
Randomised testing of a microprocessor model
using SMT-solver state generation

Brian Campbell Ian Stark

LFCS,
School of Informatics,

University of Edinburgh, UK

Rigorous Engineering for Mainstream Systems (REMS) project
(Edinburgh, Cambridge, Imperial)

12th September 2014

1 / 24



Test

random instruction sequences

to build confidence that the

functionality and timing

specified in a formal processor model
matches a real chip

2 / 24



Why are we testing a processor model?

Want to extend Myreen’s decompilation approach to verification

I e.g., used for seL4 binary correctness proof

I uses Fox’s processor models written in L3 DSL

Add execution time to model, use in verification.

I Focus is on the decompilation/verification

I Don’t want full worst-case timing analysis

I Use a simple processor

Even simple microcontrollers are pipelined
⇒ testing single instructions not enough

3 / 24



Overview

Test instruction sequences to build confidence in functionality and
timing

Test Cortex-M0 model against an STM32F0 chip

Need to find pre-states where instructions will not fault:

I some constraints from the model

I extra hardware specific constraints

We show you can transform constraints into solver-friendly form

I SMT solver provides critical parts of pre-state

I fill in the rest randomly

Successfully show model predicts chip behaviour, except for a
couple of (fixed) bugs and a corner case.

4 / 24



The microcontroller core

ARM Cortex-M0 looks simple enough:

Programmers Model 

3-4 Copyright © 2009 ARM Limited. All rights reserved. ARM DDI 0432C
Non-Confidential, Unrestricted Access ID113009

3.3 Instruction set summary

The processor implements the ARMv6-M Thumb instruction set, including a number 
of 32-bit instructions that use Thumb-2 technology. The ARMv6-M instruction set
comprises:

� all of the 16-bit Thumb instructions from ARMv7-M excluding CBZ, CBNZ and IT

� the 32-bit Thumb instructions BL, DMB, DSB, ISB, MRS and MSR.

Table 3-1 shows the Cortex-M0 instructions and their cycle counts. The cycle counts
are based on a system with zero wait-states.

Table 3-1 Cortex-M0 instruction summary

Operation Description Assembler Cycles

Move 8-bit immediate MOVS Rd, #<imm> 1

Lo to Lo MOVS Rd, Rm 1

Any to Any MOV Rd, Rm 1

Any to PC MOV PC, Rm 3

Add 3-bit immediate ADDS Rd, Rn, #<imm> 1

All registers Lo ADDS Rd, Rn, Rm 1

Any to Any ADD Rd, Rd, Rm 1

Any to PC ADD PC, PC, Rm 3

8-bit immediate ADDS Rd, Rd, #<imm> 1

With carry ADCS Rd, Rd, Rm 1

Immediate to SP ADD SP, SP, #<imm> 1

Form address from SP ADD Rd, SP, #<imm> 1

Form address from PC ADR Rd, <label> 1

Subtract Lo and Lo SUBS Rd, Rn, Rm 1

3-bit immediate SUBS Rd, Rn, #<imm> 1

8-bit immediate SUBS Rd, Rd, #<imm> 1

With carry SBCS Rd, Rd, Rm 1

Immediate from SP SUB SP, SP, #<imm> 1

Has 3-stage pipeline: fetch, decode, execute

Compact, cut-down Thumb2 instruction set

5 / 24



L3 model of the Cortex M0

Fox’s L3 is a DSL for specifying ISAs

I Allows definitions close to manual’s pseudo-code

I Tool produces definitions for HOL4 theorem prover

Cortex-M0 model is cut-down version of ARMv7 model

+ ARMv6M specific parts

+ Cortex-M0 instruction timings

− No exceptions or system instructions

HOL4 definitions are functional

Accompanying tools provide more convenient versions

6 / 24



Tools accompanying L3 model

1. Assembly and disassembly

2. stepLib describes behaviour for individual instructions

3. progLib provides separation logic triples for verification

Step theorem for ldr r3,[r0,#0]:

[Aligned (s.REG RName_PC,2), s.MEM (s.REG RName_PC) = 3w,
Aligned (s.REG RName_0 + 0w,4), s.MEM (s.REG RName_PC + 1w) = 104w,
¬s.AIRCR.ENDIANNESS, ¬s.CONTROL.SPSEL, s.exception = NoException]

` NextStateM0 s = SOME (s with
<|REG := (RName_PC =+ s.REG RName_PC + 2w)

((RName_3 =+ s.MEM (s.REG RName_0 + 0w + 3w) @@
s.MEM (s.REG RName_0 + 0w + 2w) @@
s.MEM (s.REG RName_0 + 0w + 1w) @@
s.MEM (s.REG RName_0 + 0w)) s.REG);

count := s.count + 2; pcinc := 2w|>)

I Aligned address prevents fault

7 / 24



Testing system

HOL

L3
SMT
(yices)

Model
Step thms
Prog logic

Instr gen
Testing

Hardware
(STM32F0-Discovery)

I Need the SMT solver to find suitable pre-state

8 / 24



Instruction sequence generation

Cross-check against model; could generate directly instead

Data structure for instruction formats

datatype instr_format =
Lit of int list

| Reg3
| Reg4NotPC
| ...

val instrs = [
(1, ([Lit [0,0,0,1,1,1,0], Imm 3, Reg3, Reg3], "ADD (imm) T1")),
(14,([Lit [1,1,0,1], Cond, Imm 8], "B T1")),
(1, ([Lit [0,1,0,0,0,1,1,1,1], Reg4NotPC, Lit [0,0,0]], "BLX")),
...

Sanity checks:

I Well formed

I Supported subset matches model

9 / 24



‘Example’ test

ldrsh r0, [r1, r2] ; load 16 bits at r1+r2 into r0

lsls r0, r0, r2 ; shift r0 left by r2

bcs +#12 ; branch if carry set

add r0, r0, r2 ; add r2 to r0

ldr r3, [r0, #0] ; load r3 from r0

Choose up-front whether to branch

I Reduces complexity of finding pre-state

I But some choices will be impossible

Combine step theorems by repeated instantiation and simplification

Accumulate hypotheses needed for successful execution

I Constrain possible instruction locations

10 / 24



‘Example’ test

ldrsh r0, [r1, r2] ; load 16 bits at r1+r2 into r0

lsls r0, r0, r2 ; shift r0 left by r2

bcs +#12 ; branch if carry set

add r0, r0, r2 ; add r2 to r0

ldr r3, [r0, #0] ; load r3 from r0

I Model requires, e.g.,

Aligned
(s.REG RName_0 + 0w,4)

11 / 24



‘Example’ test

ldrsh r0, [r1, r2] ; load 16 bits at r1+r2 into r0

lsls r0, r0, r2 ; shift r0 left by r2

bcs +#12 ; branch if carry set

add r0, r0, r2 ; add r2 to r0

ldr r3, [r0, #0] ; load r3 from r0

I Model requires, e.g.,

Aligned
(s.REG RName_0 + s.REG RName_2,4)

12 / 24



‘Example’ test

ldrsh r0, [r1, r2] ; load 16 bits at r1+r2 into r0

lsls r0, r0, r2 ; shift r0 left by r2

bcs +#12 ; branch if carry set

add r0, r0, r2 ; add r2 to r0

ldr r3, [r0, #0] ; load r3 from r0

I Model requires, e.g.,

Aligned
(s.REG RName_2 +
s.REG RName_0 <<~ w2w ((7 >< 0) (s.REG RName_2)),4),

13 / 24



‘Example’ test

ldrsh r0, [r1, r2] ; load 16 bits at r1+r2 into r0

lsls r0, r0, r2 ; shift r0 left by r2

bcs +#12 ; branch if carry set

add r0, r0, r2 ; add r2 to r0

ldr r3, [r0, #0] ; load r3 from r0

I Model requires, e.g.,

Aligned
(s.REG RName_2 +
sw2sw
(s.MEM (s.REG RName_1 + s.REG RName_2 + 1w) @@
s.MEM (s.REG RName_1 + s.REG RName_2)) <<~

w2w ((7 >< 0) (s.REG RName_2)),4)

featuring bitvector addition, concatenation, sign extension,
shifting and alignment.

14 / 24



‘Example’ test

ldrsh r0, [r1, r2] ; load 16 bits at r1+r2 into r0

lsls r0, r0, r2 ; shift r0 left by r2

bcs +#12 ; branch if carry set

add r0, r0, r2 ; add r2 to r0

ldr r3, [r0, #0] ; load r3 from r0

I In addition to model’s preconditions, hardware requires that

(s.REG RName_2 +
sw2sw
(s.MEM (s.REG RName_1 + s.REG RName_2 + 1w) @@
s.MEM (s.REG RName_1 + s.REG RName_2)) <<~

w2w ((7 >< 0) (s.REG RName_2)))

is a valid location in RAM

I Constraints to add test harness (BKPT)

I ...

15 / 24



Manipulating theorems from the model

While combining into single theorem about whole run:

I Record extra information, e.g., to prevent shadowing

ldr r0, [r1, #0]
ldr r0, [r2, #0]

Näıve combination of step theorems forgets about r1

— but need r1 to be a valid location

I Extra information useful for user-supplied constraints
e.g., restricting instruction locations

Careful management of large terms:

I separate intermediate memory states
— otherwise aliasing checks cause quadratic blow-up

I keep appropriate abstractions
— underlying definitions can be larger, plus . . .

16 / 24



SMT-friendly HOL

Existing HolSmtLib translation only handles small subset of HOL.

I Difficult definition:

Aligned (w,n) = (w = n2w (n * (w2n w DIV n)))

I Good theorem:

(∀a : word32. Aligned (a, 1)) ∧
(∀a : word32. Aligned (a, 2) = ~word_lsb a) ∧
(∀a : word32. Aligned (a, 4) = ((1 >< 0) a = 0w:word2)) ∧
(∀a : word8. Aligned (a, 4) = ((1 >< 0) a = 0w:word2))

Similarly: shifts, flags for addition, . . .

Systematic sweep of theorems for each instruction type discovered
unsupported terms.

Extended HolSmtLib to construct HOL terms for satisfying
assignment from Yices solver.

17 / 24



Running the tests

Partial state (HOL)

Full state (HOL)

SMT

Random

Theorem from model

Device

Comparison

Debugger, USB

... and back

Prediction

Rough idea of performance: 1000 candidate tests (5 instrs)
105 no possible pre-state
882 matched model

13 non-matching
4hrs 3mins

> 3.5 useful tests a minute
18 / 24



Testing outcomes

Functionality:

I LDRSB present in model, but step theorem missing

I negated constraint for BX

Aligned stack pointers are implicit invariant of TRM’s pseudocode

Self-modifying code is visible (remove using constraints)

Timing anomaly:

I extra cycle for placing instruction in last word of memory

Semi-automatic mode useful for:

I testing specific instructions

I confirming timing anomaly accumulates in a loop

19 / 24



Later: more implementations

3 more Cortex-M0 chips, making 4 total:

1. STM32F051

2. Infineon XMC1100

3. NXP LPC11U14

4. Cypress PSoC 4 4125

All have the end-of-memory penalty
— masked by odd memory mapping on 3

3 and 4 have one cycle penalty on store instructions located on
odd half-words

Checked by script which corrects model’s predictions

20 / 24



Conclusions

Hence,

I SMT good way to find test states (with interesting biases)

I Extra constraints bridge model/reality gap

I Extra constraints useful for hypothesis checking

I Formal setting allows sound transformations into
SMT-friendly HOL

I High confidence in M0 cost model for STM32F0

Further work:

I Generalising to other L3 models

I Testing MIPS model against experimental design

Code: https://bitbucket.org/bacam/m0-validation

21 / 24

https://bitbucket.org/bacam/m0-validation


Extras: loops

run_test_code debug
‘adds r0, r0, r2
bcs -#2
adds r0, r0, r2
bcs -#2
adds r0, r0, r2
bcs -#2
adds r0, r0, r2
bcs -#2
adds r0, r0, r2
bcs -#2‘
(SOME [0, 0 (* take first time *),

0, 0,
0, 0,
0, 0, 0, 1 (* pass last time *)])

(Basic Breakpoint) [];

I Must loop because of backward branch

I SMT solver chooses state to run correct number of times

I Vanishingly unlikely to generate by chance

22 / 24



Extras: Scaling it up

Add logging:

I what did we run

I what happened

I enough to reproduce each case exactly

Categorise by outcome:

I Impossible sequence (e.g., branching opposite ways on a flag)

I No suitable pre-state exists (e.g., SMT returned UNSAT)

I Unable to find pre-state (SMT returned UNKNOWN)

I The testing code threw an exception

I ‘Proper’ failure — post-state did not match prediction

I Success

23 / 24



Extras: Why are some sequences impossible?

I Early decisions about branching may be incompatible:

bcs +#12 ; randomly choose to take branch
bcs +#12 ; randomly choose not to

I Creating a valid address may be impossible:

ldrb r1, [r0,#0] ; so r1 is a byte
str r2, [r1,#0] ; store r2 at r1

but 0− 256 is flash memory

I Variations of this involving (e.g.) branch displacements:

bl +#2048
...
bl +#2048

I Restrictions on operands:

lsls r0, r0, #1 ; left shift
bx r0 ; requires bit 0 set

24 / 24


