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Test
random instruction sequences
to build confidence that the
functionality and timing

specified in a formal processor model
matches a real chip

)
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Why are we testing a processor model?

Want to extend Myreen's decompilation approach to verification
> e.g., used for seL4 binary correctness proof

» uses Fox’'s processor models written in L3 DSL

Add execution time to model, use in verification.

» Focus is on the decompilation /verification
» Don't want full worst-case timing analysis

» Use a simple processor

Even simple microcontrollers are pipelined
= testing single instructions not enough
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Overview

Test instruction sequences to build confidence in functionality and
timing
Test Cortex-M0O model against an STM32FQ chip
Need to find pre-states where instructions will not fault:
» some constraints from the model
» extra hardware specific constraints
We show you can transform constraints into solver-friendly form
» SMT solver provides critical parts of pre-state

> fill in the rest randomly

Successfully show model predicts chip behaviour, except for a
couple of (fixed) bugs and a corner case.



The microcontroller core

ARM Cortex-MO0 looks simple enough:

Table 3-1 shows the Cortex-MO instructions and their cycle counts. The cycle counts
are based on a system with zero wait-states.

Table 3-1 Cortex-MO0 instruction summary

Operation Description Assembler Cycles
Move 8-bit immediate MOVS Rd, #<imm> 1

Lo to Lo MOVS Rd, Rm 1

Any to Any MOV Rd, Rm 1

A tn DO MOV D D 1

Has 3-stage pipeline: fetch, decode, execute

Compact, cut-down Thumb2 instruction set
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L3 model of the Cortex MO

Fox's L3 is a DSL for specifying ISAs
» Allows definitions close to manual's pseudo-code

» Tool produces definitions for HOL4 theorem prover

Cortex-M0 model is cut-down version of ARMv7 model
+ ARMv6M specific parts
+ Cortex-MO instruction timings

— No exceptions or system instructions

HOL4 definitions are functional

Accompanying tools provide more convenient versions
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Tools accompanying L3 model

1. Assembly and disassembly
2. stepLib describes behaviour for individual instructions

3. progLib provides separation logic triples for verification

Step theorem for 1dr r3, [r0,#0]:

[Aligned (s.REG RName_PC,2), s.MEM (s.REG RName_PC) = 3w,
Aligned (s.REG RName_O + Ow,4), s.MEM (s.REG RName_PC + 1w) = 104w,
—s.ATRCR.ENDIANNESS, —s.CONTROL.SPSEL, s.exception = NoException]
F NextStateMO s = SOME (s with

<|REG := (RName_PC =+ s.REG RName_PC + 2w)

((RName_3 =+ s.MEM (s.REG RName_O + Ow + 3w) @@
s.MEM (s.REG RName_0 + Ow + 2w) @@
s.MEM (s.REG RName_0 + Ow + 1w) @@
s.MEM (s.REG RName_0O + Ow)) s.REG);

count := s.count + 2; pcinc := 2w|>)

> Aligned address prevents fault



Testing system

HOL
L3 —*Model ----- : _I nstr gen |
Step thms—» Testing |<—— SMT
Prog logic : T (yices)
T +
Hardware

LT

(STM32F0-Discovery)

» Need the SMT solver to find suitable pre-state
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Instruction sequence generation

Cross-check against model; could generate directly instead

Data structure for instruction formats

datatype instr_format =
Lit of int list

| Reg3

| Reg4NotPC

..

val instrs = [

(1, ([Lit [0,0,0,1,1,1,0], Imm 3, Reg3, Reg3], "ADD (imm) T1")),
(14, ([Lit [1,1,0,1], Cond, Imm 8], "B T1")),
(1, ([Lit [0,1,0,0,0,1,1,1,1], Reg4NotPC, Lit [0,0,0]], "BLX")),

Sanity checks:
» Well formed

» Supported subset matches model



‘Example’ test

ldrsh
1sls
bcs

add
ldr

r0,

[r1, r2]

r0, r0, r2

+#12

r0, r0, r2

r3,

[r0, #0]

3
3
I
I

3

load 16 bits at r1+4r2 into r0
shift rO left by r2
branch if carry set

add r2 to r0
load r3 from r0

Choose up-front whether to branch

» Reduces complexity of finding pre-state

» But some choices will be impossible

Combine step theorems by repeated instantiation and simplification

Accumulate hypotheses needed for successful execution

» Constrain possible instruction locations
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‘Example’ test

ldrsh
1sls
bcs

add
ldr

r0, [r1, r2]
r0, r0, r2
+#12

r0, r0, r2
r3, [r0, #0]

» Model requires, e.g.,

Aligned

(s.REG RName_0 + Ow,4)

load 16 bits at r1+4r2 into r0
shift rO left by r2
branch if carry set

add r2 to r0
load r3 from r0
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‘Example’ test

ldrsh
1sls
bcs

add
ldr

r0, [r1, r2]
r0, r0, r2
+#12

r0, r0, r2
r3, [r0, #0]

» Model requires, e.g.,

Aligned
(s.REG RName_O + s.REG RName_2,4)

load 16 bits at r1+4r2 into r0
shift rO left by r2
branch if carry set

add r2 to r0
load r3 from r0
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‘Example’

ldrsh
1sls
bcs

add
ldr

test
r0, [r1, r2]
r0, r0, r2
+#12
r0, r0, r2
r3, [r0, #0]

» Model requires, e.g.,

Aligned
(s.REG RName_2 +
s.REG RName_0 <<~ w2w ((7 >< 0) (s.REG RName_2)),4),

load 16 bits at r1+4r2 into r0
shift rO left by r2
branch if carry set

add r2 to r0
load r3 from r0
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‘Example’ test

ldrsh r0, [r1, r2] ; load 16 bits at r1+r2 into r0
1lsls r0, r0, r2 ; shift r0 left by r2

bcs +#12 ;  branch if carry set
add r0, r0, r2 ; add r2 to r0
ldr r3, [r0, #0] ; load r3 from r0

» Model requires, e.g.,

Aligned
(s.REG RName_2 +
SW2sw
(s.MEM (s.REG RName_1 + s.REG RName_2 + 1w) @@
s.MEM (s.REG RName_1 + s.REG RName_2)) <<~
w2w ((7 >< 0) (s.REG RName_2)),4)

featuring bitvector addition, concatenation, sign extension,
shifting and alignment.
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‘Example’ test

ldrsh
1sls
bcs

add
ldr

r0,

[r1, r2]

r0, r0, r2

+#12

r0, r0, r2

r3,

[r0, #0]

3
3
I
I

3

load 16 bits at r1+4r2 into r0
shift rO left by r2
branch if carry set

add r2 to r0
load r3 from r0

» |n addition to model’s preconditions, hardware requires that

(s.REG RName_2 +

is a valid location in RAM

SW2sw
(s.MEM (s.REG RName_1 + s.REG RName_2 + 1w) @@
s.MEM (s.REG RName_1 + s.REG RName_2)) <<~
w2w ((7 >< 0) (s.REG RName_2)))

» Constraints to add test harness (BKPT)

> ...
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Manipulating theorems from the model

While combining into single theorem about whole run:

>

Record extra information, e.g., to prevent shadowing

ldr r0, [r1, #0]
1dr r0, [r2, #0]

Naive combination of step theorems forgets about r1
— but need r1 to be a valid location

Extra information useful for user-supplied constraints
e.g., restricting instruction locations

Careful management of large terms:

>

separate intermediate memory states
— otherwise aliasing checks cause quadratic blow-up

keep appropriate abstractions
— underlying definitions can be larger, plus ...
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SMT-friendly HOL

Existing HolSmtLib translation only handles small subset of HOL.

» Difficult definition:
Aligned (w,n) = (w = n2w (n * (w2n w DIV n)))

» Good theorem:

(Va : word32. Aligned (a, 1)) A
(Va : word32. Aligned (a, 2)
(Va : word32. Aligned (a, 4)
(Va : word8. Aligned (a, 4)

“word_lsb a) A
((1 >< 0) a = Ow:word2)) A
((1 >< 0) a = Ow:word2))

Similarly: shifts, flags for addition, ...

Systematic sweep of theorems for each instruction type discovered
unsupported terms.

Extended HolSmtLib to construct HOL terms for satisfying
assignment from Yices solver.
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Running the tests

Theorem from model

\

¥ SMT
Partial state (HOL)

+ Random
Full state (HOL)

* Debugger, USB

Prediction Device

+ + ... and back

Comparison

Rough idea of performance:

1000 candidate tests (5 instrs)
105 no possible pre-state
882 matched model

13 non-matching
4hrs 3mins
> 3.5 useful tests a minute
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Testing outcomes

Functionality:
» LDRSB present in model, but step theorem missing

» negated constraint for BX
Aligned stack pointers are implicit invariant of TRM's pseudocode
Self-modifying code is visible (remove using constraints)
Timing anomaly:

> extra cycle for placing instruction in last word of memory
Semi-automatic mode useful for:

> testing specific instructions

» confirming timing anomaly accumulates in a loop
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Later: more implementations

3 more Cortex-MO chips, making 4 total:
1. STM32F051
2. Infineon XMC1100
3. NXP LPC11U14
4. Cypress PSoC 4 4125

All have the end-of-memory penalty
— masked by odd memory mapping on 3

3 and 4 have one cycle penalty on store instructions located on
odd half-words

Checked by script which corrects model’s predictions
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Conclusions

Hence,

» SMT good way to find test states (with interesting biases)
» Extra constraints bridge model/reality gap
» Extra constraints useful for hypothesis checking

» Formal setting allows sound transformations into
SMT-friendly HOL

» High confidence in MO cost model for STM32F0

Further work:
» Generalising to other L3 models

» Testing MIPS model against experimental design

Code: https://bitbucket.org/bacam/m0-validation
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https://bitbucket.org/bacam/m0-validation

Extras: loops

run_test_code debug

‘adds
bcs
adds
bcs
adds
bcs
adds
bcs
adds
bcs

r0, r0, r2
-#2
r0, r0, r2
-#2
r0, r0, r2
-#2
r0, r0, r2
-#2
r0, r0, r2
-#2°¢

(SOME [0, O (* take first time *),

0, 0O,
0, O,
0, 0, 0, 1 (x pass last time *)])

(Basic Breakpoint) [];

» Must loop because of backward branch

» SMT solver chooses state to run correct number of times

» Vanishingly unlikely to generate by chance



Extras: Scaling it up

Add logging:
> what did we run
» what happened

» enough to reproduce each case exactly

Categorise by outcome:
» Impossible sequence (e.g., branching opposite ways on a flag)
» No suitable pre-state exists (e.g., SMT returned UNSAT)
» Unable to find pre-state (SMT returned UNKNOWN)
» The testing code threw an exception
» ‘Proper’ failure — post-state did not match prediction

» Success
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Extras: Why are some sequences impossible?

» Early decisions about branching may be incompatible:
bcs +#12 ; randomly choose to take branch
bcs +#12 ; randomly choose not to

» Creating a valid address may be impossible:

1drb rl, [r0,#0] ; so rl is a byte
str r2, [r1,#0] ; store r2 at ri

but 0 — 256 is flash memory

» Variations of this involving (e.g.) branch displacements:

bl +#2048

bl +#2048

» Restrictions on operands:

1sls r0, rO, #1 ; left shift
bx r0 ; requires bit O set
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