
Executable semantics for CompCert

Brian Campbell

September 6, 2011

slide 1 of 17 www.inf.ed.ac.uk



Introduction

In the CerCo project we’ve been working on

the construction of a formally verified complexity
preserving compiler from a large subset of C to some
typical microcontroller assembly

Inspired by (and borrowing a little from) Leroy et al’s CompCert.

They define languages by small-step inductive definitions.
We define language with executable interpreters.

Executable semantics are easier to test.

Can we retrofit executable semantics to CompCert and find out
anything interesting?

slide 2 of 17 www.inf.ed.ac.uk



What’s so difficult about C?

Around 160 A4 pages of specification (400 with libraries added).

Implicit conversions

x = ’a’ + 0.5;

Mixed reads and writes of an object are undefined

x = i + i++;

Evaluation order constraints very lax, not uniform

x = i++ && i++;

x = i++ & i++;

slide 3 of 17 www.inf.ed.ac.uk



History

• CompCert starts with big-step Clight semantics

• Side-effect free expressions, no gotos.
. Some of the literature refers to this version.

• Switch to small-step Clight semantics

• Side-effect free expressions, gotos.
. CerCo project started from here

• Small-step CompCert C language

• C-like expressions,
• gotos, and . . .

The latter comes in two forms:

1 A non-deterministic version (the intended input language)

2 A deterministic version (what the compiler actually does)

slide 4 of 17 www.inf.ed.ac.uk



CompCert and testing

Untrustworthy OCaml Formal development in Coq

C→ CompCert C→ Clight ASM→ Machine code

C→ CompCert C→ Clight ASM→ Machine code

Coq sections get ‘extracted’ to OCaml for execution.

There’s a formal proof in the middle,
but the edges are a bit worrying.

slide 5 of 17 www.inf.ed.ac.uk



CompCert and testing

Untrustworthy OCaml Formal development in Coq

C→ CompCert C→ Clight ASM→ Machine code

C→

CompCert C

→

Clight ASM

→ Machine code

Normal testing tries all of the code.

slide 5 of 17 www.inf.ed.ac.uk



CompCert and testing

Untrustworthy OCaml Formal development in Coq

C→ CompCert C→ Clight ASM→ Machine code

C→

CompCert C→ Clight ASM

→ Machine code

Proofs exercise the formal development.

• Tactical interactive theorem proving helps you notice bad
definitions

slide 5 of 17 www.inf.ed.ac.uk



CompCert and testing

Untrustworthy OCaml Formal development in Coq

C→ CompCert C→ Clight ASM→ Machine code

C→ CompCert C

→ Clight ASM→ Machine code

With an executable semantics we can test the first part.

• Holes in the specification can mask holes in the proof

• Also get to play ‘spot the undefined behaviour’ game

• In CerCo all the languages are executable

slide 5 of 17 www.inf.ed.ac.uk



Constructing the executable semantics

CompCert provides us with a head start:

• the memory model is executable,

• local and global environments are defined in terms of
functions,

• the semantics of operators such as +, ==, etc are defined by
functions.

In particular, environments are used by the compiler, so they are
also fairly efficient.

slide 6 of 17 www.inf.ed.ac.uk



Constructing the executable semantics

Syntax directed relations are easy to make functions from:

Inductive lred: expr -> mem -> expr -> mem -> Prop :=

| red_var_local: forall x ty m b,

e!x = Some(b, ty) ->

lred (Evar x ty) m

(Eloc b Int.zero ty) m

...

Definition exec_lred (e:expr) (m:mem) : res (expr * mem) :=

match e with

| Evar x ty =>

match en!x with

| Some (b, ty’) => match type_eq ty ty’ with

| left _ => OK (Eloc b Int.zero ty, m)

| right _ => Error (msg "type mismatch")

end

...

slide 7 of 17 www.inf.ed.ac.uk



Constructing the executable semantics — non-determinism

We encode strategies as functions

expr -> kind * expr * (expr -> expr)

and require that it really does give a subexpression and context.

Doesn’t cover all strategies:

• Implementations could use contextual information,
randomness. . .

• various methods can solve this, but not terribly important here

slide 8 of 17 www.inf.ed.ac.uk



Constructing the executable semantics — stuck
subexpressions

The non-deterministic semantics check for stuck subexpressions.

• picks up non-terminating programs with undefined behaviour

• example where f does not terminate:

f() + (10 / x) with x = 0

• should be able to get stuck after substituting x

• but without check we can always reduce f()

Scary quantification turns out to have a nice recursive equivalent

Definition not_stuck (e: expr) (m: mem) : Prop :=

forall k C e’ ,

context k RV C -> e = C e’ -> not_imm_stuck k e’ m.

slide 9 of 17 www.inf.ed.ac.uk



Soundness and completeness

We want to know that the executable semantics does the same
thing as the original semantics.

• (mostly boring) inductive proofs

• Coq’s Function feature for generating induction principles
tailored to particular functions is great, but still a bit limited

Caveats apply to completeness:

• Limitations on strategies — cheat by single-stepping

• No I/O (CerCo uses a resumption monad for I/O.)

slide 10 of 17 www.inf.ed.ac.uk



More on evaluation strategies

Two variants have been implemented:

1 a simple left-most inner-most strategy,

2 the actual strategy implemented by the compiler

Non-deterministic Deterministic

Executable

(safe only)

(no stuck expression check)

Completeness proof interesting:
• Deterministic semantics has big-step for ‘simple’ expressions
• Proof shows that this really does correspond to

non-deterministic
slide 11 of 17 www.inf.ed.ac.uk



Testing — function pointers

The example that I originally wanted to try.

int zero(void) { return 0; }

int main(void) {

int (*f)(void) = zero;

return f();

}

$ ../compcert-git-badfn/cexec fnptr-simple.c

stuck expression: function value hasn’t a function type

The function call rule requires f to evaluate directly to a function,
not a pointer.

slide 12 of 17 www.inf.ed.ac.uk



Testing — function pointers

The example that I originally wanted to try.

int zero(void) { return 0; }

int main(void) {

int (*f)(void) = zero;

return f();

}

Fixing this is easy — the compiler already had the correct type
check!

And the proof scripts got shorter.

slide 12 of 17 www.inf.ed.ac.uk



Testing — Csmith

Random program generator by Yang et al from U. Utah.

• Targets ‘middle-end’ bugs

• Regular testing only found bugs in untrustworthy OCaml code

• Random code didn’t find any errors in semantics

. . . but the non-random code of safe mathematics functions. . .

double f(int x, int a, double b) {

return x ? a : b;

}

Semantics is missing arithmetic conversion for ?;.

So is the compiler:

$ ../compcert-git/ccomp conditional.c

Error during RTL type inference: type mismatch

In function main: RTL type inference error

slide 13 of 17 www.inf.ed.ac.uk



Testing — Csmith

Random program generator by Yang et al from U. Utah.

• Targets ‘middle-end’ bugs

• Regular testing only found bugs in untrustworthy OCaml code

• Random code didn’t find any errors in semantics

. . . but the non-random code of safe mathematics functions. . .

double f(int x, int a, double b) {

return x ? a : b;

}

Semantics is missing arithmetic conversion for ?;.

So is the compiler:

$ ../compcert-git/ccomp conditional.c

Error during RTL type inference: type mismatch

In function main: RTL type inference error

slide 13 of 17 www.inf.ed.ac.uk



Testing — Csmith

Random program generator by Yang et al from U. Utah.

• Targets ‘middle-end’ bugs

• Regular testing only found bugs in untrustworthy OCaml code

• Random code didn’t find any errors in semantics

. . . but the non-random code of safe mathematics functions. . .

double f(int x, int a, double b) {

return x ? a : b;

}

Semantics is missing arithmetic conversion for ?;.

So is the compiler:

$ ../compcert-git/ccomp conditional.c

Error during RTL type inference: type mismatch

In function main: RTL type inference error

slide 13 of 17 www.inf.ed.ac.uk



Workarounds

• Fixing function pointers was easy

• Fixing conditions is harder, so I didn’t.

Instead, add extra rules from the comfort of OCaml.

• No need for correctness!

• No silly proofs!

Also good for hacks: memcpy, printf, . . .

slide 14 of 17 www.inf.ed.ac.uk



Testing — gcc-torture

An executable subset of GCC’s C test suite, pre-filtered by another
executable semantics project (kcc from U. Illinois).
Lots of fun:

• lack of initialisation

1 only in the semantics, and
2 was in the OCaml

• a little array/pointer confusion (OCaml)

• incomplete array type mismatches (both, kind of)

• Missing trivial cases for cast (semantics, fixed already)

• pointer comparisons (semantics, intentional limitation)

• bad line numbers in errors (OCaml)
• not helped by OCaml’s non-deterministic evaluation order. . .

slide 15 of 17 www.inf.ed.ac.uk



Related work

CompCert response

• bugs fixed, sometimes before I found them

• fresh interpreter implementation (finds all possible redexes,
turns out smaller and neater)

• In a sense, this talk is already obsolete!

Lots of other executable semantics exist

• kcc, CompCertTSO, some JVMs, . . .

• often the natural way to use a system (e.g., ACL2)

More fun things you can do

• Add I/O, full program evaluation

• Check for coverage

slide 16 of 17 www.inf.ed.ac.uk



Conclusions

Took an existing verified compiler,

• added an executable version of the semantics,

• found bugs through testing,

? including a bug in the formalized front-end

• useful for illustrating limitations of the semantics,
especially ones you didn’t know about,

• showed that the semantics cope with a large group of tests,

• showed a connection between the original deterministic and
non-deterministic semantics.

slide 17 of 17 www.inf.ed.ac.uk


