
Randomised testing of a HOL 4 microprocessor
model

Brian Campbell

REMS project

LFCS, University of Edinburgh

31st January 2014

1 / 41

Why are we testing a processor model?

Want a good model for:

Cost-lifting decompilation

C −→ HOL
gcc ↓ ≈

binary −→ HOL
ARMv6-M

1. Compile C code normally

2. Simple timing analysis on ARM code for basic blocks

3. Use decompilation to
I check functional equivalence
I attach timing annotations on to C source

Based on [Sewell, Myreen, Klein, PLDI’13]

2 / 41

Need a simple timing model...

3 / 41

Need a simple timing model...

4 / 41

Need a simple timing model...

Programmers Model

3-4 Copyright © 2009 ARM Limited. All rights reserved. ARM DDI 0432C
Non-Confidential, Unrestricted Access ID113009

3.3 Instruction set summary

The processor implements the ARMv6-M Thumb instruction set, including a number
of 32-bit instructions that use Thumb-2 technology. The ARMv6-M instruction set
comprises:

� all of the 16-bit Thumb instructions from ARMv7-M excluding CBZ, CBNZ and IT

� the 32-bit Thumb instructions BL, DMB, DSB, ISB, MRS and MSR.

Table 3-1 shows the Cortex-M0 instructions and their cycle counts. The cycle counts
are based on a system with zero wait-states.

Table 3-1 Cortex-M0 instruction summary

Operation Description Assembler Cycles

Move 8-bit immediate MOVS Rd, #<imm> 1

Lo to Lo MOVS Rd, Rm 1

Any to Any MOV Rd, Rm 1

Any to PC MOV PC, Rm 3

Add 3-bit immediate ADDS Rd, Rn, #<imm> 1

All registers Lo ADDS Rd, Rn, Rm 1

Any to Any ADD Rd, Rd, Rm 1

Any to PC ADD PC, PC, Rm 3

8-bit immediate ADDS Rd, Rd, #<imm> 1

With carry ADCS Rd, Rd, Rm 1

Immediate to SP ADD SP, SP, #<imm> 1

Form address from SP ADD Rd, SP, #<imm> 1

Form address from PC ADR Rd, <label> 1

Subtract Lo and Lo SUBS Rd, Rn, Rm 1

3-bit immediate SUBS Rd, Rn, #<imm> 1

8-bit immediate SUBS Rd, Rd, #<imm> 1

With carry SBCS Rd, Rd, Rm 1

Immediate from SP SUB SP, SP, #<imm> 1

5 / 41

Is the simple timing model real?

ARM Cortex-M0 processors

+ nice timing table in reference manual

+ none of the usual caveats in the manual

+ no cache / write-back buffer concerns

+ implementations have fast enough SRAM

− manufacturers very quiet about timing

− three stage pipeline

(fetch, decode, execute)

6 / 41

Is the simple timing model real?

ARM Cortex-M0 processors

+ nice timing table in reference manual

+ none of the usual caveats in the manual

+ no cache / write-back buffer concerns

+ implementations have fast enough SRAM

− manufacturers very quiet about timing

− three stage pipeline

(fetch, decode, execute)

7 / 41

Overview

I Have a HOL 4 model of ARM Cortex-M0 processor

I which includes timing

Want to check

1. suitable for verification (sound)

2. timing is correct

So we take random sequences of instructions.

Test predictions the model makes against real chip(s).

8 / 41

A real chip

9 / 41

The HOL4 model [Fox]

L3
(automated) ↓

Model→ Step→ Prog

I Written in L3 DSL [Fox, ITP’12]

I Automatic translation to HOL 4

I Model — step function

I Step — per-instruction behaviour of step fn

I Prog — separation-logic-like triples

Main purpose: program verification
Not modelled: target memory, exceptions, self-modifying code, . . .

? Includes simple timing model

10 / 41

The HOL4 model [Fox]

L3
(automated) ↓

Model→ Step→ Prog

instruction DecodeARM(w::word) = {

...

case ’1010 : imm24’ =>

if Take (cond, true) then

{ imm32 = SignExtend (imm24 : ’00’);

Branch (BranchTarget (imm32))

}

else

Skip ()

...

define Branch > BranchTarget

(imm32 :: bits(32))

=

BranchWritePC (PC + imm32)

11 / 41

The HOL4 model [Fox]

L3
(automated) ↓

Model→ Step→ Prog

DecodeThumb2 h =

...

else if ¬b’14 ∧¬ b’12 then

(if

FST (ConditionPassed (v2w [b’25; b’24; b’23; b’22]) state)

then

Branch (BranchTarget

(sw2sw

(v2w [b’26] @@ v2w [b’11] @@ v2w [b’13] @@

v2w [b’21; b’20; b’19; b’18; b’17; b’16] @@

v2w [b’10; b’9; b’8; b’7; b’6; b’5; b’4; b’3;

b’2; b’1; b’0] @@ 0w)))

else NoOperation (),state)

12 / 41

The HOL4 model [Fox]

L3
(automated) ↓

Model→ Step→ Prog

d5f8 bpl -12

[Aligned (s.REG RName_PC,2), ¬s.AIRCR.ENDIANNESS, ¬s.PSR.N,
s.MEM (s.REG RName_PC) = 248w, s.MEM (s.REG RName_PC + 1w) = 213w,

s.exception = NoException]

|- NextStateM0 s =

SOME

(s with

<|REG := (RName_PC =+ s.REG RName_PC + 4w + 0xFFFFFFF0w) s.REG;

count := s.count + 3; pcinc := 2w|>)

13 / 41

The HOL4 model [Fox]

L3
(automated) ↓

Model→ Step→ Prog

d5f8 bpl -12

[] |- SPEC M0_MODEL

(m0_count count * m0_PSR_N n * m0_CONFIG (F,spsel) *

m0_PC pc * cond (¬n))

{(pc,INL 54776w)}

(m0_count (count + 3) * m0_PSR_N n * m0_CONFIG (F,spsel) *

m0_PC (pc - 12w))

14 / 41

The HOL4 model [Fox]

L3
(automated) ↓

Model→ Step→ Prog

We choose to work with Step

I Would need to do equivalent work anyway
I To specialise to specific instructions
I To isolate preconditions

I Prog requires up-front decisions about separation

Small danger to validity:

I Prog may not use Step in the same way as us

15 / 41

Testing overview

Several distinct stages:

1. Instruction sequence generation

2. Combining step theorems

3. Constructing suitable pre-state

4. Instantiate theorem to get prediction

5. Run sequence on hardware and compare

16 / 41

Instruction sequence generation

Want

I to pick randomly

I but bias selection of instructions, registers, values

Could reuse L3’s knowledge of instructions, but

I Small instruction set, so

I opportunity to cross-check

17 / 41

Instruction sequence generation

Data structure for instruction formats

datatype instr_format =

Lit of int list

| Reg3

| Reg4NotPC

| ...

val instrs = [

(1, ([Lit [0,0,0,1,1,1,0], Imm 3, Reg3, Reg3], "ADD (imm) T1")),

(14,([Lit [1,1,0,1], Cond, Imm 8], "B T1")),

(1, ([Lit [0,1,0,0,0,1,1,1,1], Reg4NotPC, Lit [0,0,0]], "BLX")),

Sanity checks:

I Supported instructions have Prog triples

I Unsupported ones don’t

LDRSB was missing from Step!

18 / 41

Instruction sequence generation

Data structure for instruction formats

datatype instr_format =

Lit of int list

| Reg3

| Reg4NotPC

| ...

val instrs = [

(1, ([Lit [0,0,0,1,1,1,0], Imm 3, Reg3, Reg3], "ADD (imm) T1")),

(14,([Lit [1,1,0,1], Cond, Imm 8], "B T1")),

(1, ([Lit [0,1,0,0,0,1,1,1,1], Reg4NotPC, Lit [0,0,0]], "BLX")),

Sanity checks:

I Supported instructions have Prog triples

I Unsupported ones don’t

LDRSB was missing from Step!

19 / 41

Combining step theorems
Get Step theorem for each instruction

I randomly picking whether to take a conditional branch

... |- NextStateM0 s = SOME (s with |< ... >|)

... |- NextStateM0 s = SOME (s with |< ... >|)

...

Progressively instantiate each s with previous step theorem.

I Simplify as we go
I Record symbolic memory accesses, instruction locations

I otherwise we forget about accesses whose value is discarded

...

instr_start 1 = s.REG RName_PC + 2w,

memory_address 0 = s.REG RName_PC + 8w,

s.MEM (s.REG RName_PC) = v2w [F; F; T; F; T; F; T; F],

...

|- NStatesM0 5 s =

s with <| ... |>

20 / 41

Combining step theorems
Get Step theorem for each instruction

I randomly picking whether to take a conditional branch

... |- NextStateM0 s = SOME (s with |< ... >|)

... |- NextStateM0 s = SOME (s with |< ... >|)

...

Progressively instantiate each s with previous step theorem.

I Simplify as we go
I Record symbolic memory accesses, instruction locations

I otherwise we forget about accesses whose value is discarded

...

instr_start 1 = s.REG RName_PC + 2w,

memory_address 0 = s.REG RName_PC + 8w,

s.MEM (s.REG RName_PC) = v2w [F; F; T; F; T; F; T; F],

...

|- NStatesM0 5 s =

s with <| ... |>

21 / 41

Finding a pre-state — requirements

Model

I only tells us about successful executions

I gives preconditions

I doesn’t cover everything

We need more:
I Memory accesses in range

I must hit 8kB memory in 4GB address space

I no self-modification

I add test harness (BKPT instruction)

I align stack pointer registers

Add these to model’s preconditions as HOL terms

22 / 41

Finding a pre-state — constraint solving

Constraints may be complex

0: 5e88 ldrsh r0, [r1, r2] ; load r0 from r1+r2 (16 bits)

2: 4090 lsl r0, r0, r2 ; shift r0 left by r2

4: 1880 add r0, r0, r2 ; add r2 to r0

6: 6803 ldr r3, [r0, #0] ; load r2 from r0

Constraints involving bitvector adds, shifts, sign extension,
repeated variables and inequalities.

I Requirements fit SMT solving well
I Existing HolSmtLib targets Yices, Z3

I but for proving (via negation)
I adapted Yices part for constraint solving

Constraint solving with SMT appears to be unusual for interactive
theorem proving.

23 / 41

Finding a pre-state — constraint solving

Constraints may be complex

0: 5e88 ldrsh r0, [r1, r2] ; load r0 from r1+r2 (16 bits)

2: 4090 lsl r0, r0, r2 ; shift r0 left by r2

4: 1880 add r0, r0, r2 ; add r2 to r0

6: 6803 ldr r3, [r0, #0] ; load r2 from r0

Constraints involving bitvector adds, shifts, sign extension,
repeated variables and inequalities.

I Requirements fit SMT solving well
I Existing HolSmtLib targets Yices, Z3

I but for proving (via negation)
I adapted Yices part for constraint solving

Constraint solving with SMT appears to be unusual for interactive
theorem proving.

24 / 41

Finding a pre-state — constraint solving

The adapted HolSmtLib will translate subset of HOL into Yices
format.

I Need to fit preconditions into HOL subset

1. Sound rewriting of unsupported definitions
Alignment, shifts, add_with_carry

2. ensure supported form of bitvectors is used

3. some mixed bitvector/nat operations unsupported
rewrite away, or implement limited version (e.g., 8-bit)

Discovering what to do isn’t easy:

I Tried preconditions for every instruction type to detect all
unsupported

I Have to be careful not to undo rewrites when simplifying

25 / 41

Finding a pre-state — constraint solving

The adapted HolSmtLib will translate subset of HOL into Yices
format.

I Need to fit preconditions into HOL subset

1. Sound rewriting of unsupported definitions
Alignment, shifts, add_with_carry

2. ensure supported form of bitvectors is used

3. some mixed bitvector/nat operations unsupported
rewrite away, or implement limited version (e.g., 8-bit)

Discovering what to do isn’t easy:

I Tried preconditions for every instruction type to detect all
unsupported

I Have to be careful not to undo rewrites when simplifying

26 / 41

Instantiate theorem to get prediction

Translating the SMT results into HOL terms gives us a partial
state

I Fill in the blanks with random choices
I Instantiating the theorem derived earlier should

I Discharge all hypotheses
I predict final state

HOL isn’t entirely happy with a list of 8192 8-bit bitvectors.
Careful handling required.

27 / 41

Instantiate theorem to get prediction

Translating the SMT results into HOL terms gives us a partial
state

I Fill in the blanks with random choices
I Instantiating the theorem derived earlier should

I Discharge all hypotheses
I predict final state

HOL isn’t entirely happy with a list of 8192 8-bit bitvectors.
Careful handling required.

28 / 41

Run sequence on hardware and compare

HOL state
↓ extract

memory, registers, flags
↓ IPC

OpenOCD debugger driver
↓ USB

STMF0-Discovery board
↓ USB

OpenOCD debugger driver
↓ IPC

Final state

Check memory, registers, flags and onboard SysTick timer.

If processor goes off-sequence, end up in Fault state with huge
time.

29 / 41

Run sequence on hardware and compare

HOL state
↓ extract

memory, registers, flags
↓ IPC

OpenOCD debugger driver
↓ USB

STMF0-Discovery board
↓ USB

OpenOCD debugger driver
↓ IPC

Final state

Check memory, registers, flags and onboard SysTick timer.

If processor goes off-sequence, end up in Fault state with huge
time.

30 / 41

Scaling it up

Add logging:

I what did we run

I what happened

I enough to reproduce each case exactly

Categorise by outcome:

I Impossible sequence (e.g., branching opposite ways on a flag)

I No suitable pre-state exists (e.g., SMT returned UNSAT)

I Unable to find pre-state (SMT returned UNKNOWN)

I The testing code threw an exception

I ‘Proper’ failure — post-state did not match prediction

I Success

Future: gather statistics on coverage.

31 / 41

Scaling it up

Add logging:

I what did we run

I what happened

I enough to reproduce each case exactly

Categorise by outcome:

I Impossible sequence (e.g., branching opposite ways on a flag)

I No suitable pre-state exists (e.g., SMT returned UNSAT)

I Unable to find pre-state (SMT returned UNKNOWN)

I The testing code threw an exception

I ‘Proper’ failure — post-state did not match prediction

I Success

Future: gather statistics on coverage.

32 / 41

Results so far

Surprised SMT solver isn’t returning UNKNOWN in practice.

Some bugs:

1. Missing LDRSB in Step (plus minor issues)

2. Inverted check for BX in Model

Both would be found by single-instruction testing.

Some sequences take one cycle too long:

I add pc, r0 at end

I Some mixtures of branch and memory operation

Appear to be hitting some subtle PolyML GC / HOL
incompatibility..!

33 / 41

Results so far

Surprised SMT solver isn’t returning UNKNOWN in practice.

Some bugs:

1. Missing LDRSB in Step (plus minor issues)

2. Inverted check for BX in Model

Both would be found by single-instruction testing.

Some sequences take one cycle too long:

I add pc, r0 at end

I Some mixtures of branch and memory operation

Appear to be hitting some subtle PolyML GC / HOL
incompatibility..!

34 / 41

Results so far

Surprised SMT solver isn’t returning UNKNOWN in practice.

Some bugs:

1. Missing LDRSB in Step (plus minor issues)

2. Inverted check for BX in Model

Both would be found by single-instruction testing.

Some sequences take one cycle too long:

I add pc, r0 at end

I Some mixtures of branch and memory operation

Appear to be hitting some subtle PolyML GC / HOL
incompatibility..!

35 / 41

Results so far

Surprised SMT solver isn’t returning UNKNOWN in practice.

Some bugs:

1. Missing LDRSB in Step (plus minor issues)

2. Inverted check for BX in Model

Both would be found by single-instruction testing.

Some sequences take one cycle too long:

I add pc, r0 at end

I Some mixtures of branch and memory operation

Appear to be hitting some subtle PolyML GC / HOL
incompatibility..!

36 / 41

Results so far

Surprised SMT solver isn’t returning UNKNOWN in practice.

Some bugs:

1. Missing LDRSB in Step (plus minor issues)

2. Inverted check for BX in Model

Both would be found by single-instruction testing.

Some sequences take one cycle too long:

I add pc, r0 at end

I Some mixtures of branch and memory operation

Appear to be hitting some subtle PolyML GC / HOL
incompatibility..!

37 / 41

Future
Near future:

I Investigate timing anomalies
I Different timing harnesses, add padding, . . .

I Longer runs

I Longer instruction sequences

I Investigate coverage

Further ahead:
I New REMS DSL for processor models, SAIL

I Integrate testing?
I Reproducible test cases for weak memory models

How much of this can we commoditise?

Other opportunities:

I Test bigger processors with proper WCET analyses?

I Can we choose pre-states more randomly?

38 / 41

Future
Near future:

I Investigate timing anomalies
I Different timing harnesses, add padding, . . .

I Longer runs

I Longer instruction sequences

I Investigate coverage

Further ahead:
I New REMS DSL for processor models, SAIL

I Integrate testing?
I Reproducible test cases for weak memory models

How much of this can we commoditise?

Other opportunities:

I Test bigger processors with proper WCET analyses?

I Can we choose pre-states more randomly?

39 / 41

Future
Near future:

I Investigate timing anomalies
I Different timing harnesses, add padding, . . .

I Longer runs

I Longer instruction sequences

I Investigate coverage

Further ahead:
I New REMS DSL for processor models, SAIL

I Integrate testing?
I Reproducible test cases for weak memory models

How much of this can we commoditise?

Other opportunities:

I Test bigger processors with proper WCET analyses?

I Can we choose pre-states more randomly?
40 / 41

Conclusion

1. Took a HOL processor model

2. Test sequences of instructions for functional and timing bugs

3. Used SMT solving to ensure successful executions

4. Preliminary signs of success

Main technical difficulty:

I Getting preconditions into SMT friendly form.

? Formal system makes doing this soundly easier

Sort out timing anomalies
⇒ sound basis for cost-preserving decompilation

41 / 41

