Randomised testing of a microprocessor model
using SMT-solver state generation

Brian Campbell lan Stark

LFCS,
School of Informatics,
University of Edinburgh, UK

Rigorous Engineering for Mainstream Systems (REMS) project
(Edinburgh, Cambridge, Imperial)

12th September 2014

24

Test
random instruction sequences
to build confidence that the
functionality and timing

specified in a formal processor model
matches a real chip

)

24

Why are we testing a processor model?

Want to extend Myreen's decompilation approach to verification
> e.g., used for seL4 binary correctness proof

» uses Fox’'s processor models written in L3 DSL

Add execution time to model, use in verification.

» Focus is on the decompilation /verification
» Don't want full worst-case timing analysis

» Use a simple processor

Even simple microcontrollers are pipelined
= testing single instructions not enough

24

Overview

Test instruction sequences to build confidence in functionality and
timing
Test Cortex-M0O model against an STM32FQ chip
Need to find pre-states where instructions will not fault:
» some constraints from the model
» extra hardware specific constraints
We show you can transform constraints into solver-friendly form
» SMT solver provides critical parts of pre-state

> fill in the rest randomly

Successfully show model predicts chip behaviour, except for a
couple of (fixed) bugs and a corner case.

The microcontroller core

ARM Cortex-MO0 looks simple enough:

Table 3-1 shows the Cortex-MO instructions and their cycle counts. The cycle counts
are based on a system with zero wait-states.

Table 3-1 Cortex-MO0 instruction summary

Operation Description Assembler Cycles
Move 8-bit immediate MOVS Rd, #<imm> 1

Lo to Lo MOVS Rd, Rm 1

Any to Any MOV Rd, Rm 1

A tn DO MOV D D 1

Has 3-stage pipeline: fetch, decode, execute

Compact, cut-down Thumb2 instruction set

24

L3 model of the Cortex MO

Fox's L3 is a DSL for specifying ISAs
» Allows definitions close to manual's pseudo-code

» Tool produces definitions for HOL4 theorem prover

Cortex-M0 model is cut-down version of ARMv7 model
+ ARMv6M specific parts
+ Cortex-MO instruction timings

— No exceptions or system instructions

HOL4 definitions are functional

Accompanying tools provide more convenient versions

6 /24

Tools accompanying L3 model

1. Assembly and disassembly
2. stepLib describes behaviour for individual instructions

3. progLib provides separation logic triples for verification

Step theorem for 1dr r3, [r0,#0]:

[Aligned (s.REG RName_PC,2), s.MEM (s.REG RName_PC) = 3w,
Aligned (s.REG RName_O + Ow,4), s.MEM (s.REG RName_PC + 1w) = 104w,
—s.ATRCR.ENDIANNESS, —s.CONTROL.SPSEL, s.exception = NoException]
F NextStateMO s = SOME (s with

<|REG := (RName_PC =+ s.REG RName_PC + 2w)

((RName_3 =+ s.MEM (s.REG RName_O + Ow + 3w) @@
s.MEM (s.REG RName_0 + Ow + 2w) @@
s.MEM (s.REG RName_0 + Ow + 1w) @@
s.MEM (s.REG RName_0O + Ow)) s.REG);

count := s.count + 2; pcinc := 2w|>)

> Aligned address prevents fault

Testing system

HOL
L3 —*Model ----- : _I nstr gen |
Step thms—» Testing |<—— SMT
Prog logic : T (yices)
T +
Hardware

LT

(STM32F0-Discovery)

» Need the SMT solver to find suitable pre-state

/24

Instruction sequence generation

Cross-check against model; could generate directly instead

Data structure for instruction formats

datatype instr_format =
Lit of int list

| Reg3

| Reg4NotPC

..

val instrs = [

(1, ([Lit [0,0,0,1,1,1,0], Imm 3, Reg3, Reg3], "ADD (imm) T1")),
(14, ([Lit [1,1,0,1], Cond, Imm 8], "B T1")),
(1, ([Lit [0,1,0,0,0,1,1,1,1], Reg4NotPC, Lit [0,0,0]], "BLX")),

Sanity checks:
» Well formed

» Supported subset matches model

‘Example’ test

ldrsh
1sls
bcs

add
ldr

r0,

[r1, r2]

r0, r0, r2

+#12

r0, r0, r2

r3,

[r0, #0]

3
3
I
I

3

load 16 bits at r1+4r2 into r0
shift rO left by r2
branch if carry set

add r2 to r0
load r3 from r0

Choose up-front whether to branch

» Reduces complexity of finding pre-state

» But some choices will be impossible

Combine step theorems by repeated instantiation and simplification

Accumulate hypotheses needed for successful execution

» Constrain possible instruction locations

10/ 24

‘Example’ test

ldrsh
1sls
bcs

add
ldr

r0, [r1, r2]
r0, r0, r2
+#12

r0, r0, r2
r3, [r0, #0]

» Model requires, e.g.,

Aligned

(s.REG RName_0 + Ow,4)

load 16 bits at r1+4r2 into r0
shift rO left by r2
branch if carry set

add r2 to r0
load r3 from r0

11 /24

‘Example’ test

ldrsh
1sls
bcs

add
ldr

r0, [r1, r2]
r0, r0, r2
+#12

r0, r0, r2
r3, [r0, #0]

» Model requires, e.g.,

Aligned
(s.REG RName_O + s.REG RName_2,4)

load 16 bits at r1+4r2 into r0
shift rO left by r2
branch if carry set

add r2 to r0
load r3 from r0

12 /24

‘Example’

ldrsh
1sls
bcs

add
ldr

test
r0, [r1, r2]
r0, r0, r2
+#12
r0, r0, r2
r3, [r0, #0]

» Model requires, e.g.,

Aligned
(s.REG RName_2 +
s.REG RName_0 <<~ w2w ((7 >< 0) (s.REG RName_2)),4),

load 16 bits at r1+4r2 into r0
shift rO left by r2
branch if carry set

add r2 to r0
load r3 from r0

13 /24

‘Example’ test

ldrsh r0, [r1, r2] ; load 16 bits at r1+r2 into r0
1lsls r0, r0, r2 ; shift r0 left by r2

bcs +#12 ; branch if carry set
add r0, r0, r2 ; add r2 to r0
ldr r3, [r0, #0] ; load r3 from r0

» Model requires, e.g.,

Aligned
(s.REG RName_2 +
SW2sw
(s.MEM (s.REG RName_1 + s.REG RName_2 + 1w) @@
s.MEM (s.REG RName_1 + s.REG RName_2)) <<~
w2w ((7 >< 0) (s.REG RName_2)),4)

featuring bitvector addition, concatenation, sign extension,
shifting and alignment.

14 /24

‘Example’ test

ldrsh
1sls
bcs

add
ldr

r0,

[r1, r2]

r0, r0, r2

+#12

r0, r0, r2

r3,

[r0, #0]

3
3
I
I

3

load 16 bits at r1+4r2 into r0
shift rO left by r2
branch if carry set

add r2 to r0
load r3 from r0

» |n addition to model’s preconditions, hardware requires that

(s.REG RName_2 +

is a valid location in RAM

SW2sw
(s.MEM (s.REG RName_1 + s.REG RName_2 + 1w) @@
s.MEM (s.REG RName_1 + s.REG RName_2)) <<~
w2w ((7 >< 0) (s.REG RName_2)))

» Constraints to add test harness (BKPT)

> ...

15 /24

Manipulating theorems from the model

While combining into single theorem about whole run:

>

Record extra information, e.g., to prevent shadowing

ldr r0, [r1, #0]
1dr r0, [r2, #0]

Naive combination of step theorems forgets about r1
— but need r1 to be a valid location

Extra information useful for user-supplied constraints
e.g., restricting instruction locations

Careful management of large terms:

>

separate intermediate memory states
— otherwise aliasing checks cause quadratic blow-up

keep appropriate abstractions
— underlying definitions can be larger, plus ...

16

24

SMT-friendly HOL

Existing HolSmtLib translation only handles small subset of HOL.

» Difficult definition:
Aligned (w,n) = (w = n2w (n * (w2n w DIV n)))

» Good theorem:

(Va : word32. Aligned (a, 1)) A
(Va : word32. Aligned (a, 2)
(Va : word32. Aligned (a, 4)
(Va : word8. Aligned (a, 4)

“word_lsb a) A
((1 >< 0) a = Ow:word2)) A
((1 >< 0) a = Ow:word2))

Similarly: shifts, flags for addition, ...

Systematic sweep of theorems for each instruction type discovered
unsupported terms.

Extended HolSmtLib to construct HOL terms for satisfying
assignment from Yices solver.

17 /24

Running the tests

Theorem from model

\

¥ SMT
Partial state (HOL)

+ Random
Full state (HOL)

* Debugger, USB

Prediction Device

+ + ... and back

Comparison

Rough idea of performance:

1000 candidate tests (5 instrs)
105 no possible pre-state
882 matched model

13 non-matching
4hrs 3mins
> 3.5 useful tests a minute

18 /24

Testing outcomes

Functionality:
» LDRSB present in model, but step theorem missing

» negated constraint for BX
Aligned stack pointers are implicit invariant of TRM's pseudocode
Self-modifying code is visible (remove using constraints)
Timing anomaly:

> extra cycle for placing instruction in last word of memory
Semi-automatic mode useful for:

> testing specific instructions

» confirming timing anomaly accumulates in a loop

19 /24

Later: more implementations

3 more Cortex-MO chips, making 4 total:
1. STM32F051
2. Infineon XMC1100
3. NXP LPC11U14
4. Cypress PSoC 4 4125

All have the end-of-memory penalty
— masked by odd memory mapping on 3

3 and 4 have one cycle penalty on store instructions located on
odd half-words

Checked by script which corrects model’s predictions

20 /24

Conclusions

Hence,

» SMT good way to find test states (with interesting biases)
» Extra constraints bridge model/reality gap
» Extra constraints useful for hypothesis checking

» Formal setting allows sound transformations into
SMT-friendly HOL

» High confidence in MO cost model for STM32F0

Further work:
» Generalising to other L3 models

» Testing MIPS model against experimental design

Code: https://bitbucket.org/bacam/m0-validation

21 /24

https://bitbucket.org/bacam/m0-validation

Extras: loops

run_test_code debug

‘adds
bcs
adds
bcs
adds
bcs
adds
bcs
adds
bcs

r0, r0, r2
-#2
r0, r0, r2
-#2
r0, r0, r2
-#2
r0, r0, r2
-#2
r0, r0, r2
-#2°¢

(SOME [0, O (* take first time *),

0, 0O,
0, O,
0, 0, 0, 1 (x pass last time *)])

(Basic Breakpoint) [];

» Must loop because of backward branch

» SMT solver chooses state to run correct number of times

» Vanishingly unlikely to generate by chance

Extras: Scaling it up

Add logging:
> what did we run
» what happened

» enough to reproduce each case exactly

Categorise by outcome:
» Impossible sequence (e.g., branching opposite ways on a flag)
» No suitable pre-state exists (e.g., SMT returned UNSAT)
» Unable to find pre-state (SMT returned UNKNOWN)
» The testing code threw an exception
» ‘Proper’ failure — post-state did not match prediction

» Success

23 /24

Extras: Why are some sequences impossible?

» Early decisions about branching may be incompatible:
bcs +#12 ; randomly choose to take branch
bcs +#12 ; randomly choose not to

» Creating a valid address may be impossible:

1drb rl, [r0,#0] ; so rl is a byte
str r2, [r1,#0] ; store r2 at ri

but 0 — 256 is flash memory

» Variations of this involving (e.g.) branch displacements:

bl +#2048

bl +#2048

» Restrictions on operands:

1sls r0, rO, #1 ; left shift
bx r0 ; requires bit O set

24 /24

