Randomised testing of a HOL 4 microprocessor
model

Brian Campbell

REMS project
LFCS, University of Edinburgh

31st January 2014

/41

Why are we testing a processor model?

Want a good model for:

Cost-lifting decompilation

C — HOL
gcece + Q
binary — HOL
ARMv6-M

1. Compile C code normally

2. Simple timing analysis on ARM code for basic blocks
3. Use decompilation to

» check functional equivalence

» attach timing annotations on to C source

Based on [Sewell, Myreen, Klein, PLDI'13]

41

Need a simple timing model...

ARM The Architecture for the Digital World”

Products Support

Quick Links
Physical IP
System IP

Find an ARM Partner

Cortex-M Series

Cortex-M4 Processor
Cortex-M3 Processor
Cortex-M1 Processor
Cortex-MO+ Processor

CMSDK
cMsIs

Community Markets About Careers

Cortex-M0 Processor

The ARM Cortex™-MO processof is the smallest ARM processor CorexM0

available. The exceptionally small silicon area, low power and minimal | Mo e pimernse

code footprint of the processor enables develapers (o achieve 32-bit -

performance at an 8-bit price point, bypassing the step to 16-bit

devices. The uitra-ow gate count of the Cortex-MD processor also one

enables its deployment in analog and mixed signal devices. | = %
-

Request More Information

Why CortexM0?

The smallest ARM processor

The code density and energy efficiency benefits of Cortex-MO mean that it is a natural and cost effective

successor to 8/16-bit devices in a wide variety of applications, while retaining tool and binary upwards
with the f h Cortex-M3 and Cortex-Md . For requiring even

ideal altemative.

Low power

The Cortex-M0 processor, which consumes as ittle as 16,W/MHz (30LP process, minimal configuration)
in an area of under 12 K gates, builds on the unrivalled expertise of ARM as a leader in low-power
technology and a key enabler for the creation of ultra low-power devices.

Simplicity

With Just 56 instructions, it is possible to master quickly the entire Cortex-MO instruction and its C

friendly architecture, making development simple and fast. The option for fully deterministic instruction
and interrupt timing makes it easy to calculate response times.

Optimized connectivity
Designed to support low power connectivity such as Bluetooth Low Energy (BLE), IEEE 802.15 and
Z-wave, particularly in analog devices that are increasing their digital functionality to pre-process and

Login | Register | Help

Featured Products
AMBA Design Kit

| ot o ey ArEIARS
based system design.

Mali-VES Video Engine
E ‘definition video
‘engine fully suppons H...

H

s Pawer Manmgsmen kit

b ———
cyrarmic pone: reducton
.

Compier Veriication
Each ARM Compier relesse
is subjected 10 & thorou

ARl

3

Secuts Sevies
Stom i <acury bt
on Trustzane technciogy:

ARM

News & Events.

Appointment of New
2702014

ARM Accelerates Time to
Mt for S,

02Dec2013

BT e word congress ma
24th ARM wil be at Mob.

ARM Onsite

Linear Dimensions
crabie

i

ARM Twitter

Need a simple timing model...

ARM The Architecture for the Digital World”

The smallest ARM processor

successor to 8/16-bit devices in a wide varlety of applications, while retaining tool and binary upwards

ideal altema.

PR

in an area of under 12 Kgaus mltﬁmmemmleﬂmfpemimARM:ﬁalmmlm
technology and a key enabler for the creation of ultra low-power devices.

Simplicity

With Just 56 instructions, it is possible to master quickly the entire Cortex-MO instruction and its C
friendly architecture, making development simple and fast. The option for fully deterministic instruction
and interrupt timing makes it easy to calculate response times.

Optimized connectivity

Designed to support low power connectivity such as Bluetooth Low Energy (BLE), IEEE 802.15 and
Z-wave, particularly in analog devices that are increasing their digital functionality to pre-process and

Products | Support | Community Markets | About Careers
Quick Links
R Cortex-MO0 Processor
——— The ARM Cortex™-MO processor is the smallest ARM processor Cortex™-M0
avalable. The exceptionally small silicon area, low power and minimal | Moo e v
A Fe code footprint of the processor enables developers to achieve 32-bit =
performance at an 8-bit price point, bypassing the step to 16-bit
Cortex-M Series devices. The ultra-low gate count of the Gortex-MD processor also O
5 Cortex-M4Processor | enables its deployment in analog and mixed signal devices. | = %
> Cortex-M3 Processor hen
e
> Cortex-M0+ Processor (view!
>
> CMSDK
> CMSIS Why Cortex-M0?

The code density and energy efficiency benefits of Cortex-MD mean that it is a natural and cost effective

et cones Thee option for fully deterministic instruction E

PR . o

Logm | Register | Help

Featured Products
AMEA Design Kit
e and ey AFDIARS

based system design
| malives video Engne
90l tanierd defintion video
engine fuly Suppons H...
Zy Power Management kit
b ———
dynamic power reduction
th

Compier Veriication
Each ARM Compier relesse
is subjected 10 & thorou

ARl

3

ancl mterrupt tlmmg makes it easy to calculate response times, J=e=

ARM Onsite
Linear i
taling abourt waarabie
davices B

ARM Twitter

Need a simple timing model...

Programmers Model

3.3 Instruction set summary

The processor implements the ARMv6-M Thumb instruction set, including a number
of 32-bit instructions that use Thumb-2 technology. The ARMv6-M instruction set
comprises:

. all of the 16-bit Thumb instructions from ARMv7-M excluding (BZ, (BNZ and IT
. the 32-bit Thumb instructions BL, DMB, DSB, ISB, MRS and MSR.

Table 3-1 shows the Cortex-MO0 instructions and their cycle counts. The cycle counts
are based on a system with zero wait-states.

Table 3-1 Cortex-M0 instruction summary

Operation Description Assembler Cycles
Move 8-bit immediate MOVS Rd, #<imm> 1

Loto Lo MOVS Rd, Rm 1

Any to Any MOV Rd, Rm 1

Any to PC MOV PC, Rm 3
Add 3-bit immediate ADDS Rd, Rn, #<imm> 1

All registers Lo ADDS Rd, Rn, Rm 1

Any to Any ADD Rd, Rd, Rm 1

Any to PC ADD PC, PC, Rm 3

8-bit immediate ADDS Rd, Rd, #<imm> 1

41

Is the simple timing model real?

ARM Cortex-MO0 processors

+ nice timing table in reference manual

-+ none of the usual caveats in the manual
+ no cache / write-back buffer concerns
+

implementations have fast enough SRAM

6/41

Is the simple timing model real?

ARM Cortex-MO0 processors

+
+
+
-

nice timing table in reference manual
none of the usual caveats in the manual
no cache / write-back buffer concerns
implementations have fast enough SRAM
manufacturers very quiet about timing

three stage pipeline

(fetch, decode, execute)

41

Overview

» Have a HOL 4 model of ARM Cortex-MO0 processor

» which includes timing

Want to check
1. suitable for verification (sound)

2. timing is correct

So we take random sequences of instructions.

Test predictions the model makes against real chip(s).

41

A real chip

sHEHEHE R

i
L §

=
e
:
~
-
.~
-
-

"
‘il

9/41

The HOL4 model [Fox]

L3
(automated) 1
Model — Step — Prog

v

Written in L3 DSL [Fox, ITP'12]
Automatic translation to HOL 4

v

» Model — step function
» Step — per-instruction behaviour of step fn
» Prog — separation-logic-like triples

Main purpose: program verification

Not modelled: target memory, exceptions, self-modifying code, ...

* Includes simple timing model

10/41

The HOL4 model [Fox]
L3

(automated) 1
Model — Step — Prog

instruction DecodeARM(w::word) = {

case 1010 : imm24’ =>
if Take (cond, true) then
{ imm32 = SignExtend (imm24 : ’00°’);
Branch (BranchTarget (imm32))

}

else
Skip ()

define Branch > BranchTarget

(imm32 :: bits(32))

BranchWritePC (PC + imm32)

11/41

The HOL4 model [Fox]

L3
(automated) 1
Model — Step — Prog

DecodeThumb2 h =

else if —b’14 A— b’12 then
(if
FST (ConditionPassed (v2w [b’25; b’24; b’23; b’22]) state)
then
Branch (BranchTarget
(sw2sw
(v2w [b’26] @@ v2w [b’11] @@ v2w [b’13] @@
v2w [b’21; b’20; b’19; b’18; b’17; b’16] @@
v2w [b’10; b’9; b’8; b’7; b’6; b’5; b’4; b’3;
b’2; b’1; b’0] @@ 0w)))
else NoOperation (),state)

12/41

The HOL4 model [Fox]

L3
(automated) 1
Model — Step — Prog

d5f8 bpl -12

[Aligned (s.REG RName_PC,2), —s.AIRCR.ENDIANNESS, —s.PSR.N,
s.MEM (s.REG RName_PC) = 248w, s.MEM (s.REG RName_PC + 1w) = 213w,
s.exception = NoException]
|- NextStateMO s =
SOME
(s with
<|REG := (RName_PC =+ s.REG RName_PC + 4w + OxFFFFFFFOw) s.REG;
count := s.count + 3; pcinc := 2w|>)

13 /41

The HOL4 model [Fox]

L3
(automated) 1
Model — Step — Prog

d5f8 bpl -12

(1 |- SPEC MO_MODEL
(mO_count count * mO_PSR_N n * mO_CONFIG (F,spsel) *
mO_PC pc * cond (—m))
{(pc,INL 54776w)}

(mO_count (count + 3) * mO_PSR_N n * mO_CONFIG (F,spsel) *
mO_PC (pc - 12w))

14 /41

The HOL4 model [Fox]

L3
(automated) 1
Model — Step — Prog
We choose to work with Step

> Would need to do equivalent work anyway

» To specialise to specific instructions
» To isolate preconditions

» Prog requires up-front decisions about separation

Small danger to validity:

» Prog may not use Step in the same way as us

15 /41

Testing overview

Several distinct stages:

1.

o A~ Wb

Instruction sequence generation
Combining step theorems
Constructing suitable pre-state
Instantiate theorem to get prediction

Run sequence on hardware and compare

16

41

Instruction sequence generation

Want
» to pick randomly

> but bias selection of instructions, registers, values

Could reuse L3's knowledge of instructions, but
» Small instruction set, so

> opportunity to cross-check

17 /41

Instruction sequence generation

Data structure for instruction formats

datatype instr_format =
Lit of int list

| Reg3

| Reg4NotPC

|

val instrs = [
(1, ([Lit [0,0,0,1,1,1,0], Imm 3, Reg3, Reg3], "ADD (imm) T1")),
(14, ([Lit [1,1,0,1], Cond, Imm 8], "B T1")),
(1, ([Lit [0,1,0,0,0,1,1,1,1], RegdNotPC, Lit [0,0,0]], "BLX")),

18 /41

Instruction sequence generation

Data structure for instruction formats

datatype instr_format =
Lit of int list

| Reg3

| Reg4NotPC

|

val instrs = [
(1, ([Lit [0,0,0,1,1,1,0], Imm 3, Reg3, Reg3], "ADD (imm) T1")),
(14, ([Lit [1,1,0,1], Cond, Imm 8], "B T1")),
(1, ([Lit [0,1,0,0,0,1,1,1,1], RegdNotPC, Lit [0,0,0]], "BLX")),

Sanity checks:
» Supported instructions have Prog triples

» Unsupported ones don't

LDRSB was missing from Step!

19/41

Combining step theorems
Get Step theorem for each instruction

» randomly picking whether to take a conditional branch

|- NextStateMO s
|- NextStateMO s

SOME (s with [< ... >|)
SOME (s with [< ... >|)

20 /41

Combining step theorems
Get Step theorem for each instruction

» randomly picking whether to take a conditional branch

|- NextStateMO s
|- NextStateMO s

SOME (s with [< ... >|)
SOME (s with [< ... >|)

Progressively instantiate each s with previous step theorem.
» Simplify as we go
» Record symbolic memory accesses, instruction locations
» otherwise we forget about accesses whose value is discarded

instr_start 1 = s.REG RName_PC + 2w,
memory_address O = s.REG RName_PC + 8w,
s.MEM (s.REG RName_PC) = v2w [F; F; T; F; T; F; T; F],

|- NStatesMO 5 s =
s with <| ... |>

21 /41

Finding a pre-state — requirements

Model
» only tells us about successful executions
> gives preconditions

> doesn't cover everything

We need more:
» Memory accesses in range
» must hit 8kB memory in 4GB address space

» no self-modification
» add test harness (BKPT instruction)
» align stack pointer registers

Add these to model's preconditions as HOL terms

Finding a pre-state — constraint solving

Constraints may be complex

0:

2:
4:
6

5e88
4090
1880
6803

1ldrsh
1sl
add
1ldr

r0,

[r1, r2]

r0, r0, r2
r0, r0, r2

r3,

[r0, #0]

)

s

)

; load rO from ri+r2
; shift rO left by r2
; add r2 to r0

; load r2 from rO

Constraints involving bitvector adds, shifts, sign extension,
repeated variables and inequalities.

(16 bits)

23 /41

Finding a pre-state — constraint solving

Constraints may be complex
0:

2:
4:
6

5e88
4090
1880
6803

1ldrsh
1sl
add
1ldr

r0,

[r1, r2]

r0, r0, r2
r0, r0, r2

r3,

[r0, #0]

)

)

load rO from ri+r2 (16 bits)

shift r0 left by r2
add r2 to r0
load r2 from r0

Constraints involving bitvector adds, shifts, sign extension,
repeated variables and inequalities.

» Requirements fit SMT solving well
» Existing HolSmtLib targets Yices, Z3

» but for proving (via negation)
» adapted Yices part for constraint solving

Constraint solving with SMT appears to be unusual for interactive
theorem proving.

24 /41

Finding a pre-state — constraint solving

The adapted HolSmtLib will translate subset of HOL into Yices
format.

» Need to fit preconditions into HOL subset

1. Sound rewriting of unsupported definitions
Alignment, shifts, add_with_carry

2. ensure supported form of bitvectors is used

3. some mixed bitvector/nat operations unsupported
rewrite away, or implement limited version (e.g., 8-bit)

25 /41

Finding a pre-state — constraint solving

The adapted HolSmtLib will translate subset of HOL into Yices
format.

» Need to fit preconditions into HOL subset

1. Sound rewriting of unsupported definitions
Alignment, shifts, add_with_carry

2. ensure supported form of bitvectors is used
3. some mixed bitvector/nat operations unsupported
rewrite away, or implement limited version (e.g., 8-bit)
Discovering what to do isn't easy:

» Tried preconditions for every instruction type to detect all
unsupported

» Have to be careful not to undo rewrites when simplifying

26

41

Instantiate theorem to get prediction

Translating the SMT results into HOL terms gives us a partial
state

» Fill in the blanks with random choices

> Instantiating the theorem derived earlier should

» Discharge all hypotheses
» predict final state

27 /41

Instantiate theorem to get prediction

Translating the SMT results into HOL terms gives us a partial
state
» Fill in the blanks with random choices
> Instantiating the theorem derived earlier should
» Discharge all hypotheses
» predict final state
HOL isn't entirely happy with a list of 8192 8-bit bitvectors.
Careful handling required.

28 /41

Run sequence on hardware and compare

HOL state
A extract
memory, registers, flags
J IPC
OpenOCD debugger driver
¥ USB
STMFO-Discovery board
S USB
OpenOCD debugger driver
d IPC
Final state

Check memory, registers, flags and onboard SysTick timer.

29 /41

Run sequence on hardware and compare

HOL state
A extract
memory, registers, flags
J IPC
OpenOCD debugger driver
¥ USB
STMFO-Discovery board
S USB
OpenOCD debugger driver
d IPC
Final state

Check memory, registers, flags and onboard SysTick timer.

If processor goes off-sequence, end up in Fault state with huge
time.

30/41

Scaling it up

Add logging:

» what did we run

» what happened

» enough to reproduce each case exactly

Categorise by outcome:

>

>

>

Impossible sequence (e.g., branching opposite ways on a flag)
No suitable pre-state exists (e.g., SMT returned UNSAT)
Unable to find pre-state (SMT returned UNKNOWN)

The testing code threw an exception

‘Proper’ failure — post-state did not match prediction

Success

31/41

Scaling it up

Add logging:
» what did we run
» what happened

» enough to reproduce each case exactly

Categorise by outcome:
» Impossible sequence (e.g., branching opposite ways on a flag)
» No suitable pre-state exists (e.g., SMT returned UNSAT)
» Unable to find pre-state (SMT returned UNKNOWN)
» The testing code threw an exception
» ‘Proper’ failure — post-state did not match prediction

» Success

Future: gather statistics on coverage.

32/41

Results so far

33/41

Results so far

Surprised SMT solver isn't returning UNKNOWN in practice.

34 /41

Results so far

Surprised SMT solver isn't returning UNKNOWN in practice.

Some bugs:
1. Missing LDRSB in Step (plus minor issues)
2. Inverted check for Bx in Model

Both would be found by single-instruction testing.

35 /41

Results so far

Surprised SMT solver isn't returning UNKNOWN in practice.

Some bugs:
1. Missing LDRSB in Step (plus minor issues)
2. Inverted check for Bx in Model

Both would be found by single-instruction testing.

Some sequences take one cycle too long:
> add pc, r0 at end

» Some mixtures of branch and memory operation

36

41

Results so far

Surprised SMT solver isn't returning UNKNOWN in practice.

Some bugs:
1. Missing LDRSB in Step (plus minor issues)
2. Inverted check for Bx in Model

Both would be found by single-instruction testing.

Some sequences take one cycle too long:
> add pc, r0 at end

» Some mixtures of branch and memory operation

Appear to be hitting some subtle PolyML GC / HOL
incompatibility..!

37 /41

Future
Near future:

> Investigate timing anomalies
» Different timing harnesses, add padding, ...

> Longer runs
» Longer instruction sequences

> Investigate coverage

38 /41

Future
Near future:

> Investigate timing anomalies
» Different timing harnesses, add padding, ...

> Longer runs
» Longer instruction sequences

> Investigate coverage

Further ahead:
» New REMS DSL for processor models, SAIL

» Integrate testing?
» Reproducible test cases for weak memory models

How much of this can we commoditise?

39 /41

Future
Near future:

> Investigate timing anomalies
» Different timing harnesses, add padding, ...

> Longer runs
» Longer instruction sequences

> Investigate coverage

Further ahead:
» New REMS DSL for processor models, SAIL

» Integrate testing?
» Reproducible test cases for weak memory models

How much of this can we commoditise?

Other opportunities:
» Test bigger processors with proper WCET analyses?

» Can we choose pre-states more randomly?

40 /41

Conclusion

Took a HOL processor model
Test sequences of instructions for functional and timing bugs

Used SMT solving to ensure successful executions

B

Preliminary signs of success

Main technical difficulty:

» Getting preconditions into SMT friendly form.

* Formal system makes doing this soundly easier

Sort out timing anomalies
=- sound basis for cost-preserving decompilation

41 /41

