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ABSTRACT
As processor chips become increasingly parallel, an efficient
communication substrate is critical for meeting performance
and energy targets. In this work, we target the root cause
of network energy consumption through techniques that re-
duce link and router-level switching activity. We specifically
focus on memory subsystem traffic, as it comprises the bulk
of NoC load in a CMP. By transmitting only the flits that
contain words predicted useful using a novel spatial local-
ity predictor, our scheme seeks to reduce network activity.
We aim to further lower NoC energy through microarchitec-
tural mechanisms that inhibit datapath switching activity
for unused words in individual flits. Using simulation-based
performance studies and detailed energy models based on
synthesized router designs and different link wire types, we
show that (a) the prediction mechanism achieves very high
accuracy, with an average misprediction rate of just 2.5%;
(b) the combined NoC energy savings enabled by the predic-
tor and microarchitectural support are 35% on average and
up to 60% in the best case; and (c) the performance impact
of these energy optimizations is negligible.

Categories and Subject Descriptors
B.3.0 [MEMORY STRUCTURES]: General

General Terms
Design, Measurement

Keywords
Cache Design, Flit Encoding

1. INTRODUCTION
While process technology scaling continues providing more

transistors, the transistor performance and power gains that
accompany process scaling have largely ceased [1]. Chip-
multiprocessor (CMP) designs achieve greater efficiency than
traditional monolithic processors through concurrent par-
allel execution of multiple programs or threads. As the
core count in chip-multiprocessor (CMP) systems increases,
networks-on-chip (NoCs) present a scalable alternative to
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Figure 1: Percentage of cache block words utilized by appli-
cations in the PARSEC multithreaded benchmark suite.

traditional, bus-based designs for interconnection between
processor cores [2]. As in most current VLSI designs, power
efficiency has also become a first-order constraint in NoC
design. The energy consumed by the NoC itself is 28% of
the per-tile power in the Intel Teraflop chip [3] and 36% of
the total chip power in MIT RAW chip [4]. In this paper we
present a novel technique to reduce energy consumption for
CMP core interconnect leveraging spatial locality specula-
tion to identify unused cache block words. In particular, we
propose to predict which words in each cache block fetch will
be used and leverage that prediction to reduce dynamic en-
ergy consumption in the NoC channels and routers through
diminished switching activity.

1.1 Motivation
Current CMPs employ cache hierarchies of multiple levels

prior to main memory [5,6]. Caches organize data into blocks
containing multiple contiguous words in an effort to capture
some degree of spatial locality and reduce the likelihood of
subsequent misses. Unfortunately, applications often do not
fully utilize all the words fetched for a given cache block, as
recently noted by Pujara et al. [7].

Figure 1 shows the percentage of words utilized in applica-
tions from the PARSEC multithreaded benchmark suite [8].
On average, 61% of cache block words in the PARSEC suite
benchmarks will never be referenced and represent energy
wasted in transference through the memory hierarchy. In
this work we focus on the waste associated with traditional
approaches to spatial locality, in particular the wasted en-
ergy and power caused by large cache blocks containing data
that ultimately is not used.

1.2 Proposed Technique
The goal of the proposed technique is to reduce dynamic

energy consumption in CMP interconnect by leveraging spa-
tial locality speculation on the expected used words in fetched
cache blocks in CMP processor memory systems.

The paper makes the following contributions:



• A novel intra-cache-block spatial locality predictor, to
identify words unlikely to be used before the block is
evicted.

• A static packet encoding technique which leverages
spatial locality prediction to reduce the network ac-
tivity factor, and hence dynamic energy, in the NoC
routers and links. The static encoding requires no
modification to the NoC and minimal additions to the
processor caches to achieve significant energy savings
with negligible performance overhead.

• A complementary dynamic packet encoding technique
which facilitates additional energy savings in transmit-
ted flits, reducing switching activity in NoC links and
routers via light-weight microarchitectural support.

In a 16-core CMP implemented in a 45-nm process tech-
nology, the proposed technique achieves an average of ∼35%
savings in total dynamic interconnect energy at the cost of
less than 1% increase in memory system latency.

2. BACKGROUND AND RELATED WORK
2.1 Dynamic Power Consumption

When a bit is transmitted over interconnect wire or stored
in an SRAM cell, dynamic power is consumed as a result of
a capacitive load being charged up and also due to transient
currents during the momentary short from Vdd to Gnd while
transistors are switching. Dynamic power is not consumed
in the absence of switching activity. Equation 1 shows the
dynamic and short-circuit components of power consump-
tion in a CMOS circuit.

P = α · C · V 2 · f + t · α · V · Ishort · f (1)

In the equation, P is the power consumed, C is the switched
capacitance, V is the supplied voltage, and F is the clock fre-
quency. α represents the activity factor, which is the proba-
bility that the capacitive load C is charged in a given cycle.
C, V, and F are a function of technology and design param-
eters. In systems that support dynamic voltage-frequency
scaling (DVFS), V and F might be tunable at run time; how-
ever, dynamic voltage and frequency adjustments typically
cannot be done at a fine spatial or temporal granularity [9].
In this work, we target the activity factor, α, as it enables
dynamic energy reduction at a very fine granularity.

2.2 NoC Power and Energy
Researchers have recently begun focusing on the energy

and power in NoCs, which have been shown to be signifi-
cant contributors to overall chip power and energy consump-
tion [3, 4, 10,11].

One effective way to reduce NoC power consumption is to
reduce the amount of data sent over the network. To that
extent, recent work has focused on compression at the cache
and network levels [12, 13] as an effective power-reduction
technique. Compression is complementary to our approach.
While our work seeks to reduce the amount of data trans-
mitted through identification of useless words, compression
could be used to more densely pack the remaining data.

Researchers have also proposed a variety of techniques
to reduce interconnect energy consumption through reduced
voltage swing [14]. Schinkel et al. propose a scheme which
uses a capacitative transmitter to lower the signal swing to
125 mV without the use of an additional low-voltage power
supply [15]. In this work we evaluate our prediction and
packet encoding techniques for links composed of both full-
signal swing as well as low-signal swing wires.

Finally, static power consumption due to leakage currents
is also a significant contributor to total system power. How-
ever, researchers have shown that power-gating techniques
can be comprehensively applied at the NoC level and are
highly effective at reducing leakage power at periods of low
network activity [16].

2.3 Spatial Locality and Cache Block Utiliza-
tion

Spatial and temporal locality have been studied exten-
sively since caches came into wide use in the early 1980’s [17].
Several works in the 1990’s and early 2000’s focused on in-
directly improving spatial locality through compile and run-
time program and data transformations which improve the
utilization of cache lines [18–21]. While these techniques
are promising, they either require compiler transformations
or program changes and cannot be retrofitted onto existing
code. Our proposed approach relies on low-overhead hard-
ware mechanisms and is completely transparent to software.

Hardware techniques to minimize data transfer among
caches and main memory have also been explored in the lit-
erature. Sectored caches were proposed to reduce the data
transmitted for large cache block sizes while keeping over-
head minimal [22]. With the sectored cache, only a portion
of the block (a sector) is fetched, significantly reducing both
the miss time and the bus traffic. The proposed technique
builds upon this idea by speculatively fetching, not just the
missing sector but sectors (words in this case) which have
predicted spatial locality with the miss.

Pujara et al. examined the utilization of cache lines and
showed that only 57% of words are actually used by the pro-
cessor and the usage pattern is quite predictable [7]. They
leverage this information to lower power in the cache it-
self through power gating of portions of the cache array.
This mechanism is orthogonal and potentially complemen-
tary to our technique, as we focus primarily on achieving
lower energy consumption in the interconnect. Qureshi et
al. suggested a method to pack the used words in a part of
the cache after evicting it from the normal cache, thus in-
creasing performance and reducing misses [23]. Their work
thus focuses on performance rather than energy-efficiency
and targets the effectiveness of the second-level cache.

Spatial locality prediction is similar to dead block predic-
tion [24]. A dead block predictor predicts whether a cache
block will be used again before it is evicted. The spatial lo-
cality predictor introduced in this paper can be thought of
as a similar device at a finer granularity. The spatial locality
predictor, however, takes into account locality relative to the
critical word offset, unlike dead block predictors. Chen et
al. predicted a spatial pattern using a pattern history table
which can be referenced by the pc appended with the criti-
cal offset [25]. The number of entries in the pattern history
table, as well as the number of indexes increase the memory
requirement of the technique. Unlike these schemes, our pre-
dictor uses a different mechanism for managing prediction
thresholds in the face of mispredictions.

3. DESCRIPTION
Our goal is to save dynamic energy in the memory system

interconnect NoC. To this end we developed a simple, low
complexity, spatial locality predictor, which identifies the
words expected to be used in each cache block. A used word
prediction is made on a L1 cache miss, before the request
packet to the L2 is generated. This spatial locality predic-



tion is used to reduce dynamic energy consumption in the
NoC within the cache hierarchy.

Figure 2: General CMP Architecture

Figure 2 depicts the general, baseline architecture, repre-
senting a 16-node NoC-connected CMP. A tile consists of a
processor, a portion of the cache hierarchy and a Network
Interface Controller (NIC), and is bound to a router in the
interconnection network. Each processor tile contains pri-
vate L1 instruction and data caches. We assume the L2 is
organized as a shared S-NUCA cache [26], each tile contain-
ing one bank of the L2. The chip integrates two memory
controllers, accessed via the east port of node 7 and west
port of node 8. Caches have a 64-byte block size. The NoC
link width is 16 bytes, discounting flow-control overheads.
Thus, cache-block-bearing packets are five flits long, with
one header flit and four data flits. Each data flit contains
four 32-bit words, as shown in Figure 5b.

3.1 Spatial Locality Prediction
When a block must be filled in the L1 cache, a spatial

locality predictor is consulted to generate a prediction of the
words likely to be used. We define used-vector as a bit string
which identifies the words predicted used by the predictor
in the cache block to be filled. A used-vector of 0xFFFF
represents a prediction that all sixteen words will be used
while a used-vector of 0xFF00 signifies that only the first
eight words will be used.

3.1.1 Prediction Overview
The principle of our predictor stems from the intuition

that a set of instructions may access several memory blocks
in a similar manner. In fact, we have observed that patterns
of spatial locality are highly correlated to the address of the
instruction responsible for filling the cache (the fill PC). We
have also observed that in order to avoid aliasing and to
achieve better accuracy in the prediction, the offset of the
word which causes the cache miss (the critical word offset)
is also necessary for the predictor. Thus, our predictor takes
those two inputs to make the prediction.

The prediction is based on the history of patterns in which
cache blocks brought by a certain instruction has been ac-
cessed. The history of patterns is represented by a row of
four-bit saturating counters where each counter corresponds
to a word in the cache block. Our prediction table is com-
posed of rows of these counters. The value of the saturating
counter is proportional to the probability that a correspond-
ing word is used. The lower the counter is, the higher con-
fidence that the word will not be used. Initially, all coun-
ters are set to their max value, representing a prediction
where all words are used. As cache lines are evicted with
unused words, counters associated with those unused words
are decremented while counters associated with used words
are incremented. If a given word counter exceeds a fixed

Figure 3: Prediction Example

threshold (configured at design time), then the word is pre-
dicted to be used; otherwise, it is predicted not used.

Figure 3 shows the steps to the prediction. In this ex-
ample, the number of words in a block is assumed to be 4
and the threshold is configured as 1. The cache miss occurs
because an instruction is accessing the second word in the
missing block (critical word offset = 1). The lower-order bits
of the fill PC select a row in the prediction table. Among
the counters in the row, the selection window of 4 counters,
which initially includes the four rightmost counters, moves
to the left by the number of the critical word offset. Thus,
the number of counters per row must be twice the number of
words per block, less one to account for all possible critical
word offsets. Then, those selected counters are translated
into the used-vector based on the threshold value. The used-
vector 1100 indicates that the first and the second words in
this block will be used.

The L1 cache keeps track of the actual used vector while
the block is live, as well as the lower-order bits of the fill
PC, and the critical word offset. When the block is evicted
from the L1, the predictor is updated with the actual used
vector; if a word was used, then the corresponding counter is
incremented; otherwise, it is decremented. While updating,
it finds the corresponding counters with the fill-PC and the
critical word offset as it does for prediction. In the event a
word is falsely predicted“unused”, the counters for the entire
row are reset to 0xF to reduce the likelihood of future mis-
predictions. Resetting counters have been shown to improve
confidence over up/down counters for branch predictors [27];
we measure a considerable improvement in accuracy using
this technique as well.

3.1.2 Predictor Implementation
We model a cache with 64b blocks and 4B words, which

requires used-vectors of 16 bits (one per word) for tracking
used words in a block. Each row of the predictor is composed
of 31 four-bit saturating counters where all counters are ini-
tialized to 0xF. The predictor table has 256 rows of 31×4 bits
each, thus requiring ∼4KB of storage. We note, although
the “word” size here is 4B, this represents the prediction
granularity, it does not preclude use in a 64b (8B) word ar-
chitecture. In these architectures, data accesses come in a
range of sizes from 1B up to 8B; 8B accesses would be rep-
resented with two used “words” while 4B and less would be
represented by one.

When an L1 cache miss is discovered, the predictor sup-
plies a prediction to inform flit composition. The prediction
will take two cycles: one for the table access and one for
thresholding and shifting. The fastest approach would be to
speculatively assume that every cache access will result in a
miss and begin the prediction simultaneously with address
translation; thus, the latency can be completely hidden. A



more energy efficient approach is to begin the prediction as
soon as the tag mismatch is discovered and simultaneously
with victim selection in the L1 cache. While this approach
would add a cycle to the L1 miss time, no time would be
added to the more performance critical L1 hit time.

On eviction of a L1 cache block, the used-vector and fill
PC collected for that block are used to update the predictor.
This process is less latency sensitive than prediction since
the predictor does not need to be updated immediately to
provide good accuracy.

3.2 Packet Composition
Once we have predicted the application’s expected spatial

locality to determine the unused words in a missing cache
block, we employ a flit encoding technique which leverages
unused words to reduce dynamic link and router energy in
the interconnect between the L1, directory, L2 cache banks
and memory controllers. We propose two complementary
means to leverage spatial locality prediction to reduce α,
the activity factor, in the NoC, thereby directly reducing dy-
namic energy: 1) Remove flits from NoC packets (flit-drop);
2) Keep interconnect wires at fixed polarity during packet
traversal (word-repeat). For example, if two flits must be
transmitted and all the words in the second flit are predicted
unused, our flit-drop scheme would discard the unused flit to
reduce the number of flits transmitted over the wire. In con-
trast, our word-repeat scheme would re-transmit the first flit,
keeping the wires at fixed polarity to reduce gate switching.

The packet compositioning may be implemented either
“statically”, whereby packet encoding occurs at packet gen-
eration time, or “dynamically”, in which the unused words
in each flit are gated within the router FIFOs, crossbars and
links to avoid causing bit transitions regardless of the flits
which proceed or follow it. We will first discuss the “static”
packet compositioning techniques including flit-drop, static-
word-repeat and their combination. We then discuss the“dy-
namic” packet composition techniques which allow greater
reductions in activity factor, at the cost of a small increase
in logical complexity in the routers and a slight increase in
link bit-width.

3.2.1 Static Packet Composition

(a) head/atomic

(b) body/tail

Figure 4: Flit format for static and dynamic encoding.
(Shaded portion not present in static encoding.)

Figure 4 depicts the format of cache request and reply
packet flits in our design. A packet is composed either of
a head flit and a number of body flits (when the packet
contains a cache block) or it consists of one atomic flit, as in
the case of a request packet or a coherence protocol message.
The head/atomic flit contains a used-vector. The head flit
also contains source and destination node identifiers, and the
physical memory address of the cache block. The remaining
bytes in the head/atomic flit are unused. We assume a flow-
control overhead of three bits, 1 bit for virtual channel id

(VC) and 2 bits for flit type (FT). As each of body/tail flit
contains data of four words (16 bytes), a flit is 16 bytes and
3 bits wide including flow control overheads.

Figure 5a depicts an example of read request (L1 fill). In
this example, tile #1 requests a block at address 0x00001200
which resides in the S-NUCA L2 cache bank in tile #8. The
used-vector is 1111 1100 0000 1010, indicating the words
word0 - word5, word12 and word14 are predicted used. The
corresponding response packet must contain at least those
words. Since the baseline architecture sends the whole block
as it is, the packet contains all of the words from word0 to
word15, as shown in figure 5b.
Flit-drop: In the flit-drop technique, flits which are pre-

dicted to contain only unused words are dropped from the
packet and only those flits which contain one or more used
words are transmitted. The reduction in the number of flits
per packet, reduces the number of bit transitions over inter-
connect wires and therefore the energy consumed. Latency
due to packet serialization and NoC bandwidth will also be
reduced as well. Although a read request packet may have an
arbitrary used-vector, the response packet must contain all
flits which have any words predicted used leading to some
lost opportunity for packets which have used and unused
words intermingled throughout.

Figure 5c depicts the response packet to the request shown
in Figure 5a for the flit-drop scheme. The first body flit,
containing word0 - word3, therefore must be in the packet
as all of these words are used. The second body flit, with
word4 - word7, also contains all valid words, despite the
prediction word6 and word7 would not be used. These extra
words are overhead in the flit-drop scheme because they are
not predicted used but must be sent nevertheless. Although
these words waste dynamic power when the prediction is
correct, they may reduce the miss-prediction probability.

(a) Request

(b) Baseline Response

(c) Flit-Drop Response

(d) Word-Repeat Response

Figure 5: Read Request and Corresponding Response Pack-
ets (VC is not shown in this figure.)

Static-word-repeat:The static-word-repeat scheme, re-
duces the activity factor of flits containing unused words by
repeating the contents in previous flit in the place of unused
words. Flits with fewer used words consume less power be-
cause there are fewer bit transitions between flits. Words
marked as “used” in the used-vector contain real, valid data.
Words marked as “unused” in the used-vector contain re-
peats of the word in the same location in the previous flit.
For instance, if word4x+1 is predicted unused, the NIC places
word4(x−1)+1 in its place. As the bit-lines repeat the same
bits, there are no transitions on those wires and no dynamic
energy consumption. A buffer retaining four words previ-



ously fetched by the NIC is placed between the cache and
the NIC and helps the NIC in repeating words. An extra
mux and logic gates are also necessary in the NIC to encode
repeated words.

Figure 5d depicts the response packet for the request in
Figure 5a using the static-word-repeat scheme. In body1,
word6 and word7 are unused and, thus, replaced with word2
and word3 which are at the same location in the previous flit.
All of the words in body2 are repeated by the words in body1,
thus it carries virtually nothing but flow-control overhead.
We also encode the unused header words, if possible.

3.2.2 Dynamic Packet Composition

Figure 6: Dynamic Packet Compositioning Router

The effectiveness of static packet compositioning schemes
is reduced in two commonly-occurring scenarios: (a) when
single-flit, atomic packets are being transmitted, and (b)
when flits from multiple packets are interleaved in the chan-
nel. In both cases, repeated words in the flits cannot be
statically leveraged to eliminate switching activity in the
corresponding parts of the datapath. In response, we pro-
pose dynamic packet composition to reduce NoC switching
activity by taking advantage of invalid words on a flit-by-flit
basis. The difference between dynamic and static compo-
sition schemes resides primarily in how word-repeat treats
unused words. In static composition, the unused portion of
a flit is statically set at packet injection by the NIC to mini-
mize inter-flit switching activity, requiring no changes to the
router datapath. In dynamic composition, portions of the
router datapath are dynamically enabled and disabled based
on the validity of each word in the flit. In effect, an invalid
word causes the corresponding portion of the datapath to
hold its previous value, creating the illusion of word repeat.

To facilitate dynamic composition, the “used-vector” is
distributed into each flit as shown in Figure 4b. As a result
the link width must be widened by four bits to accommo-
date the new “valid-word-vector”, where each bit indicates
whether the corresponding word in that flit is valid. As the
figure shows, the head flit’s “valid-word-vector” is always set
to 1100 because the portion which corresponds to Word2
and Word3 of a body/tail flit are always unused.

Dynamic packet compositioning requires some modifica-
tions to a standard NoC router to enable datapath gating in
response to per-flit valid bits. Figure 6 depicts the microar-
chitecture of our dynamic packet compositioning router. As-

suming that a whole cycle is required for a flit to traverse
a link, latches are required on both sides of each link. The
additional logic required for link encoding is shaded in the
magnified output port. Plain D-flip-flops are replaced with
enable-D-flip-flops to force the repeat of the previous flit’s
word when the “valid-word-vector” bit for that word is set
to zero, indicating that word is not used. Alternately, if the
“valid-word-vector” bit for the given word is one, the word is
propagated onto the link in the following cycle, as it would
in the traditional NoC router. In cases where the link traver-
sal consumes less than a full cycle, this structure could be
replaced with a tristate buffer to similar effect.

We further augment the router’s input FIFO buffers with
per-word write enables connected to the “valid-word-vector”
as shown in Figure 6. In our design, the read and write
pointer control logic in the router’s input FIFOs remain un-
modified; however, the SRAM array storage used to hold the
flits is broken into four banks, each one word in width. The
“valid-word-vector” bits would gate the valid write enables
going to each of word-wide banks, disabling writes associated
with unused words in incoming flits, and saving the energy
associated with those word writes. The combination of these
techniques for dynamic packet composition will reduce the
power and energy consumption of the NoC links and router
datapath proportional to the reduction in activity factor due
to the word-repeat and flit-drop of unused words.

As flit-drop and word-repeat are complementary, we will
examine their combination in the evaluation section. These
encoding schemes also are used for writebacks by marking
clean words as unused.

4. EVALUATION
4.1 Baseline Architecture and Physical Imple-

mentation
Figure 2 depicts the baseline architecture, representing a

16-node NoC-connected CMP. A tile consists of a processor,
a portion of the cache hierarchy and a Network Interface
Controller (NIC), and is bound to a router in the intercon-
nection network. The baseline architecture employs a 4×4
2D mesh topology with X-Y routing and wormhole flow con-
trol. Each router contains 2 VCs and each input buffer is
four flits deep. In our baseline configuration we assume the
tiles are 36mm2 with 6mm-long links between nodes. Our
target technology is 45 nm.

Processor Tiles: Each 36mm2 tile contains an in-order
processor core similar to an Intel Atom Z510 (26mm2) [28], a
512KB L2 cache slice (4mm2), two 32KB L1 caches (0.65mm2

each) and an interconnect router (0.078mm2). The remain-
ing area is devoted to a directory cache and a NIC. Our
system is composed of 16 tiles and results in 576mm2, ap-
proximately the size of an IBM Power7 die [29].

We used CACTI 6.0 [30] to estimate cache parameters.
The L1 caches are two-way set-associative with a 2 cycle ac-
cess latency. The L2 banks are 8-way set-associative with
a 15-cycle access time. The 16 L2 banks spread across the
chip comprise an 8-MB S-NUCA L2 [26]. Cache lines in both
L1 and L2 caches are 64B wide (16 four-byte words). Each
node also contains a slice of the directory cache, interleaved
the same as the L2. Its latency is 2 cycles. The number of
entries in each directory cache is equal to the number of sets
in an L2 bank. We assume the latency of the main memory
is 100 cycles. The MESI protocol is used by the directory
to maintain cache coherence. The predictor’s performance



Table 1: Area and Power
baseline static dynamic

Area (mm2) 0.073 0.078

Static Power (mW) 0.71 0.75

Router with full-swing link

Dynamic Power (mW) 1.47 1.02 0.78

Total Power (mW) 2.18 1.73 1.53

Router with low-swing link

Dynamic Power (mW) 0.54 0.38 0.28

Total Power (mW) 1.25 1.09 1.03

is examined with the threshold value of 1 unless stated oth-
erwise. The NoC link width is assumed to be 128 bits wide,
discounting flow-control overheads.

NoC Link Wires: NoC links require repeaters to im-
prove delay in the presence of the growing wire RC delays
due to diminishing interconnect dimensions [1]. These re-
peaters are major sources of channel power and area over-
head. Equally problematic is their disruptive effect on floor-
planning, as large swaths of space must be allocated for each
repeater stage. Our analysis shows that a single, energy-
optimized 6 mm link in 45 nm technology requires 13 re-
peater stages and dissipates over 42 mW of power for 128
bits of data at 1 Ghz.

In this work, we consider both full-swing repeated inter-
connects (full-swing links) and an alternative design that
lowers the voltage swing to reduce link power consumption
(low-swing links). We adopt a scheme by Schinkel et al. [15]
which uses a capacitative transmitter to lower the signal
swing to 125 mV without the use of an additional low-
voltage power supply. The scheme requires differential wires,
doubling the NoC wire requirements. Our analysis shows a
3.5× energy reduction with low swing links. However, low-
swing links are not as static-word-repeat friendly as much as
full-swing links are. There is link energy dissipation on low-
swing links, even when a bit repeats the bit ahead because
of leakage currents and high sense amp power consumption
on the receiver side. Thus, the repeated unused-words con-
sume ∼ 20% of what used-words do. The dynamic encoding
technique fully shuts down those portions of link by power
gating all components with the “valid-word-vector” bits.

Router Implementation: We synthesized both the base-
line router and our dynamic encoding router using TSMC
45nm library to an operating frequency of 1Ghz. Table 1
shows the area and power of the different router designs.
Note that the baseline router and the one used in static
encoding scheme are identical. The table shows the av-
erage power consumed under PARSEC traffic, simulated
with the methodology described in Section 4.2. The dy-
namic power for each benchmark is computed by divid-
ing the total dynamic energy consumption by the execu-
tion time, then by the number of routers. Summarizing the
data, a router design supporting the proposed dynamic com-
position technique requires ∼7% more area, while reducing
dynamic power by 47% under the loads examined over the
baseline at the cost of 5.6% more leakage power.

Table 2: Per-Flit Dynamic Energy (pJ)
Router Full Swing Link Low Swing Link

n base sta dyn base sta dyn base sta dyn

0 3.58 0.73 0.34 43.10 0.99 2.30 12.31 0.35 0.66
1 3.58 1.31 1.01 43.10 11.52 12.83 12.31 3.34 3.67
2 3.58 1.90 2.01 43.10 22.04 23.36 12.31 6.33 6.67
3 3.58 2.77 2.79 43.10 32.57 33.89 12.31 9.32 9.68
4 3.58 3.58 3.65 43.10 43.10 44.41 12.31 12.31 12.69

n: number of used words

Table 2 shows the dynamic energy consumed by a flit with
a given number of words encoded as used traversing a router
and a link, with respect to the three flit compositioning
schemes: baseline(base), static(sta) and dynamic(dyn) en-

coding. In baseline, a flit always consumes energy as if it
carries four used words. In static encoding, as the number
of used words decreases, flits consume less energy on routers
and full-swing links. Static-encoding reduces NoC energy
by minimizing the number of transitions on the wires in the
links and in the routers’ crossbars. Dynamic-encoding fur-
ther reduces router energy by gating flit buffer accesses. The
four-bit valid-word-vector in each flit controls the write en-
able signals of each word buffer, disabling writes associated
with unused words. Similarly, it also gates low-swing links,
shutting down the transceiver pair on wires associated with
the unused words. CACTI 6.0 [30] was used to measure the
energy consumption due to accessing the predictor; which is
10.9 pJ per access.

4.2 Simulation Methodology
We used M5 full system simulator to generate CMP cache

block utilization traces for multi-threaded applications [31].
Details of the system configuration are presented in sec-
tion 4.1. Our workload consists of the PARSEC shared-
memory multi-processor benchmarks [8], cross-compiled us-
ing the methodology described by Gebhart et. al [32]. Traces
were taken from the “region of interest.” Each trace contains
up to a billion memory operations; fewer if the end of the
application was reached.

The total network energy consumption for each bench-
mark is measured by summing the energy of all L1 and L2
cache fill and spill and coherence packets as they traverse
routers and links in the network. In effect, Table 2 is con-
sulted whenever a flit with a certain number of used words
traverses a router and a link. Note that even for the same
flit, the used word number may vary according to the en-
coding scheme in use. For example, for an atomic flit, n = 4
in static encoding while n = 2 in dynamic. The predictor’s
energy is also added whenever the predictor is accessed.

(a) full-signal swing link

(b) low-signal swing link

Figure 7: Dynamic energy breakdown

4.3 Benchmark Results
Figure 7 shows the breakdown of dynamic energy con-

sumption. For each benchmark, we conducted energy sim-
ulations for three configurations, each represented by one
stacked bar for that benchmark: 1) baseline - baseline, 2)
s-combo - static-word-repeat and flit-drop combined, and
3) d-combo - dynamic-word-repeat and flit-drop combined.



(a) full-signal swing link

(b) low-signal swing link

Figure 8: Dynamic energy breakdown for reads

We also show the average energy consumption with pure
flit-drop (flitdrop), static-word-repeat (s-wr) and dynamic-
word-repeat (d-wr). The bars are normalized against the
energy consumed by baseline. Each bar is subdivided into
up to four components. The first bar shows the “read” en-
ergy, energy consumed by cache fills and the second bar,
“write”, by writebacks. The third bar, “coh”, shows the en-
ergy due to the cache coherence packets and the fourth bar,
“pred” shows the energy consumed by predictors. The figure
shows data for both full-swing and low-swing links.

In the baseline configuration we see that, on average, read
communication consumes the most dynamic energy with
∼69% of the total. Coherence traffic consumes the sec-
ond most with ∼18% of the total energy followed by write
communication with ∼13% of the total energy. This break-
down follows the intuition that reads are more frequent than
writes. Thus, techniques which only focus on writebacks will
miss much potential gain. It is also interesting to note that
cache coherence traffic shows a very significant contribution
to overall cache interconnect energy. Similarly, work which
does not consider atomic packets may miss significant gain.

The figure also shows that among the flit encoding schemes,
d-combo shows the greatest improvement with ∼35% dy-
namic energy savings on average. The pure dynamic-word-
repeat (d-wr) is the second best resulting in additional ∼1%
energy consumption. This implies that dropping flits only
with flow control bits does not significantly contribute to
energy reduction when dynamic- word-repeat is used. How-
ever, combining flit-drop is still beneficial to reduce latency.
The combined static encoding (s-combo) provides an energy
savings of only ∼20% and ∼16% of baseline, under full-swing
and low-swing links, respectively. This indicates the signifi-
cant gains that dynamic encoding provides, primarily in the
cache coherence traffic which is predominately made up of
single flit packets. We find the predictor merely contributes
1.7% of the total energy when full-signal swing link is used,
and 4.8% when low-signal swing link is used.

Table 1 shows the average power with either type of links.
It reveals that despite the increased static power, the dy-
namic encoding scheme still outperforms the baseline and
the static encoding as well, regardless of link type.

4.3.1 Read Energy Discussion
Figure 8 shows the breakdown of dynamic energy con-

sumption for reads. Each bar is subdivided into five com-
ponents and also normalized against baseline. The first bar
“l2” depicts the energy consumed by L2 cache fills and spills.
Although the prediction actually occurs on L1 cache misses,
the encoding schemes are also used for the transactions be-
tween the L2 and memory controller, based upon used-vector
generated on the L1 cache miss the lead to the L2 miss.

The second bar shows the“used”energy, energy consumed
by the words which will be referenced by the program, hence
all “used” bars are equal. The third bar, “unused”, shows the
energy consumed to bring in words which will not be refer-
enced prior to eviction. This also includes the energy con-
sumed by words which result from false-positive predictions,
i.e. an incorrect prediction that the word will be used. The
fourth bar, “overhead”, shows the energy for NoC packet
overheads, including header information and flow control
bits. The fifth bar, “extra”, shows the energy consumed
by the packet overhead due extra cache line fills to correct
“false-negative” mispredictions. Our goal is to remove, as
much as possible, the dynamic datapath energy consumed
by unused words denoted by unused and, where possible, the
packet overheads in overhead, while minimizing redundant
misses due to mispredictions in extra. Unused words con-
sume an average of 33% of total dynamic datapath energy,
and up to 53% of total dynamic datapath energy in case of
blackscholes (shown as Black in the graphs.)

The d-combo scheme, on average, reduces total dynamic
datapath energy by ∼32%. Our prediction mechanism com-
bined with the encoding schemes approximately halves the
“unused” portion, on average. In case of Black where the
predictor performs the best, the speculation mechanism re-
moves 92% of the“unused”portion resulting in a 66% energy
savings for cache fills when combined dynamic encoding is
used. The extra transmission due to mispredictions, shown
as “extra” in the stack, contributes less than 1% of energy
consumption for cache fills.

4.3.2 Write and Coherence Energy Discussion
Figure 7 shows that writebacks consume an average of

13% of total dynamic energy. Our experimental results show
that when a cache block must be written back to a lower
level cache or memory, on average, 34% of the words in the
block are clean. The s-combo scheme reduces the energy
consumption due to writebacks by 36% when full-swing link
is used. Further savings are achieved by d-combo. It encodes
not only body/tail flits but also head flits of the writeback
packets resulting in 42% savings.

In the PARSEC benchmarks, threads running on each
tile share coherent memory with other threads on other
tiles. Thus, coherence protocol messages and responses are
also injected to the network during the program’s execu-
tion. Those protocol messages are composed primarily of
single-flit packets, and contribute ∼18% of total link energy
consumption. Single-flit packets, like read requests, contain
∼50% unused data. Static-encoding schemes can not reduce
energy dissipation due to these packets though dynamic-
encoding schemes can reduce it by up to 45.4%.

4.4 Predictor Accuracy
Figure 9 shows the distribution of prediction results with

respect to various threshold values. The bars marked as
correct show the portion of correct predictions. The bars
marked as over show the fraction of predictions which falsely
predict unused words as useful. These predictions do not
cause any miss penalty but represent a lost opportunity for



energy reduction. The miss bars includes all predictions
which falsely predict a word is not used. These mispredic-
tions result in additional memory system packets, poten-
tially increasing both energy and latency.

In general, as the threshold value increases, the portions of
correct and miss increase while over decreases. This implies
that the higher the threshold we choose, the lower the energy
consumption but the higher the latency. Experimentally we
determined that Energy × Delay2 is approximately equal
across the thresholds between 1 and 12. Both latency and
energy consumption become worse with threshold of 15.

We conservatively chose 1 for the threshold value in our
experiments to reduce the incidence of redundant L1 misses,
which may effect performance. We find the performance
impact with this bias is negligible. On average, with this
threshold, the additional latency of each operation is ∼0.8%.
These results show that further energy savings could be
achieved through improved predictor accuracy, which we
leave to future work.

Figure 9: Breakdown of Predictions Outcomes

5. CONCLUSIONS
In this paper, we introduce a simple, yet powerful mech-

anism using spatial locality speculation to identify unused
cache block words. We also propose a set of static and dy-
namic methods of packet composition, leveraging spatial lo-
cality speculation to reduce energy consumption in CMP
interconnect. These techniques combine to reduce the dy-
namic energy of the NoC datapath through a reduction in
the number of bit transitions, reducing α the activity factor
of the network.

Our results show that with only simple static packet en-
coding, requiring no change to typical NoC routers and very
little overhead in the cache hierarchy, we achieve an average
of 20% reduction in the dynamic energy of the network if
full-signal swing links are used. Our dynamic composition-
ing technique, requiring a small amount of logic overhead
in the routers, enables deeper energy savings of 35%, on
average, for both full-swing and low-swing links.
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