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Why are we testing a processor model?

Want a good model for:

Cost-lifting decompilation

C — HOL
gcece + Q
binary — HOL
ARMv6-M

1. Compile C code normally

2. Simple timing analysis on ARM code for basic blocks
3. Use decompilation to

» check functional equivalence

» attach timing annotations on to C source

Based on [Sewell, Myreen, Klein, PLDI'13]
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Need a simple timing model...
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Need a simple timing model...

ARM The Architecture for the Digital World”

The smallest ARM processor

successor to 8/16-bit devices in a wide varlety of applications, while retaining tool and binary upwards
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Need a simple timing model...

Programmers Model

3.3 Instruction set summary

The processor implements the ARMv6-M Thumb instruction set, including a number
of 32-bit instructions that use Thumb-2 technology. The ARMv6-M instruction set
comprises:

. all of the 16-bit Thumb instructions from ARMv7-M excluding (BZ, (BNZ and IT
. the 32-bit Thumb instructions BL, DMB, DSB, ISB, MRS and MSR.

Table 3-1 shows the Cortex-MO0 instructions and their cycle counts. The cycle counts
are based on a system with zero wait-states.

Table 3-1 Cortex-M0 instruction summary

Operation Description Assembler Cycles
Move 8-bit immediate MOVS Rd, #<imm> 1

Loto Lo MOVS Rd, Rm 1

Any to Any MOV Rd, Rm 1

Any to PC MOV PC, Rm 3
Add 3-bit immediate ADDS Rd, Rn, #<imm> 1

All registers Lo ADDS Rd, Rn, Rm 1

Any to Any ADD Rd, Rd, Rm 1

Any to PC ADD PC, PC, Rm 3

8-bit immediate ADDS Rd, Rd, #<imm> 1
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Is the simple timing model real?

ARM Cortex-MO0 processors

+ nice timing table in reference manual

-+ none of the usual caveats in the manual
+ no cache / write-back buffer concerns
+

implementations have fast enough SRAM
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Is the simple timing model real?

ARM Cortex-MO0 processors

+
+
+
-

nice timing table in reference manual
none of the usual caveats in the manual
no cache / write-back buffer concerns
implementations have fast enough SRAM
manufacturers very quiet about timing

three stage pipeline

(fetch, decode, execute)
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Overview

» Have a HOL 4 model of ARM Cortex-MO0 processor

» which includes timing

Want to check
1. suitable for verification (sound)

2. timing is correct

So we take random sequences of instructions.

Test predictions the model makes against real chip(s).
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The HOL4 model [Fox]

L3
(automated) 1
Model — Step — Prog

v

Written in L3 DSL [Fox, ITP'12]
Automatic translation to HOL 4

v

» Model — step function
» Step — per-instruction behaviour of step fn
» Prog — separation-logic-like triples

Main purpose: program verification

Not modelled: target memory, exceptions, self-modifying code, ...

* Includes simple timing model
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The HOL4 model [Fox]
L3

(automated) 1
Model — Step — Prog

instruction DecodeARM(w::word) = {

case 1010 : imm24’ =>
if Take (cond, true) then
{ imm32 = SignExtend (imm24 : ’00°’);
Branch (BranchTarget (imm32))

}

else
Skip ()

define Branch > BranchTarget

( imm32 :: bits(32) )

BranchWritePC (PC + imm32)
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The HOL4 model [Fox]

L3
(automated) 1
Model — Step — Prog

DecodeThumb2 h =

else if —b’14 A— b’12 then
(if
FST (ConditionPassed (v2w [b’25; b’24; b’23; b’22]) state)
then
Branch (BranchTarget
(sw2sw
(v2w [b’26] @@ v2w [b’11] @@ v2w [b’13] @@
v2w [b’21; b’20; b’19; b’18; b’17; b’16] @@
v2w [b’10; b’9; b’8; b’7; b’6; b’5; b’4; b’3;
b’2; b’1; b’0] @@ 0w)))
else NoOperation (),state)
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The HOL4 model [Fox]

L3
(automated) 1
Model — Step — Prog

d5f8  bpl -12

[Aligned (s.REG RName_PC,2), —s.AIRCR.ENDIANNESS, —s.PSR.N,
s.MEM (s.REG RName_PC) = 248w, s.MEM (s.REG RName_PC + 1w) = 213w,
s.exception = NoException]
|- NextStateMO s =
SOME
(s with
<|REG := (RName_PC =+ s.REG RName_PC + 4w + OxFFFFFFFOw) s.REG;
count := s.count + 3; pcinc := 2w|>)
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The HOL4 model [Fox]

L3
(automated) 1
Model — Step — Prog

d5f8  bpl -12

(1 |- SPEC MO_MODEL
(mO_count count * mO_PSR_N n * mO_CONFIG (F,spsel) *
mO_PC pc * cond ( —m))
{(pc,INL 54776w)}

(mO_count (count + 3) * mO_PSR_N n * mO_CONFIG (F,spsel) *
mO_PC (pc - 12w) )
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The HOL4 model [Fox]

L3
(automated) 1
Model — Step — Prog
We choose to work with Step

> Would need to do equivalent work anyway

» To specialise to specific instructions
» To isolate preconditions

» Prog requires up-front decisions about separation

Small danger to validity:

» Prog may not use Step in the same way as us

15 /41



Testing overview

Several distinct stages:

1.

o A~ Wb

Instruction sequence generation
Combining step theorems
Constructing suitable pre-state
Instantiate theorem to get prediction

Run sequence on hardware and compare

16
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Instruction sequence generation

Want
» to pick randomly

> but bias selection of instructions, registers, values

Could reuse L3's knowledge of instructions, but
» Small instruction set, so

> opportunity to cross-check

17 /41



Instruction sequence generation

Data structure for instruction formats

datatype instr_format =
Lit of int list

| Reg3

| Reg4NotPC

|

val instrs = [
(1, ([Lit [0,0,0,1,1,1,0], Imm 3, Reg3, Reg3], "ADD (imm) T1")),
(14, ([Lit [1,1,0,1], Cond, Imm 8], "B T1")),
(1, ([Lit [0,1,0,0,0,1,1,1,1], RegdNotPC, Lit [0,0,0]], "BLX")),
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Instruction sequence generation

Data structure for instruction formats

datatype instr_format =
Lit of int list

| Reg3

| Reg4NotPC

|

val instrs = [
(1, ([Lit [0,0,0,1,1,1,0], Imm 3, Reg3, Reg3], "ADD (imm) T1")),
(14, ([Lit [1,1,0,1], Cond, Imm 8], "B T1")),
(1, ([Lit [0,1,0,0,0,1,1,1,1], RegdNotPC, Lit [0,0,0]], "BLX")),

Sanity checks:
» Supported instructions have Prog triples

» Unsupported ones don't

LDRSB was missing from Step!
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Combining step theorems
Get Step theorem for each instruction

» randomly picking whether to take a conditional branch

|- NextStateMO s
|- NextStateMO s

SOME (s with [< ... >|)
SOME (s with [< ... >|)
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Combining step theorems
Get Step theorem for each instruction

» randomly picking whether to take a conditional branch

|- NextStateMO s
|- NextStateMO s

SOME (s with [< ... >|)
SOME (s with [< ... >|)

Progressively instantiate each s with previous step theorem.
» Simplify as we go
» Record symbolic memory accesses, instruction locations
» otherwise we forget about accesses whose value is discarded

instr_start 1 = s.REG RName_PC + 2w,
memory_address O = s.REG RName_PC + 8w,
s.MEM (s.REG RName_PC) = v2w [F; F; T; F; T; F; T; F],

|- NStatesMO 5 s =
s with <| ... |>
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Finding a pre-state — requirements

Model
» only tells us about successful executions
> gives preconditions

> doesn't cover everything

We need more:
» Memory accesses in range
» must hit 8kB memory in 4GB address space

» no self-modification
» add test harness (BKPT instruction)
» align stack pointer registers

Add these to model's preconditions as HOL terms



Finding a pre-state — constraint solving

Constraints may be complex

0:

2:
4:
6

5e88
4090
1880
6803

1ldrsh
1sl
add
1ldr

r0,

[r1, r2]

r0, r0, r2
r0, r0, r2

r3,

[r0, #0]

)

s

)

; load rO from ri+r2
; shift rO left by r2
; add r2 to r0

; load r2 from rO

Constraints involving bitvector adds, shifts, sign extension,
repeated variables and inequalities.

(16 bits)
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Finding a pre-state — constraint solving

Constraints may be complex
0:

2:
4:
6

5e88
4090
1880
6803

1ldrsh
1sl
add
1ldr

r0,

[r1, r2]

r0, r0, r2
r0, r0, r2

r3,

[r0, #0]

)

)

load rO from ri+r2 (16 bits)

shift r0 left by r2
add r2 to r0
load r2 from r0

Constraints involving bitvector adds, shifts, sign extension,
repeated variables and inequalities.

» Requirements fit SMT solving well
» Existing HolSmtLib targets Yices, Z3

» but for proving (via negation)
» adapted Yices part for constraint solving

Constraint solving with SMT appears to be unusual for interactive
theorem proving.
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Finding a pre-state — constraint solving

The adapted HolSmtLib will translate subset of HOL into Yices
format.

» Need to fit preconditions into HOL subset

1. Sound rewriting of unsupported definitions
Alignment, shifts, add_with_carry

2. ensure supported form of bitvectors is used

3. some mixed bitvector/nat operations unsupported
rewrite away, or implement limited version (e.g., 8-bit)
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Finding a pre-state — constraint solving

The adapted HolSmtLib will translate subset of HOL into Yices
format.

» Need to fit preconditions into HOL subset

1. Sound rewriting of unsupported definitions
Alignment, shifts, add_with_carry

2. ensure supported form of bitvectors is used
3. some mixed bitvector/nat operations unsupported
rewrite away, or implement limited version (e.g., 8-bit)
Discovering what to do isn't easy:

» Tried preconditions for every instruction type to detect all
unsupported

» Have to be careful not to undo rewrites when simplifying

26
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Instantiate theorem to get prediction

Translating the SMT results into HOL terms gives us a partial
state

» Fill in the blanks with random choices

> Instantiating the theorem derived earlier should

» Discharge all hypotheses
» predict final state
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Instantiate theorem to get prediction

Translating the SMT results into HOL terms gives us a partial
state
» Fill in the blanks with random choices
> Instantiating the theorem derived earlier should
» Discharge all hypotheses
» predict final state
HOL isn't entirely happy with a list of 8192 8-bit bitvectors.
Careful handling required.

28 /41



Run sequence on hardware and compare

HOL state
A extract
memory, registers, flags
J IPC
OpenOCD debugger driver
¥ USB
STMFO-Discovery board
S USB
OpenOCD debugger driver
d IPC
Final state

Check memory, registers, flags and onboard SysTick timer.
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Run sequence on hardware and compare

HOL state
A extract
memory, registers, flags
J IPC
OpenOCD debugger driver
¥ USB
STMFO-Discovery board
S USB
OpenOCD debugger driver
d IPC
Final state

Check memory, registers, flags and onboard SysTick timer.

If processor goes off-sequence, end up in Fault state with huge
time.
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Scaling it up

Add logging:

» what did we run

» what happened

» enough to reproduce each case exactly

Categorise by outcome:

>

>

>

Impossible sequence (e.g., branching opposite ways on a flag)
No suitable pre-state exists (e.g., SMT returned UNSAT)
Unable to find pre-state (SMT returned UNKNOWN)

The testing code threw an exception

‘Proper’ failure — post-state did not match prediction

Success
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Scaling it up

Add logging:
» what did we run
» what happened

» enough to reproduce each case exactly

Categorise by outcome:
» Impossible sequence (e.g., branching opposite ways on a flag)
» No suitable pre-state exists (e.g., SMT returned UNSAT)
» Unable to find pre-state (SMT returned UNKNOWN)
» The testing code threw an exception
» ‘Proper’ failure — post-state did not match prediction

» Success

Future: gather statistics on coverage.
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Results so far
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Results so far

Surprised SMT solver isn't returning UNKNOWN in practice.
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Results so far

Surprised SMT solver isn't returning UNKNOWN in practice.

Some bugs:
1. Missing LDRSB in Step (plus minor issues)
2. Inverted check for Bx in Model

Both would be found by single-instruction testing.
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Results so far

Surprised SMT solver isn't returning UNKNOWN in practice.

Some bugs:
1. Missing LDRSB in Step (plus minor issues)
2. Inverted check for Bx in Model

Both would be found by single-instruction testing.

Some sequences take one cycle too long:
> add pc, r0 at end

» Some mixtures of branch and memory operation

36

41



Results so far

Surprised SMT solver isn't returning UNKNOWN in practice.

Some bugs:
1. Missing LDRSB in Step (plus minor issues)
2. Inverted check for Bx in Model

Both would be found by single-instruction testing.

Some sequences take one cycle too long:
> add pc, r0 at end

» Some mixtures of branch and memory operation

Appear to be hitting some subtle PolyML GC / HOL
incompatibility..!
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Future
Near future:

> Investigate timing anomalies
» Different timing harnesses, add padding, ...

> Longer runs
» Longer instruction sequences

> Investigate coverage
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Future
Near future:

> Investigate timing anomalies
» Different timing harnesses, add padding, ...

> Longer runs
» Longer instruction sequences

> Investigate coverage

Further ahead:
» New REMS DSL for processor models, SAIL

» Integrate testing?
» Reproducible test cases for weak memory models

How much of this can we commoditise?
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Future
Near future:

> Investigate timing anomalies
» Different timing harnesses, add padding, ...

> Longer runs
» Longer instruction sequences

> Investigate coverage

Further ahead:
» New REMS DSL for processor models, SAIL

» Integrate testing?
» Reproducible test cases for weak memory models

How much of this can we commoditise?

Other opportunities:
» Test bigger processors with proper WCET analyses?

» Can we choose pre-states more randomly?
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Conclusion

Took a HOL processor model
Test sequences of instructions for functional and timing bugs

Used SMT solving to ensure successful executions

B

Preliminary signs of success

Main technical difficulty:

» Getting preconditions into SMT friendly form.

* Formal system makes doing this soundly easier

Sort out timing anomalies
=- sound basis for cost-preserving decompilation
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