposed and with-offsets. Note that
during execution the same layout is used for both the test
inputs and outputs.

1) Padded Test Layout: In this layout, tests are laid out in a
two-dimensional array, in which each row is a separate test and
each column is a test input. All tests are padded with null
bytes to the length of the longest test sequence. Each GPU
thread executes a single row of the two-dimensional array. Test
execution stops when the padding null byte is encountered.
While easy and intuitive to implement, this test layout has high
memory requirements and does not allow efficient coalesced
memory accesses on the GPU.

2) Padded-transposed Test Layout: This layout uses the
same two-dimensional array as the padded layout, but trans-
poses it to allow coalesced memory access. In this way each
column represents a separate test and each row is a test input
and the GPU can use coalescing to optimise global memory
access for speed.

3) With-offsets Test Layout: In this layout, all tests are
concatenated into a single array. In order for each thread to
know where its test starts, an array of offsets is calculated
and used by the threads. While this layout does not allow
coalesced memory accesses, it is more compact than the other
two, as there is no padding involved, and may utilise the global
memory cache more effectively.

D. Sorting the Test Sequences Based on Length

As outlined in Section all GPU threads are organised
into work-groups, which execute in lock-step (each thread
executes the same instruction). This means that the whole
work-group would only run as fast as the thread executing the
longest test sequence. Thus, if the threads within the work-
group are executing test sequences of different lengths, the
threads with shorter test sequences will need to wait for the
longer ones to complete execution. However, if all threads in
a work-group are running tests of similar lengths, they will
all finish at the same time, freeing up resources for a new
work-group to be scheduled.

To achieve work-groups executing tests of similar lengths,
a straight forward approach is to sort the test sequences based
on their length and launch them on the same work-groups.
This should speedup the execution time not only for the with-
offsets layout, but also for the padded and padded-transposed
layouts, as each thread finishes execution when it encounters
the first padding (null) character in the test sequence.

E. Implementation

Our approach is implemented for the GPU using the
OpenCL programming model. The implementation takes two
inputs: (1) an FSM, specified in the kiss2 format [26] and (2)
its test suite specified in a text file, each test sequence on a
new line. It then transparently launches the tests in parallel on
the GPU threads, requiring no other input or GPU knowledge
from the programmer.

We implemented each of the design decisions discussed in
this section and evaluated them using the experiments outlined
in Section In order to compare GPU execution time to that
of a multi-core CPU, we implemented equivalent designs using
the C programming language and parallelised test execution
on the CPU using OpenMP.

IV. EXPERIMENT

We evaluate the effectiveness of using GPUs to accelerate
the execution of FSM tests using FSMs derived from the 17-
filter intrusion detection patterns [21]], as well as an industry
FSM model provided by Keysight [11]. We generate full
test suites for each FSM based on the all-transition pair
coverage. Our evaluation focuses on GPU execution time and
not on data transfer time. We study the effects of the different
design considerations outlined in Section [ITI| by answering the
following research questions:

Q1. GPU vs multi-core CPU execution. What is the GPU
performance compared to a 16-core CPU? For each
FSM, we executed its test suite in parallel on the GPU
threads using our approach and on a 16-core CPU,
then compared their execution time. We performed the
experiment using different test suite sizes, ranging from
2048 to the full test suite, in order to assess how the
speedup changes as the test suite grows. We present the
results achieved by the fastest GPU implementation, as
determined in our experiments for Q2, Q3 and Q4 (dense

FSM Domain #States (|S|) #Inputs (|I|) %Density #Tests
ssl intrusion detection (17-filter) 34 256 83% 1475 251
battlefield?2 intrusion detection (17-filter) 71 256 56% 1476 796
dns intrusion detection (17-filter) 197 256 83% 8 533 671
aim intrusion detection (17-filter) 41 256 58% 1 344 963
rtp intrusion detection (17-filter) 28 256 95% 1536 723
tsp intrusion detection (17-filter) 27 256 84% 1162 511
yahoo intrusion detection (17-filter) 54 256 82% 2 627 405
ntp intrusion detection (17-filter) 31 256 90% 1 374 296
hotline intrusion detection (17-filter) 34 256 66% 1216433
h323 intrusion detection (17-filter) 46 256 90% 2 241 832
halflife2 intrusion detection (17-filter) 24 256 80% 1 088 409
counterstrike—source intrusion detection (17-filter) 30 256 85% 1472 463
keysight digital signal processing 4004 3 100% 36 027

TABLE I: Subject FSMs used in our experiments.

FSM layout, padded-transposed test layout and sorting of
the tests before execution).

Effect of FSM layout. Is the GPU performance depen-
dent on the FSM layout in memory (Sparse vs Dense)?
We measured the time taken by the GPU and 16-core
CPU to execute the full test suites of all FSMs, using
both layouts, and compared the GPU speedups. We used
the padded test layout for the 17-filter FSMs and both
padded and padded-transposed for the Keysight FSM.
We did not sort the tests before execution.

Effect of test layout. Is the GPU performance depen-
dent on the test layout in memory (Padded vs Padded-
transposed vs With-offsets)? We measured the time taken
by the GPU and 16-core CPU to execute the full test
suites of all FSMs, using the three test layouts, and
compared the GPU speedups in execution time. We used
the dense FSM layout and did not sort the tests before
execution.

Effect of sorting the tests. How does the GPU perfor-
mance change when the test sequences are sorted based
on length? To answer this question, we repeated the
experiment for Q3, but sorted the tests for each FSM
before its execution. We compare the GPU speedup for
all three test layouts to assess the effect of sorting tests,
based on their length.

Q2.

Q3.

Q4.

A. Subject FSMs & Tests

To evaluate our approach, we use 12 subject FSMs from the
network intrusion detection domain and 1 industry provided
FSM from Keysight, used in the signal processing domain.
For all FSMs we generate full test suites based on the all-
transition pair coverage criteria. Table |I| provides a summary
of the FSMs together with their sizes and numbers of tests.

1) l7-filter: 12 subject FSMs are taken from the Linux
layer 7 filter (17-filter) [21]] pattern set, which contains multiple
regular expressions used in network intrusion detection. The
set of inputs comprises of the full set of ASCII characters. We
use the Flex tool [10] to convert the patterns into FSMs and

a custom Python script to generate a file for each FSM in the
kiss2 format [26].

2) Keysight: The Keysight FSM represents a model of tran-
sition localisation in communication signals [[11]. The FSM
takes three possible inputs, L, M and H, which correspond to
Low, Medium and High voltage pulses and accepts when a low
or high state has been established, identifying a transition in
the signal. The size of the FSM is determined by a parameter
p, which defines when a pulse has been sustained long enough
to be considered a valid transition and not a glitch in the signal.
In our experiments, we used p = 1000 as it generates an FSM
of similar size (|S| x |I]) to our other subject FSMs.

% 1600
1400
1200

1000 A

800

Average Test Length

600

LN ©® ,‘b\@ & R &P &Q -\\«\Q' r\;{:” .\3’ 3&5’ 100
N F YR <
N A & &?} . °:§\
& S 5
& NG

Fig. 4: Average lengths of the tests of the FSMs used in our
evaluation. Error bars show standard deviation.

3) Test Generation: In order to evaluate out approach using
realistic tests, we used the all-transition pair coverage criteria
to generate full test suites for each of the FSMs used in our
study. All-transition pair coverage requires that for each pair of
adjacent transitions in the FSM, the test suite contains a test
which traverses it in sequence. Two transitions are adjacent
when one of them enters and the other exits the same state.
All-transition pair has been shown to be a rigorous coverage
criterion [7]], as it ensures that events in the system are tested
not only individually, but also in relation to one another.

To generate the test suites, we implemented the algorithm
presented in [[6] using Python scripts. Table [[] contains the size

of the resulting test suites for each FSM and Figure [] shows
the average test lengths for each test suite. We see that the
keysight FSM has much fewer tests than the rest (36072
vs avg. 2129229 across the 17-filter FSMs), but the average
length of its tests is much larger (1000 inputs vs avg. 11).
There are two reasons for these differences: (1) keysight
has a lot more states than the 17-filter FSMs (4004 vs avg.
53) and (2) the 17-filter FSMs have a lot more possible inputs
than keysight (256 vs 3). Therefore, for the 17-filter FSMs,
a large volume of transition pairs originate in a small number
of states, requiring a large number of shorter test sequences to
traverse them all. On the other hand, for keysight we have
the opposite situation - a large number of states, but with a
small number of transition pairs going through each of them,
requiring fewer but longer test sequences to traverse them.

B. Hardware & Measurements

In our experiments, we use an NVidia Tesla K40m GPU
with 15860 threads, spread across 15 compute units. The
GPU operates at 745 MHz and has 12 GB global memory,
64 KB constant memory and 50 KB local memory. For the
CPU comparison we use an Intel(R) Xeon(R) CPU E5-2640
v3 processor with 16 cores at 2.60 GHz and 16 GB RAM.
All the programs were compiled with GCC with the highest
optimization level (-03). To measure GPU execution and data
transfer time, we use the profiling functions contained in the
OpenCL API. For CPU execution time, we use the standard C
function gettimeofday. For each experiment we perform 100
runs and report median values.

a) Multi-core CPU execution: In order to provide fair
comparison between the GPU and a multi-core CPU, we
parallelised test execution on the CPU using OpenMP and
executed all design configurations (FSM layout, test layout and
test sorting) using 16 cores available on our system. Across
the paper, we report speedup calculated when compared to the
fastest CPU execution times.

b) Correctness: For each experiment, we compare the
testing outputs produced by the GPU to those from the CPU
and confirm that they are an exact match to ensure that our
GPU optimisations preserve the correctness of test execution.

V. RESULTS & ANALYSIS

In this section we discuss the results and analysis of the
experiments described in Section First, we present the
total GPU execution speedup when compared to the multi-
core CPU in QI and then, we assess each individual design
choice in Q2, Q3 and Q4.

A. Ql. GPU Execution Speedup vs Multi-core CPU

Figure [5] shows the speedup achieved in test execution
time on the GPU when compared to an optimised parallel
implementation on a 16-core CPU. For each FSM we present
the GPU speedup for test suite sizes ranging from 2048
up to the maximum number of tests in the test suite. As
keysight requires significantly fewer tests that the 17-filter

FSMs, we padded its test suite to contain 220 tests by randomly
duplicating its existing tests.

We find that GPU speedup increases as the number of tests
in the test suite increases, since the GPU is able to utilise
more threads as tests are added. This continues up until the
GPU’s saturation point after which there are no more GPU
threads to be utilised and the speedup remains stable (approx.
218 tests). Speedup is observed for test suite sizes larger than
213 (approx. 8K), over all FSMs, and the highest speedup is
achieved for the largest test suite size. We discuss results for
the 17-filter and Keysight FSMs separately.

1) I7-filter: The speedup observed for the I7-filter
FSMs ranges between 1.7x for ssl and 12x for
counterstrike. The average speedup across all FSMs is
6.4x. The difference in speedup across the FSMs is due to
the difference in the lengths of tests. Figure [shows the
average test lengths of each FSM, as well as the standard
deviation across the test suite. We see that the FSMs which
achieve the highest speedup, counterstrike, hotline
and halflife?2, are also among the ones which have the
longest average test lengths. Conversely the FSMs with lowest
speedup, ssl and dns are among the ones with shortest
average test lengths. The longer test sequences require longer
execution per test both on the GPU and CPU. Since the GPU
has a much higher degree of parallelism, the extra computation
per thread is lower than that of each individual CPU core,
which needs to execute multiple tests. This allows the GPU
to execute longer test sequences much faster than the CPU,
resulting in higher speedup.

2) Keysight: For keysight, we observe that the GPU
achieves speedup of 7.9x for its full test suite (36027 tests)
when compared to a 16-core CPU. This speedup seems lower
than expected, considering the much longer test sequences of
keysight. There are two reasons for this:

1) keysight has only 36072 tests in its test suite - not
enough to completely utilise the GPU. Figure [3] shows
that padding the test suite to 22° tests enables the GPU
to achieve higher speedup of up to 12.4x.

2) As we discussed in Section [V-AT] the longer testing
sequences can successfully utilise the high degree of
parallelism available on the GPU, resulting in high
speedups. Nevertheless, when executing a test, each step
of the FSM traversal involves expensive test input/output
reads and writes from/to global memory. Each of these
data accesses is much more time consuming on the GPU
than the CPU. As keysight’s testing sequences are 2
orders of magnitude longer than those of the 17-filter
FSMs, the cumulative effect of global memory accesses
has a negative impact on the GPU execution speedup.

B. Q2. Effect of FSM Layout

Figure [6] shows a comparison of the GPU speedup achieved
using the two FSM layouts - sparse and dense, for the full test
suites of each FSM.

As we are only comparing FSM layout, we use only padded
test layout for the 17-filter FSMs. For keysight, the padded

E 12 4~ counterstrike e A-A
o hotline “ __ee
- [B
[/
w0 halflife2 N . -
Q 9 * h323 & -
E B —®— ntp A /‘/’
8’ battlefield2 O S . * >
- [—— aim o - _—o—e-o
o g
g 0 tsp
£ 5 —— rtp
S yahoo 4 o
Q3 A dns 7
o [
%) &

912 914 916 918 920 922

* Number of tests (log base 2)

19— keysight o

2 T ~—
11
10
_
9 o
8 36027, 7.94)
7
6
5
4
3
2 e
g
Lo
0 211 214 'Z“’ 21\‘ 22m

Number of tests (log base 2)

Fig. 5: Speedup in GPU execution time when compared to a 16-core CPU over different test suite sizes. Results presented use

the fastest GPU and multi-threaded CPU implementations.

B8 Sparse

Dense

e

o

)

—

N

Speedup compared to 16-core CPU

g x° R

& \(\0‘\\(\"‘ &° \\'51'5 <0

NG CIN L ASF
e Wt \oax‘\é\e TN

fesia ey

Fig. 6: Difference in GPU execution time speedup (when compared to a 16-core CPU) between the sparse and dense FSM
layouts. The presented values are for the full test suite for each FSM. The test layout is padded for 17-filter and padded-
transposed for the Keysight FSM. Tests are not sorted before execution.

test layout did not yield a speedup and we also performed an
experiment using the padded-transposed test layout in order
to be able to provide a comparison between sparse and dense
FSM layouts. We discuss results for the 17-filter FSMs and
keysight separately and then provide a common analysis.

1) 17-filter: In Figure [6] we observe that for the sparse
FSM layout, the speedup for the GPU is consistently lower
than 1 - that is, the GPU is slower than than the 16-core
CPU. Switching to the dense representation improves the
GPU speedup significantly, achieving values between 1.5x
and 3.8% across the FSMs.

2) Keysight: Figure [6] shows that for keysight, when
using the padded test representation, the GPU performs worse
than the CPU with both the sparse and the dense FSM layouts.
This is due to the high inefficiency of the padded test layout for
long test sequences. We discuss this in detail in Section [V-C2]
Owing to the high inefficiency of the test layout, resulting in
very slow GPU execution, the FSM layout has little impact
on the performance.

Figure [6] also shows that the GPU speedup is significantly

improved when switching to padded-transposed test layout,
both for the sparse and dense FSM layouts, allowing us to
compare them. As with the 17-filter FSMs, the dense layout
achieves better GPU speedup - 4.3x vs 1.5x for the sparse.

3) Analysis: To understand the reasons for the difference
between the two FSM layouts, we consider the characteristics,
outlined in Section [[II-B] When using the dense layout, our
approach is able to lookup the next state and output for a
given input in constant time, saving considerable execution
time for each input in each test sequence when compared to
the sparse layout. In addition, in Table [I] we observe that the
density of our subject FSMs is very high - from 56% for
battlefield?2 to 100% for keysight with an average of
81%. This means that for each FSM, the amount of memory
taken by the sparse layout would be close to that of the dense
layout, providing no benefit in choosing it. Finally, the large
amount of constant memory available on modern GPUs was
enough for all of our subject FSMs to fit into it, allowing our
approach to take advantage of the fast access to it even with
the dense FSM layout.

C. Q3. Effect of Test Layout

Figure [/| shows a comparison of the GPU speedup achieved
using the three test layouts - padded, padded-transposed and
with-offsets, for the full test suites of each FSM. We discuss
results for the 17-filter FSMs and keysight separately.

1) l7-filter: In Figure we see that there is a vari-
ation in performance across the different FSMs and test
layouts. Generally, for the FSMs with shorter test inputs
(yvahoo, tsp, rtp and tsp) the highest GPU speedup
is achieved by the with-offsets test layout (up to 3x for
tsp). In contrast, for the FSMs with longer test inputs
(hotline, h323, halflife2 and counterstrike,
padded-transposed achieves the highest speedup (up to 7.8x
for counterstrike).

To understand the differences, we consider the two factors
which contribute to the efficiency of the test layout - the ability
of the GPU to (1) use the global memory cache and (2) to
perform coalesced memory accesses. With-offsets provides a
more compact test representation, which fits easily into the
global memory cache. This is the case in particular for shorter
test sequences which explains the better speedup achieved by
with-offsets for those FSMs. However, as test sequences grow,
the effect of the GPU cache diminishes and the ability to
perform coalesced memory access becomes more beneficial.
This is provided by the padded-transposed representation and
explains the higher speedup achieved with it for the FSMs
with longer test suites.

2) Keysight: We see in Figure [/| that for the padded and
with-offsets test layouts, the GPU has a speedup value less
than 1, implying that it is slower than the CPU. In contrast, for
the padded-transposed test layout, the GPU speedup improves
significantly, reaching a value of 4.2x. This inefficiency is due
to the long test sequences in keysight’s test suite. As seen
in Figure 4] the average length of the test inputs is approx.
1000. Each input is a value encoded as a character. This
means that the average test takes approx. IMB of memory,
making it impossible to fit into the GPU’s cache. As the
padded and with-offsets layouts do not provide coalesced
memory accesses, at every input traversal step, every GPU
thread is performing two expensive memory accesses (reading
test input and writing test output) without the help of the GPU
cache, resulting in an extremely inefficient GPU computation.
This is dramatically improved when we switch to padded-
transposed test layout. At every input, each GPU thread per-
forms reads/writes from/to consecutive addresses in memory.
Due to these coalesced memory accesses the GPU architecture
performs a single efficient memory transaction across a work-
group for each memory access, resulting in much better GPU
performance.

D. Q4. Effect of Sorting the Tests

Figure [§] shows the effect on GPU speedup of sorting the
tests before execution. We observe improvement of speedup
across all FSMs and across all test layouts. For the FSMs with
long test inputs (counterstrike, hotline, h323, ntp
and keysight) this improvement is significant, by a factor

of approx. 2. This brings the maximum GPU speedup across
FSMs to 12x (for counterstrike).

This is as expected, based on our discussion in Sec-
tion Sorting the tests prior to execution ensures that
all threads within a work-group have tests of similar lengths
and finish at the same time, immediately freeing resources for
another work-group to be scheduled.

Two exceptions are the padded and with-offsets test layouts
of keysight, which do not improve as we sort the tests.
The reason for this is that for keysight these test layouts
are extremely inefficient on the GPU, leading to worse perfor-
mance when compared to the 16-core CPU. Sorting the test
sequences is not enough to mitigate this effect.

E. Assessing Data Transfer Time

In this Section we evaluate the time taken to transfer the
tests from the CPU to GPU and the time needed to transfer
the test execution results back to the CPU. It is well known
that data transfer between CPU and GPU is slow due to high
latency of the interface. This limitation maybe less of an issue
in next generation GPUs that are projected to have larger
memory size and bandwidth and in systems with integrated
CPU and GPU memory (heterogeneous system architectures).

Table [l shows the overhead incurred from data transfer as a
fraction of the total GPU time (data transfer and execution time
combined). The table shows that for all FSMs data transfer
incurs a significant overhead, ranging from 64% (for ss1) to
92% (for keysight). It is not surprising that ss1 has the
lowest overhead for transferring tests, as it is the FSM with
shortest test sequences. Similarly, we expect keysight to be
the FSM with highest overhead, as it is has the longest tests.

The high degree of data transfer overhead is explained
by the fact that our approach focuses on the acceleration of
the GPU execution time. This results in the execution time
becoming only a small proportion of the total time on the
GPU with data transfer becoming the dominant factor.

Optimisation. It is possible to mitigate the effect of high
transfer time using pipelining to overlap GPU execution and
data movement. Large test suites can be split into several
smaller groups of tests. While one group of tests executes
on the GPU, we can safely start the data transfer for the
next group of tests and keep feeding the GPU enough data
to process so as to maximize its utilization.

Table] shows the reduction in overhead achievable by over-
lapping the data with kernel execution on the GPU. As most of
the total time on the GPU is spent in data transfer, overlapping
data transfer always leads to better overall performance on the
GPU, reducing the overhead to values in the range of 9% (for
ssl) to 56% (for keysight).

Optimisation through pipelining would help reduce the time
needed for data transfer. It is, however, worth noting that
transferring the test suite and FSM to the GPU can be done
prior to commencing test execution and the overhead need not
be incurred as part of execution.

I padded
I padded-transposed
W with-offsets

[N} w = ot D -1 oo

Speed up compared to 16-core CPU

—

a\\oo 3\‘(\ &6

4
3
2
1

e\d ,&\\(\ \X\“él
co\“\

x‘\\“

\0 \é r;‘\?;v(\’Q

Fig. 7: Difference in GPU execution time speedup (when compared to a 16-core CPU) between the padded, padded-transposed
and with-offsets test layouts. The presented values are for the full test suite for each FSM. The FSM layout is dense and tests

are not sorted before execution.

D12 padded padded-transposed

o

O11 [unsorted M unsorted
10 sorted BN sorted

Speed up compared to 16-core

it

3\

7
\(\0

\O’A

AL &9 'L’B T RN
\e“\e\ o \\a\“\&e o)

with-offsets

@ unsorted
7 sorted

-

NN
o

6“.\\(& . ?;(\\,
o e

Fig. 8: Difference in GPU execution time speedup (when compared to a 16-core CPU) between the sorted and unsorted test
suites, for each of the test layouts. The presented values are for the full test suite for each FSM. The FSM layout is dense.

VI. THREATS TO VALIDITY

We see two threats to the validity of our experiment based
on the FSMs and test generation technique used. The first one
is that we use FSMs from one particular domain in our study
(intrustion detection patterns) along with an industrial FSM
modeling transition localisation in communication signals.
Generalising our results to FSMs in other domains requires
further investigation and empirical evaluation. Second, we
generate test suites for FSMs based on the all-transition pair
coverage criteria. However, there are several other coverage
criteria and test generation techniques that will potentially
yield different test suites. Impact of test generation techniques
on the speedup achieved with our approach requires further
investigation. We plan to conduct an extensive evaluation
addressing these questions in our future work.

VII. CONCLUSIONS

We presented a novel approach which accelerates the exe-
cution of functional tests of finite state machines by running

tests in parallel on the GPU threads. We considered different
design choices for the encoding of the FSM and its test
inputs in order to maximise the speedup achieved on the GPU.
We evaluated our approach using 13 subject FSMs from the
network intrusion detection and signal processing domains.
For each of the 13 subject FSMs we generate full test suites
based on the all-transition pair coverage criteria. Our study
makes the following findings:

e Our approach achieved a maximum speedup of 12x when
compared to a 16-core CPU.

o GPUs generally achieve higher speedups for FSMs with
long test sequences.

o Using a dense FSM layout results in higher GPU speedup,
particularly for FSMs represented as dense matrices.

o When considering test layout, with-offsets tends to per-
form better for FSMs with shorter test sequences, while
padded-transposed is more suitable to FSMs with long
sequences.

« Sorting the test sequences before execution on the GPU

FSM Overhead Overhead

without pipeline with pipeline
ssl 64% 9%
battlefield2 86% 30%
dns 75% 16%
aim 80% 22%
rtp 80% 13%
tsp 81% 20%
yahoo 78% 16%
ntp 87% 34%
hotline 91% 47%
h323 85% 28%
halflife2 90% 50%
counterstrike-source 90% 54%
keysight 92% 56%

TABLE II: Data transfer overhead as a % of the total time
taken by the GPU.

improves the achieved speedup.

To generalise these findings, further study should extend
this approach to FSMs from other industry domains, using
different test generation criteria.

ACKNOWLEDGMENT

We would like to thank Keysight for providing us with the
case study used in this paper and for their help in under-
standing its finite state machine. This work was supported
by grant EP/L01503X/1 for the University of Edinburgh
School of Informatics Centre for Doctoral Training in Perva-
sive Parallelism http://pervasiveparallelism.inf.ed.ac.uk/| from
the UK Engineering and Physical Sciences Research Council
(EPSRC).

REFERENCES

[1] Enterprise architect, sparx systems.
Accessed: 2017-12-03.

[2] Keysight technologies, company website.
Accessed: 2017-12-03.

[3] Rational rhapsody, ibm. http://www-03.ibm.com/software/products/en/
ratirhapfami. Accessed: 2017-12-03.

[4] Simulink, mathworks. https://uk.mathworks.com/products/simulink.
html. Accessed: 2017-12-03.

[5] Robert V. Binder. Testing Object-oriented Systems: Models, Patterns,
and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999.

[6] R Blanco, J. G. Fanjul, and Tuya J. Test case generation for transition-
pair coverage using scatter search. International Journal of Software
Engineering and It’s Applications, 4(4), 2010.

http://www.sparxsystems.com/.

https://www.keysight.com/.

[8]

[12]
[13]

[14]

[15]

[16]
(171

(18]

[19]

[20]
[21]

[22]
[23]

[24]

[25]

[26]

[27]

(28]

L. C. Briand, Y. Labiche, and Y. Wang. Using simulation to empirically
investigate test coverage criteria based on statechart. In Proceedings.
26th International Conference on Software Engineering, pages 86-95,
May 2004.

Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker,
and Alexander Pretschner. Model-Based Testing of Reactive Systems:
Advanced Lectures (Lecture Notes in Computer Science). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2005.

T. S. Chow. Testing software design modeled by finite-state machines.
IEEE Transactions on Software Engineering, SE-4(3):178-187, May
1978.

W. Estes. Flex: A fast scanner generator. |https://github.com/westes/flex.
Y. Fang, A. A. Chien, A. Leﬁane, and L. Bartord. Performance of

parallel prefix circuit transition localization of pulsed waveforms. In
2016 IEEE International Instrumentation and Measurement Technology
Conference Proceedings, pages 1-6, May 2016.

The Khronos Group. Opencl, 2018.

R. M. Hierons and U. C. Trker. Parallel algorithms for generating
harmonised state identifiers and characterising sets. IEEE Transactions
on Computers, 65(11):3370-3383, Nov 2016.

R. M. Hierons and U. C. Trker. Parallel algorithms for testing finite
state machines:generating uio sequences. IEEE Transactions on Software
Engineering, 42(11):1077-1091, Nov 2016.

R. M. Hierons and U. C. Trker. Parallel algorithms for generating
distinguishing sequences for observable non-deterministic fsms. ACM
Trans. Softw. Eng. Methodol., 26(1):5:1-5:34, July 2017.

R. M. Hierons and H. Ural. Reduced length checking sequences. /[EEE
Transactions on Computers, 51(9):1111-1117, Sep 2002.

R. M. Hierons and H. Ural. Optimizing the length of checking
sequences. [EEE Transactions on Computers, 55(5):618-629, May 2006.
Guy-Vincent Jourdan, Hasan Ural, Hiisnii Yenigiin, and Ji Chao Zhang.
Lower bounds on lengths of checking sequences. Formal Aspects of
Computing, 22(6):667-679, Nov 2010.

D. Lee and M. Yannakakis. Principles and methods of testing finite
state machines-a survey. Proceedings of the IEEE, 84(8):1090-1123,
Aug 1996.

AR. Lehane, A.J.A. Kirkham, and L.A. Barford. Digital triggering using
finite state machines, March 24 2016. US Patent App. 14/957,491.

J. Levandovski, E. Sommer, and M. Strait. Application layer packet
classifier for linux. http://17-filter.sourceforge.net/.

NVidia. Cuda programming guide, 2018.

A. J. Offutt, Y. Xiong, and S. Liu. Criteria for generating specification-
based tests. In Proceedings of the 5th International Conference on
Engineering of Complex Computer Systems, ICECCS °99, pages 119—,
Washington, DC, USA, 1999. IEEE Computer Society.

Ajitha Rajan. Coverage metrics for requirements-based testing. PhD
thesis, University of Minnesota, 2009.

Ajitha Rajan, Subodh Sharma, Peter Schrammel, and Daniel Kroening.
Accelerated test execution using gpus. In ACM/IEEE ASE’14, pages
97-102, 2014.

E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, PR. Stephan, Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli. Sis: A system for sequential circuit synthesis.
Technical Report UCB/ERL M92/41, EECS Department, University of
California, Berkeley, 1992.

H. Ural, Xiaolin Wu, and Fan Zhang. On minimizing the lengths of
checking sequences. [EEE Transactions on Computers, 46(1):93-99,
Jan 1997.

Vanya Yaneva, Ajitha Rajan, and Christophe Dubach. Compiler-assisted
test acceleration on gpus for embedded software. In Proceedings of the
26th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 35-45. ACM, 2017.

http://pervasiveparallelism.inf.ed.ac.uk/
http://www.sparxsystems.com/
https://www.keysight.com/
http://www-03.ibm.com/software/products/en/ratirhapfami
http://www-03.ibm.com/software/products/en/ratirhapfami
https://uk.mathworks.com/products/simulink.html
https://uk.mathworks.com/products/simulink.html
https://github.com/westes/flex
http://l7-filter.sourceforge.net/

	Introduction
	Motivating Example
	Contributions

	Background & Related Work
	Finite State Machines
	GPU Architecture, Programming & Performance
	Related Work

	Approach
	Placement of FSM and Tests in GPU Memory
	FSM Layout in Memory
	Sparse FSM Layout
	Dense FSM Layout

	Test Layout in Memory
	Padded Test Layout
	Padded-transposed Test Layout
	With-offsets Test Layout

	Sorting the Test Sequences Based on Length
	Implementation

	Experiment
	Subject FSMs & Tests
	l7-filter
	Keysight
	Test Generation

	Hardware & Measurements

	Results & Analysis
	Q1. GPU Execution Speedup vs Multi-core CPU
	l7-filter
	Keysight

	Q2. Effect of FSM Layout
	l7-filter
	Keysight
	Analysis

	Q3. Effect of Test Layout
	l7-filter
	Keysight

	Q4. Effect of Sorting the Tests
	Assessing Data Transfer Time

	Threats to Validity
	Conclusions
	References

