
In Proceedings of the 25th International Symposium on High-Performance Computer Architecture (HPCA’19)

Stretch: Balancing QoS and Throughput

for Colocated Server Workloads on SMT Cores

Artemiy Margaritov

University of Edinburgh

Siddharth Gupta∗

EPFL

Rekai Gonzalez-Alberquilla

Arm Ltd.

Boris Grot

University of Edinburgh

Abstract—In a drive to maximize resource utilization, today’s
datacenters are moving to colocation of latency-sensitive and
batch workloads on the same server. State-of-the-art deploy-
ments, such as those at Google, colocate such diverse workloads
even on a single SMT core. This form of aggressive colocation
is afforded by virtue of the fact that a latency-sensitive service
operating below its peak load has significant slack in its
response latency with respect to the QoS target. The slack
affords a degradation in single-thread performance, which is
inevitable under SMT colocation, without compromising QoS
targets.

This work makes the observation that many batch applica-
tions can greatly benefit from a large instruction window to
uncover ILP and MLP. Under SMT colocation, conventional
wisdom holds that individual hardware threads should be
limited in their ability to acquire and hold a disproportion-
ately large share of microarchitectural resources so as not
to compromise the performance of a co-running thread. We
show that the performance slack inherent in latency-sensitive
workloads operating at low to moderate load makes it safe
to shift microarchitectural resources to a co-running batch
thread without compromising QoS targets. Based on this in-
sight, we introduce Stretch, a simple ROB partitioning scheme
that is invoked by system software to provide one hardware
thread with a much larger ROB partition at the expense of
another thread. When Stretch is enabled for latency-sensitive
workloads operating below their peak load on an SMT core,
co-running batch applications gain 13% of performance on
average (30% max) over a baseline SMT colocation and without
compromising QoS constraints.

Keywords-quality of service; datacenter; simultaneous multi-
threading; latency-sensitive applications; microarchitecture

I. INTRODUCTION

Today’s datacenters strive to maximize performance per

Watt and per TCO dollar. To that end, the industry is moving

toward aggressive colocation of latency-sensitive and batch

workloads, as evidenced in both public clouds like Amazon

EC2 and private infrastructures including Google’s [1]. In the

most aggressive deployments, colocation of latency-sensitive

and batch workloads happens not just on the same CMP but

even within a single SMT core [1], [2].

Prior research has shown that when a latency-sensitive

service, such as web search, is highly loaded, the loss of

single-thread performance stemming from SMT colocation is

∗This work was done while the author was at University of Edinburgh.

deleterious from the quality-of-service (QoS) perspective [3],

[4], [5]. To counteract this interference, researchers and prac-

titioners have proposed a number of proactive and reactive

scheduling policies targeting SMT colocations [1], [3], [5].

We corroborate earlier findings regarding high SMT inter-

thread interference at high load rates. However, we also

observe that the absence of persistent queueing at lower

loads means that there is significant slack between the actual

latency and the QoS target, even at the tail (e.g., at 99th

percentile latency). This slack naturally affords a fair degree

of performance loss, making SMT colocation of latency-

sensitive services feasible even with resource-hungry co-

runners. Quantitatively, we find that our evaluated quartet of

varied latency-sensitive services can afford to lose as much

as 90% in single-thread performance while still meeting

stringent QoS targets at low to moderate load.

We also observe that, in terms of performance degradation,

the batch co-runners are often victimized by colocation much

more than the latency-sensitive workloads. On average, we

find that whereas latency-sensitive workloads lose 14% of

single-thread performance across a range of batch co-runners,

the batch workloads lose 24%, and up to 46%, when colocated

with latency-sensitive co-runners.

We study the reasons for such different behavior under

colocation and find that the two types of workloads have

radically different sensitivity to ROB capacity. Latency-

sensitive workloads show little benefit from large ROB

capacities in modern server processors, corroborating prior

studies showing that lean server cores are sufficient [6], [7]

because frequent cache misses and data-dependent compu-

tation limit both instruction and memory-level parallelisms

(ILP and MLP) [2], [8]. In contrast, many batch workloads

benefit from a large ROB that helps unlock higher ILP

and MLP. In processors such as Intel’s, where the ROB

is statically partitioned between the two hardware threads,

batch workloads stand to lose an average of 19% (31%

max) of their performance versus having the entire ROB

to themselves. Dynamically sharing the ROB is similarly

detrimental, as frequent cache misses by a latency-sensitive

thread clog the shared ROB and prevent the co-runner from

acquiring the resources it needs.

In response to these observations, we introduce Stretch –

a simple mechanism to boost the performance of batch

0

20

40

60

80

100

120

0% 20% 40% 60% 80% 100%

L
a

te
n

c
y
 (

m
s
)

Load (% of max)

99th percentile

95th percentile

average

QoS Target

Figure 1: Web Search latencies as a function of load.

workloads co-running with latency-sensitive services. Stretch

takes advantage of the performance slack inherent in latency-

sensitive workloads operating below their peak load to shift

ROB capacity to the co-running batch applications. To do so,

Stretch employs one or more asymmetric ROB partitioning

configurations that can trade single-thread performance of one

hardware thread for higher performance of the other thread.

The asymmetric configuration(s) are chosen at design time

and carry a negligible hardware cost and runtime switch

overhead. When system software detects a sufficiently low

load on a latency-sensitive workload executing on one of

the hardware threads, it can trigger a pre-configured ROB

partitioning setting that leaves the latency-sensitive thread

with a fraction of its original capacity, buying the batch

co-runner higher performance via greater ROB capacity.

Using a diverse set of latency-sensitive and batch work-

loads executing on real hardware and in a detailed simulator,

we make the following contributions:

• Latency-sensitive workloads are highly sensitive to

single-thread performance only at peak load rates. At

lower loads, 70-90% of single-thread performance can

be sacrificed without impacting QoS targets.

• Latency-sensitive workloads place modest demands on

shared microarchitectural resources, making them good

candidates for SMT colocation at lower load rates. In

contrast, many batch workloads are highly sensitive

to ROB capacity, losing up to 46% of single-thread

performance under colocation.

• We propose Stretch, a technique that shifts ROB

capacity from one hardware thread to another based

on software control. By provisioning as few as two

fixed ROB partitioning configurations, which carry

negligible microarchitectural cost, Stretch enables one

SMT thread to attain higher performance at the expense

of another thread.

• We demonstrate that when a latency-sensitive work-

load is operating at low to moderate load, Stretch affords

13% higher performance on average (30% max) for

a batch co-runner sharing a dual-threaded SMT core.

Stretch can also be used to boost the performance of a

latency-sensitive workload at high load, providing a best-

case 18% improvement in single-thread performance

over a baseline SMT core.

II. AGGRESSIVE WORKLOAD COLOCATION

Colocating heterogeneous workloads on a server is an effec-

tive way to maximize throughput per Watt and per TCO dollar.

For instance, Google aggressively colocates latency-sensitive

and batch workloads from its vast application portfolio on

the same machine [1], [2]. One concern with aggressive

colocation is meeting QoS targets for latency-sensitive

applications. Recent work from Google has indicated that,

despite aggressive workload colocation on commodity servers,

significant QoS degradation is infrequent [1]. The finding

may appear surprising, but can be attributed to a confluence

of two factors.

First, a given service running on a server is rarely operating

at its peak QoS-compliant load. Demand on individual

services is generally cyclical, with significant periods of

low to moderate demand [1], [9]. Moreover, the number of

servers dedicated to latency-sensitive services tends to be

over-provisioned to maintain QoS targets in the face of load

spikes. With client requests load balanced across a pool of

servers, peak load periods account for only a fraction of the

total service uptime.

Secondly, when the load is below the sustainable limit, the

tail latency tends to stay considerably below the QoS target.

The reason is that queueing delays, and not the processing

time, dominate the latency at high load [5], [10], [11]. When

a request has to wait for a set of previously-enqueued requests

to finish, its effective service time increases by the combined

service time of these older requests. Because queuing can

occur even at low average loads due to bursty request arrival,

latency targets are typically set at a multiple of the expected

per-request service time.

Figure 1 shows the average, 95th and 99th percentile

latency for the Web Search engine versus its load. The

study is performed on an Intel i7-2600K system running

at 3.4GHz. Consistent with prior work, we set Web Search

99th percentile latency target to be 100ms [3], [8], [12].

Thus, QoS constraints are satisfied only if the 99th percentile

latency is below 100ms.

As the figure shows, the average latency climbs slowly

with the load, increasing by 43% from the lowest to the

highest load points. In contrast, the 99th percentile latency

grows by over 2.5x as a larger fraction of requests queues

for an extended period of time.

The reason why this trend is important for colocated

workloads is that, when the service load is below its

sustainable peak – which is often the case, per earlier point –

there is significant slack [4] available in the per-request

processing time. So, while microarchitectural contention

arising from workload colocation can degrade single-thread

performance and thus increase per-request processing time,

in the absence of queuing, this degradation can generally be

absorbed by the in-built slack in latency targets.

We characterize the amount of slack available in per-

request processing time as a function of server load for Data

2

Name Description QoS Targets

Data Serving
Cassandra 2.1.12 [13],
15 threads, 1M ops/sec

20ms [14]
99th Percentile

Web Serving
Elgg Networking Engine [13],

10 clients, MySQL v5.5
1 sec [13]

95th Percentile

Web Search
Nutch 1.2, Lucene 3.0.1,
100 clients, 5 GB dataset

100ms [3]
99th Percentile

Media
Streaming

Nginx Streaming Server [13],
500 clients, high bitrates

2 sec [13]
timeout

Table I: Workloads and their parameters used to measure slack.

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

P
e

rf
o

rm
a

n
ce

 r
e

q
u

ir
e

d

to
 m

e
e

t
Q

o
S

 t
a

rg
e

t

Load (% of max)

Data Serving

Web Serving

Web Search

Media Streaming

Figure 2: Slack in per request processing time for latency-sensitive
workloads.

Serving, Web Serving, Web Search and Media Streaming

workloads using the same Intel-based hardware as in the

previous study. For each workload, we control the server

load by adjusting the number of clients generating requests.

We identify the maximum load that meets the respective

latency target for each workload, which we then take as the

peak sustainable load. QoS target for each workload is shown

in Table I.

We measure the required performance as a function of

load, varying the load in steps of 10% with respect to peak

load. Slack is then defined as the lowest performance point,

as a fraction of full core performance, that meets the QoS

target. For instance, at 30% of peak load, Web Search can

afford to lose 50% of its single-thread performance while

continuing to meet its 100ms 99th percentile latency target.

To precisely modulate core performance across the full

range, we control the fraction of time that the latency-

sensitive workload runs on the core. We do this through

a mechanism inspired by Elfen scheduling [3], whereby

we interleave at a fine-grain, a non-contentious preemptive

co-runner. When the co-runner runs, the latency-sensitive

thread does not, and vice-versa, thus time-sharing the

same core. The interleaving happens at a sub-millisecond

granularity, which is orders of magnitude below the tail

latency target for all four latency-sensitive workloads.

Figure 2 demonstrates that for the evaluated workloads, a

significant amount of slack exists at low to moderate load

rates. For instance, at a load of 20% relative to each service’s

peak load, 55-90% of single-thread performance can be

sacrificed without violating QoS. This fraction decreases

to 30-70% at a load of 50%. As the load approaches the

Data Serving Web Serving Web Search Media Streaming
 0%

 10%

 20%

 30%

 40%

 50%

Sl
ow

do
w

n

latency-sensitive batch

Figure 3: Slowdown incurred by colocating latency-sensitive and
batch applications on an Intel-like SMT core. Data normalized to
performance of a full core.

peak, the performance slack rapidly diminishes; at 80% load,

at least 80% of full single-thread performance is required to

meet QoS targets. The bottom line is that the high degrees

of performance slack available at sub-peak load rates afford

aggressive colocation by providing tolerance to contention-

induced performance loss for the latency-sensitive workloads.

III. COLOCATION ON SMT CORES

The previous section demonstrates the existence of con-

siderable performance slack in response latencies of latency-

sensitive workloads. The slack naturally motivates colocating

latency-sensitive workloads with other applications not just on

the same server, but also on the same SMT core, as contention-

induced slowdown on the latency-sensitive thread will not

cause a violation of QoS targets at all but the highest load

rates. Indeed, Google’s infrastructure is powered by SMT-

capable servers, with SMT always enabled [2], and – despite

sharing both core and uncore resources across a range of

colocated applications – Google reports relatively infrequent

QoS violations [1].

A. Extent of Contention

To precisely characterize the extent and sources of mi-

croarchitectural contention in the context of SMT, we use a

detailed cycle-accurate simulation. We model a dual-thread

SMT core roughly based on Intel’s recent core microarchi-

tecture. Details of the modeled processor, workloads and the

simulation methodology can be found in Section V. We study

configurations where one thread is latency-sensitive and the

other is batch. To ensure high diversity in the set of batch

workloads, we use all 29 SPEC’06 benchmarks as batch

co-runners and colocate each latency-sensitive workload with

each of the 29 batch workloads in turn.

Figure 3 shows the slowdown (IPC degradation) incurred

by both latency-sensitive workloads and batch ones when

colocated on an SMT core. For each latency-sensitive

workload, the figure shows (i) the distribution of slowdown

across all colocations with the 29 batch co-runners, and (ii)

the distribution of slowdown experienced by different co-

runners as a result of being colocated with the given latency-

sensitive thread. The distribution is represented by width of

3

0%

5%

10%

15%

20%

25%

30%

35%

ROB L1-I L1-D BTB+BP ROB L1-I L1-D BTB+BP

Web Search batch

S
lo

w
d

o
w

n

astar bwaves bzip2 cactusADM calculix dealI gamess gcc GemsFDTD gobmk

gromacs h264ref hmmer lbm leslie3d libquantum mcf milc namd omnetpp

perlbench povray sjeng soplex sphinx3 tonto wrf xalancbmk zeusmp

Figure 4: Slowdown for Web Search (left) and a batch application (right) when they share different core uarch resources. Bars represent
different batch applications. Data normalized to stand-alone execution on a full core. Higher bars correspond to a larger performance drop.

0%

10%

20%

30%

40%

ROB L1-I L1-D BTB+BP ROB L1-I L1-D BTB+BP

Web Search batch

0%

10%

20%

30%

40%

ROB L1-I L1-D BTB+BP ROB L1-I L1-D BTB+BP

Media Streaming batch

0%

10%

20%

30%

40%

ROB L1-I L1-D BTB+BP ROB L1-I L1-D BTB+BP

Data Serving batch

0%

10%

20%

30%

40%

ROB L1-I L1-D BTB+BP ROB L1-I L1-D BTB+BP

Web Serving batch

S
lo

w
d

o
w

n

Figure 5: Slowdown caused by sharing core microarchitectural
resources. Each chart represents average performance degradation
among batch applications (right) colocated with different latency-
sensitive applications (left). Performance normalized to stand-alone
execution on a full core. Higher bars indicate a larger performance
drop. When sharing L1-D, a batch outlier causing the high slowdown
of latency-sensitive workloads is lbm.

a violin in the graph. A violin is annotated with the median

and the interquartile range which is shown by a black box.

As the figure shows, latency-sensitive applications expe-

rience a mostly modest IPC degradation, with an average

of 14% and a maximum of 28%. This result corroborates

a prior datacenter-scale characterization effort [1] showing

that slowdown stemming from colocation is rarely severe

when it comes to latency-sensitive services. In contrast, we

observe that slowdown of batch applications is considerably

higher, with an average performance drop of 24% and a

maximum of 46%. This result also corroborates a previ-

ous characterization study of SPEC applications colocated

with CloudSuite workloads [5].

B. Sources of Contention

In order to understand the difference in performance

sensitivity across the two types of applications, we study

how they are affected by sharing-induced contention in

individual microarchitectural structures inside the core. To

do so, for each colocation, we simulate each hardware thread

with completely private microarchitectural structures for

everything except the resource under study. For instance,

to understand the extent of interference in the L1-I cache,

we model a shared L1-I with an otherwise private core for

each of the two threads.

We focus on four types of resources as potential sources

of contention: L1-I, L1-D, branch prediction structures (BTB

and direction predictor), and the reorder buffer (ROB). We

use the ROB as a proxy for other structures that make up

the instruction window (including physical registers and

the LSQ), since the pressure on these other structures is

proportional to the utilization of the ROB. Complete details

of the methodology can be found in Section V.

Figure 4 shows the results of the study for the Web Search

engine. The Y-axis shows the performance drop, with respect

to stand-alone execution, stemming from sharing a particular

resource between Web Search and each particular co-runner.

The left side of the graph shows the performance drop of Web

Search workload caused by the co-runner, while the right

side shows the performance drop of the co-runner caused by

Web Search.

We observe two important trends. First, sharing any given

resource has a modest effect on the performance of Web

Search, with slowdown generally within 12%, except in

colocation with lbm, where contention for L1-D capacity

causes a higher performance loss. Secondly, a number of the

batch co-runners experience a significant performance loss,

primarily in the shared ROB, where the loss exceeds 15% for

15 out of 29 applications, reaching 31% in the worst case.

Extending the study to the three other latency-sensitive

workloads and the same set of co-runners, we find that the

trends hold. These are presented in Figure 5, which shows

the average performance degradation attributed to individual

resources for the various colocations. No single resource,

when shared, is responsible for a significant performance drop

across all of the latency-sensitive workloads, the exception

4

0%

20%

40%

60%

80%

16 32 48 64 80 96 112 128 144 160 176 192

S
lo

w
d

o
w

n

ROB size (entries)

zeusmp

batch (avg)

Data Serving

Web Serving

Web Search

Media Streaming

Figure 6: Applications’ sensitivity to ROB capacity. Data normalized
to performance of a core with 192 ROB entries.

0%

20%

40%

60%

80%

100%

1 2 3 4 5

F
ra

ct
io

n
 o

f
ti

m
e

Memory requests in-flight

zeusmp

Web Search

>=1 >=2 >=3 >=4 >=5

Figure 7: Fraction of time Web Search and zeusmp exhibit MLP.

again being the colocation with lbm, where the performance

drop ranges from 12% to 19%. Meanwhile, for batch

applications, the ROB stands out as a consistent source of

performance degradation, accounting for 19% on average

and 31% in the worst case.

C. ROB in Focus

To understand why the ROB plays a much larger role

in batch workloads’ performance as compared to that of

latency-sensitive ones, we study each workload’s sensitivity

to ROB capacity. For this study, we consider each individual

workload executing in isolation on a core whose ROB

capacity is varied from 32 to 192 entries. At its maximum

192-entry capacity, the ROB – and therefore the entire core –

matches the one used for the studies in the previous section.

To keep the graph legible, we plot Data Serving, Web

Serving, Web Search and Media Streaming as representative

latency-sensitive workloads, along with the average of batch

workloads. For comparison, we also plot zeusmp, which is

a batch application with high ROB sensitivity.

Figure 6 presents the plots. First, we note that all of the

evaluated latency-sensitive workloads are remarkably similar

in their sensitivity to ROB capacity. None of the four benefit

from a large ROB, achieving 90-95% of peak performance

with just a half of the maximum ROB capacity (i.e. 96 entries).

For a ROB size as small as 48 entries, the performance drop

of latency-sensitive workloads is within 23% of performance

attained with a full 192-entry ROB.

The situation is very different for batch workloads, which

exhibit much higher sensitivity to ROB capacity. At 96 entries,

the average performance drop is 19%, reaching 31% in the

worst case. The slowdown reduces to just 4% on average

with a ROB size of 160 entries.

A key reason for the difference in ROB sensitivity between

latency-sensitive and batch workloads is their memory-level

parallelism, or MLP. For applications that have high degrees

of MLP, a large ROB facilitates uncovering of independent

memory accesses that can be launched concurrently, thus

hiding some of the memory latency. This is the case for

many batch applications in our evaluated suite. Meanwhile,

as shown in prior research, scale-out server workloads tend

to have low MLP due to data-dependent access patterns [2],

[8], which reduces the utility of a large ROB.

To highlight the difference in MLP between the two classes

of workloads, we compare the MLP of Web Search and

zeusmp. Figure 7 plots the cumulative concurrent memory

accesses in-flight for the two applications. MLP is exhibited

only when the number of concurrent accesses exceeds 1.

Because the hardware coalesces accesses to the same cache

block, for the purpose of measuring MLP, we only consider

concurrent accesses to different cache blocks.

As seen in the figure, Web Search exhibits MLP (i.e., has

two or more concurrent in-flight memory requests) only 9%

of the time. In contrast, zeusmp exhibits MLP for 55% of

its execution time. Moreover, zeusmp frequently has higher

degrees of MLP, with three or more concurrent in-flight

requests for 21% of its execution time. Web Search, on the

other hand, achieves the same degree of MLP for only 3%

of time. Because of the difference in MLP, a larger ROB is

more beneficial for zeusmp than for Web Search.

D. Summary

Latency-sensitive applications place modest demands on

core resources, which makes them good target for SMT

colocation as they lose just 14% on average of single-thread

performance in the presence of a co-runner. This range

of performance loss can be comfortably absorbed without

violating latency targets for all but the highest service loads.

In contrast, many batch workloads experience a much larger

performance drop of 24% on average, and up to 46%, in the

presence of a co-runner. Our analysis reveals that limited

ROB capacity due to colocation is largely responsible for

the drop. Making more ROB capacity available to the batch

applications can restore much of their performance.

IV. STRETCH

A. Overview

Building on the observations above, we introduce Stretch –

a light-weight mechanism for shifting ROB capacity from

one SMT thread to another1. Whereas prior SMT resource

management schemes have sought to achieve fairness in

resource usage [15], [16] or maximize total throughput across

threads [17], [18] (refer to Section VII), Stretch aims to boost

1While the ROB is the primary management target, we also manage the
LSQ in proportion to the ROB. For simplicity, we only refer to the ROB in
the rest of the paper.

5

SMT Core

ROB

LSQ

FUs

…

Baseline

batch thread

LS thread
BTB+BP

BTB+BP
L1-D

SMT Core

ROB

LSQ

FUs

…

Batch boost (B-mode)

batch thread

LS thread
BTB+BP

BTB+BP
L1-D

thread selection

logic

dynamically shared

resources
-

statically partitioned

resources
--

modified for Stretch-

Figure 8: SMT core microarchitecture.

the throughput of one thread (batch) at the expense of the

other in a controlled manner.

The key insight behind Stretch is that at low to moderate

load, performance slack in latency-sensitive workloads af-

fords a significant reduction in their ROB capacity without

degrading QoS targets. The data in Figure 6 indicates that

with as little as one-fourth of full ROB capacity (i.e., 48

out of 192 ROB entries), the slowdown of latency-sensitive

workloads is limited to 15-21% when compared to an isolated

execution on a full core. Placing this data in the context

of Section II, we observe that this degree of performance

degradation can be tolerated for all four of the evaluated

latency-sensitive workloads up to 70% of the peak load

without violating QoS targets.

To leverage the performance slack in latency-sensitive

workloads, Stretch provides one or more asymmetric parti-

tioned ROB configurations. When enabled through a software

control, Stretch’s asymmetric partitioning leaves the latency-

sensitive thread with a fraction of the original ROB capacity,

providing its co-runner with the bulk of ROB (and, by

extension, instruction window) resources. Optionally, Stretch

can also feature a “reverse” mode that provides high ROB

capacity to the latency-sensitive thread as a way of boosting

its single-thread performance to cope with high load rates.

Next, we detail the various aspects of Stretch.

B. Microarchitecture

Stretch requires minimal modifications over a baseline

SMT core that partitions its instruction window into equal

portions for private use by the co-running threads. Such equal

partitioning approach is employed in Intel’s processors [19].

To enable the QoS-throughput trade-off, Stretch provides at

least one additional ROB configuration with asymmetrically-

sized partitions. In total, a Stretch core has two or more

different ROB configurations, as follows:

Baseline: Equal partitioning of the ROB between the two

threads. This setting is used if Stretch has not been enabled

by system software.

Batch boost mode (B-mode): This configuration provides

a small ROB capacity to the latency-sensitive thread and is

invoked when the load on the service is low to moderate.

The bulk of the ROB capacity is given to the co-running

thread to maximize its performance. Figure 8 depicts the

Baseline and the B-mode configurations.

QoS boost mode (Q-mode): This configuration is used when

the latency-sensitive thread is experiencing high load rates

to maximize its QoS at the expense of the co-runner. The

bulk of the ROB capacity is assigned to the latency-sensitive

thread. This configuration is optional; if not present, the

Baseline configuration is used at high load rates.

The asymmetric Stretch configuration(s) are provisioned

at processor design time. Partitioning a structure (ROB or

LSQ) across threads requires just two registers per thread

along with minimal control logic. The first register is the

limit register; it contains the maximum number of entries

that can be occupied by the thread. The second register is

the usage register; value of this register indicates the number

of entries allocated by the thread in the given structure. On

each cycle, the control logic checks if the value of the usage

register is below that in the limit register; if the two are

equal, issue is blocked for the given thread.

Both registers already exist in the baseline core that

supports an equal partitioning. The only change required

to enable asymmetric partitioning is making the limit reg-

ister programmable. With such an extension, the maximal

occupancy for a given structure (ROB, LSQ) is selected and

loaded based on the selected configuration. To control the

partitioning of both ROB and LSQ, Stretch requires two such

pairs of registers – one pair per structure. As such, the actual

hardware cost of Stretch is trivial as it does not require any

new microarchitectural structures or complex control logic

beyond what already exists in a baseline core that supports

an equal partitioning of the ROB and LSQ.

C. Hardware-Software Interface

To take advantage of the asymmetric pipeline resource

partitioning provided in Stretch, system software (likely with

application guidance) maintains the following bits in an

architecturally-exposed control register:

6

S-bit: If set, engages one of the Stretch modes based on

the B/Q bits. When reset, the Baseline resource partitioning

is engaged.

B/Q-bits: Indicates whether the B-mode or Q-mode configu-

ration should be selected.

To decide which mode – Batch boost, QoS boost or

Baseline – should be engaged, we extend the CPI2 [1]

software framework. CPI2 is a software monitor deployed

by Google to identify interference across workloads at

the server level at runtime. In addition to existing CPI2

performance metrics, such as IPC, Stretch software monitor

also tracks a QoS metric which reflects the amount of

available performance slack in the system. When the software

monitor detects performance slack (i.e. when latency-sensitive

thread load is low), the software monitor enables B-mode.

In our work, we use tail latency as a representative and

easily-available QoS metric for the amount of performance

slack. An alternative strategy is to use queue length, which is

an indirect metric of performance slack. For instance, recent

work has used queue length to drive operating frequency and

voltage settings, observing that when queue length is short,

high single-thread performance is not necessary and the core

can run at low voltage and frequency [11]. The same insight

can be applied to invoke the B-mode when the queue length

is small (i.e. there is no queueing) and Q-mode when queue

length is large.

When the software monitor detects that QoS targets are

violated, it first disengages B-mode by changing the ROB

and LSQ configuration to equal partitioning or, if Q-mode is

present, to a Q-mode configuration. After that, the software

continues monitoring the QoS metric. If QoS violations

persist, the software takes a corrective action in the same

way as the baseline the CPI2 framework – that is, it throttles

the co-runner for an interval of time.

Any mode change is accompanied by a pipeline flush

in both threads. Periods of low and high service load are

cyclical and long in duration (see Figure 14 in Section VI-D).

As a result, a particular Stretch mode can stay engaged

for a long time. Since mode changes generally occur only

in response to the OS scheduler placing a new thread on

the core or a swing in the load on the latency-sensitive

thread, the associated pipeline flushes are highly infrequent

in comparison to “routine” flushes triggered by branch

mispredictions, exceptions, etc.

D. Discussion

Partitioning strategy: As noted above, our partitioning

strategy only considers the ROB and LSQ. In principle,

other instruction window resources (e.g., rename registers)

could also be partitioned. This might be advantageous to,

for instance, simplify the pipeline flush logic. We leave the

design decisions as to which exact set of resources should

be partitioned to microarchitects working on actual products.

Core type ISA: SPARC V9, Freq.: 2.5 GHz

Front-end

Fetch BW 6 instrs., up to 2 caches blocks, up to 1 branch

L1-I Cache 64KB, 64B line, 8-way set assoc., 2 banks, LRU

BP Hybrid (16K gShare & 4K bimodal)

BTB 2K entries

Pipeline flush 12 cycles

Back-end

ROB 192 entries total, 96 entries per thread

LSQ 64 entries total, 32 entries per thread

L1-D Cache 64KB, 64B line, 8-way set assoc., 2 banks,
10 MSHRs (5 per thread), LRU replacement,
stride prefetcher tracking up to 32 load/store PCs

FUs Int ALUs: 4 Add + 2 Mult, 3 FPU, 2 LSU
Decode/Dispatch BW: 6 instrs.
Commit BW: 6 instrs.

Uncore

LLC 8MB NUCA, 16-way set associative
Mesh NOC, 3-cycles per hop
Average LLC access latency: 28 cycles

Memory Access latency 75ns

Table II: Simulated processor parameters.

More broadly, our work is not meant to be prescriptive

in the exact configuration to be used for B-mode and Q-

mode execution points. Rather, the goal is to highlight the

opportunity and potential benefits of asymmetric partitioning

under colocated workloads. The exact configurations will be

microarchitecture specific and may even cater to the demands

of individual high-volume customers.

Number of configurations: For both B-mode and Q-mode

points, multiple configurations may be provisioned that differ

in the fractions of ROB capacity assigned to the two hardware

threads. These would enable finer-grain control over per-

thread performance but would necessitate more sophisticated

software control to choose the appropriate configuration as

a function of load.

Facilitating scheduling: To facilitate scheduling, Stretch

does not require a particular type of a software thread (e.g.,

a latency-sensitive thread) to be run on a dedicated hardware

thread. Thus, either B- or Q-mode can be invoked on either

hardware thread. This is trivial to support, since invoking a

mode requires simply loading appropriate settings into the

limit registers of the partitioned resources (ROB and LSQ

in this work).

Colocation options: While this work has focused on colo-

cating a latency-sensitive thread with a batch thread, our

insights can be applied to a colocation of two latency-sensitive

threads. In particular, if the two threads belong to different

applications with one at high load and the other at low

load, the skewed configuration provided by Stretch would be

beneficial to preserve QoS of the thread experiencing high

load rates. On the other hand, if both applications are either

at low load or high load, an asymmetric Stretch configuration

would not be useful and the baseline equal partitioning should

be applied.

7

V. METHODOLOGY

A. Processor Model

We model a 16-core processor with a 2-level cache

hierarchy. Table II lists parameters of the simulated processor.

Baseline core: We simulate a dual-threaded, 6-wide out-of-

order core. Every cycle thread selection logic determines

which thread should be fetched, decoded and dispatched

using ICOUNT [17], which selects a thread with the lowest

number of in-flight instructions. If the selected thread cannot

fill the width of the core in full, then the core switches

to the other thread. The private L1-I and L1-D caches are

shared dynamically between threads; i.e., any thread can

allocate a block in any entry in a cache. Both L1 caches are

address-interleaved: consecutive cache blocks are allocated

to different banks. A cache bank can supply one cache block

per cycle.

Similarly to L1 caches, the capacities of the BTB and

branch predictor are also dynamically shared. However, each

thread has a private branch predictor global history register

and a return address stack.

The simulated core has a 192-entry ROB. Similar to

existing Intel cores, this capacity is equally partitioned

between threads, yielding 96 entries per thread. Selection

logic determines which thread should retire using Round

Robin policy [17], and the oldest instructions from the ROB

partition of the selected thread are committed. If the number

of committed instructions is less than the core width, the

other thread commits instructions.

Uncore: We model an 8MB NUCA LLC with a mesh-based

interconnect at the CMP level. To avoid performance loss

due to LLC contention, we model a partitioned configuration

to preserve each application’s working set in the LLC.

Technology to enable the simplistic partitioning assumed in

this work exists for commercial processors; e.g., Intel Cache

Allocation Technology [20]. More sophisticated schemes,

such as Ubik [21] could be employed to make better usage

of available capacity.

B. Workloads

Latency-sensitive workloads: We use a set of 4 representa-

tive open-source data center workloads from CloudSuite [22].

These applications are listed in Table III. The workloads are

configured to provide maximum throughput while ensuring

that QoS requirements are not violated. For Web Search

and Web Serving, we simulate clients that send requests

following a Zipfian distribution. For Data Serving, we use a

95:5 read-to-write request ratio. For Media Streaming, we

monitor the AvgDelay metric reported by Darwin Streaming

Server; a negative value of this metric indicates that the feed

is being successfully delivered.

Batch workloads: Batch workloads are represented by

benchmarks from SPEC’06. We evaluated each latency-

sensitive workload in colocation with all 29 benchmarks

from SPEC’06.

Name Description

Data Serving
Apache Cassandra 0.7.3,
150 clients, 8000 operations per second

Web Serving
Nginx web server 1.0 (front-end),
MySQL v5.5 database as a back-end

Web Search
Nutch 1.2 / Lucene 3.0.1,
92 clients, 1.4 GB index, 15 GB data segment

Media
Streaming

Darwin Streaming Server 6.0.3,
200 clients, 60 GB dataset, high bitrates

Table III: Latency-sensitive workloads used for evaluation.

C. Simulation Methodology

We use a full-system multiprocessor simulator, Flexus [23],

based on Simics which implements the SPARC v9 instruction

set architecture and runs the Solaris 10 operating system.

For our evaluation, we use the sampling methodology

proposed in [23]. We generate 320 samples over 4s of

each workload’s execution. At simulation time, we warm up

the caches and branch predictor structures using functional

simulation. Then, for each sample, we run cycle-accurate

simulation for 150K instructions. The first 100K instructions

are used to warm up the core structures. We collect mea-

surements over the following 50K instructions. As figure

of merit for evaluating performance, we use the number of

application instructions executed per cycle (UIPC) [23].

For each latency-sensitive workload, we evaluate it being

colocated with each of the 29 batch applications. We use the

same set of sampling points across all colocations to ensure

that the results are consistent across simulations.

VI. EVALUATION

A. Stretch-ing the Performance Range

In this section, we quantify the performance benefits

attained by applying Stretch asymmetric resource partitioning.

We study several Stretch configurations. One is the baseline,

which partitions the ROB in half. The other configurations

employ asymmetrical ROB partitioning specified as N-M,

where N entries are assigned to a latency-sensitive thread and

M entries to a batch thread. We explored different degrees of

asymmetry of configurations and measured performance for

both batch and latency-sensitive applications. We evaluate

performance change for both latency-sensitive and batch ap-

plications on asymmetric Stretch configurations and compare

it to the baseline with an equally-partitioned ROB. The results

of this study are depicted in Figure 9. We discuss the results

for B-modes and Q-modes in Sections VI-A1 and VI-A2,

respectively.

1) B-mode: We evaluate B-mode configurations, in which

ROB capacity of batch applications is varied in range of 128

to 160 ROB entries with a step of 8. Recall that the full ROB

capacity is 192 entries. The remaining capacity of ROB is

given to the latency-sensitive thread. The results, normalized

to the performance of a core with equally-portioned ROB,

are shown in Figure 9 (left). For each Stretch configuration,

8

64-128 56-136 48-144 40-152 32-160
ROB skew (LS-batch)

-60%

-40%

-20%

 0%

 20%

 40%

Sp
ee

du
p

B-modes

latency-sensitive batch

128-64 136-56 144-48 152-40 160-32
ROB skew (LS-batch)

-60%

-40%

-20%

 0%

 20%

 40%
Q-modes

Figure 9: Performance change provided by different Stretch configurations. Data normalized to performance of a core with equally-
partitioned ROB.

0%

5%

10%

15%

20%

25%

30%

35%

S
p

e
e

d
u

p

batch applications

Data Serving
Web Serving
Web Search
Media Streaming

Figure 10: Speedup of batch applications provided by Stretch B-
mode with ROB partitioning skew 56-136. Data normalized to
performance of the baseline core with equally partitioned ROB.

the chart depicts two violin plots, for both batch and latency-

sensitive applications. The width of each violin represents the

distribution of performance change across all the colocations.

In each violin, the height indicates the range of speedup

observed across all of the colocations.

We observe that the B-mode configurations are effective

at improving the performance of batch workloads while

incurring only small performance drop for latency-sensitive

applications. Such small performance drop can be tolerated if

the latency-sensitive application is under sub-peak load. For

instance, with a skewed ROB partitioning 56-136, a B-mode

configuration improves performance of batch applications by

13% on average, and up to 30% in the best case.

To gain more insight into the gains achieved through B-

mode configuration with a skew 56-136, Figure 10 plots the

speedup for each of the 29 batch workloads when colocated

with the four latency-sensitive workloads. For each latency-

sensitive workload, the speedups among batch co-runners

are sorted from largest to smallest. Because the sorted order

of speedups differs for each latency-sensitive workload, the

names of the benchmarks are not shown on the X axis.

As shown in the figure, for each latency-sensitive workload,

there are at least 10 batch applications which enjoy a

performance improvement of over 15%, while other 2 benefit

by over 10%. Such big gains can be explained by the fact that

these workloads have high sensitivity to the ROB capacity.

The remaining workloads have diminishing ROB sensitivity,

yet also register performance improvements of 2% to 9%.

While the batch applications significantly benefit from

B-mode, latency-sensitive workloads lose little performance

as their ROB capacity is diminished. Coming back to the

left chart in Figure 9, we observe that the performance drop

of latency-sensitive workloads averages just 7% (13% in the

worst case) across all studied colocations on configuration

with the skew 56-136. Placing this data in context of

Section II, we find that we can maintain the QoS on this

B-mode configuration for up to 85% of the peak load.

If a latency-sensitive workload can tolerate a large perfor-

mance drop (e.g. when load is low), a B-mode configuration

with a higher skew towards a batch application can be used

to achieve even higher speedups for batch applications. For

example, with B-mode configuration with a skew 32-160,

batch applications’ performance is increased by 18% on

average over the baseline (40% max).

2) Q-mode: An evaluation of the Q-mode configurations

is presented in Figure 9 (right). Analyzing Q-mode, we

observe that it delivers a lower performance gain for the

latency-sensitive workloads than what B-modes delivers for

batch workloads. With the Q-mode configuration and ROB

skew 136-56, average performance improvement is 7% on

average, 18% in the best case. Such modest performance

improvements can be explained by the lack of sensitivity in

latency-sensitive workloads to large ROB configurations (see

Section III-C).

As expected, when Q-mode is engaged, the performance of

the batch co-runners drops due to diminished ROB capacity.

With Stretch Q-mode and ROB skew 136-56, performance

of batch workloads decreases by 21% on average, and up

to 35% in the worst case. While the drop is considerable,

the alternative is disallowing execution on one of the SMT

threads at peak load periods [3], [4]. Compared to the

complete loss of execution capability for the co-runner

incurred by such a heavy-handed alternative, the degradation

incurred in Stretch Q-mode is tolerable in that it maintains

79%, on average, of the co-runners performance.

B. Stretch versus Fetch Throttling

By managing the ROB, Stretch effectively controls re-

source allocation through the core back-end. An alternative

9

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

S
lo

w
d

o
w

n

batch applications

Data Serving
Web Serving
Web Search
Media Streaming

Figure 11: Slowdown of batch applications colocated with the indi-
cated latency-sensitive workload using a dynamically shared ROB.
Data normalized to performance with equally partitioned ROB.

is front-end control using a fetch policy as suggested in a

number of previous SMT resource management studies [17],

[24], [25]. Indeed, IBM’s POWER server processors provide

a configurable fetch priority knob that allows one thread

to gain a larger share of fetch bandwidth at the expense of

another thread [26]. By controlling admission, such fetch

throttling policies indirectly control the ROB occupancy.

In this section, we compare Stretch (a back-end resource

management policy) to fetch throttling (front-end resource

management). The first question we wish to answer is whether

any sort of resource management (front or back) is necessary

at all. To answer this question, we compare the baseline

equal-partitioned ROB to a dynamically shared ROB, both

with ICOUNT fetch policy.

Figure 11 presents the results of the study. The names

of the benchmarks are not shown on the X axis due to

the fact that the sorted orders differ among latency-sensitive

workloads. We find that the vast majority of batch applications

lose performance (8% average, 49% max) in colocations

with latency-sensitive workloads under dynamic sharing as

compared to equal ROB partitioning. Batch applications

experience much higher slowdown in colocation with Data

Serving than with others latency-sensitive workloads (20%

and 3% on average, respectively). However, performance of

latency-sensitive workloads improves slightly (4% average,

11% max – data not shown in the figure) under dynamic

ROB sharing as compared to equal ROB partitioning.

The poor performance of dynamic sharing can be explained

by the fact that in the absence of resource management, a

latency-sensitive thread may occupy a large fraction of the

ROB but not benefit from the capacity. Such monopolizing

of ROB capacity by a latency-sensitive thread prevents

a co-runner with high sensitivity to ROB capacity from

acquiring the resources it needs, which causes an inevitable

performance loss for the co-runner.

The next question we address is whether fetch throttling

can prevent a latency-sensitive thread from monopolizing

ROB capacity, thus providing more performance for the

co-runner when the load on the latency-sensitive service

is below peak. To answer this question, we allocate fetch

bandwidth to the co-running threads via a ratio of 1:M,

0%

20%

40%

60%

80%

FT 1:2 FT 1:4 FT 1:8 FT 1:16 Stretch

S
lo

w
d

o
w

n
 f

o
r

 L
S

 a
p

p
li

ca
ti

o
n

s

-5%

0%

5%

10%

15%

FT 1:2 FT 1:4 FT 1:8 FT 1:16 Stretch

S
p

e
e

d
u

p
 f

o
r

b
a

tc
h

 a
p

p
li

ca
ti

o
n

s

Data Serving

Web Serving

Web Search

Media Streaming

Higher is better

Lower is better

Figure 12: Average performance change provided by fetch throttling
(FT) and Stretch B-mode. Data normalized to performance of the
baseline core with equally partitioned ROB.

whereby for each cycle of fetch (on a per-port granularity)

available to the latency-sensitive thread, the co-runner gets

M cycles of fetch bandwidth. We experiment with several

ratios varying M in powers of 2 in the range of 2 to 16.

We compare performance of fetch throttling configurations

against Stretch B-mode with a skew 56-136 for both batch

and latency-sensitive applications. The results of this study

normalized to performance of the baseline core with equally

partitioned ROB are depicted in Figure 12. Note that the fetch

throttling ratio 1:1 corresponds to the dynamically shared

ROB configuration, discussed above and shown in Figure 11.

In comparison with equally partitioned ROB, batch appli-

cations experience a 3% loss and no loss with fetch throttling

ratios of ratios 1:2 and 1:4, respectively. As noted above, with

a fetch throttling ratio of 1:1 (i.e., dynamic ROB sharing),

the performance loss for batch applications is 8% on average.

Thus, increasing fetch throttling skew does benefit batch

applications, though in a limited way.

As Figure 12 shows, limiting fetch bandwidth for latency-

sensitive workloads reduces their performance by 10% and

25%, on average, for fetch throttling ratios 1:2 and 1:4,

respectively. Higher fetch throttling ratios (1:8 and 1:16)

deliver little performance improvement for batch applications

(4% and 6% on average) while hurting the performance of

latency-sensitive workloads dramatically, by 48% and 68%,

respectively.

The reason for the poor performance of fetch throttling is

that fetch control does not guarantee high ROB occupancy.

Even with diminished fetch priority, latency-sensitive threads

can continue to clog the ROB in the presence of long-latency

misses, preventing the batch co-runner from allocating in-

structions despite its higher fetch priority. While even higher

fetch throttling ratio would likely improve batch performance,

10

it would severely penalize the latency-sensitive workloads

that are already losing 68% in the 1:16 configuration as

compared to equal ROB partitioning.

In contrast, we observe that Stretch B-mode with a skew

56-136 delivers an average performance gain of 13% for the

batch co-runners while limiting the slowdown for latency-

sensitive workloads to just 7%, on average, as compared to

equal ROB partitioning. We thus conclude that controlling

the back-end is more effective than controlling the front-end.

C. Stretch versus Software Scheduling

A number of software techniques have examined colocated

workloads in the context of QoS, particularly focusing on de-

tecting and mitigating QoS-degrading instances of contention.

These include reactive software mitigation policies [1] and

contention-aware scheduling policies [3], [4], [10], [27]. In

general, software scheduling aims at minimizing contention

on shared resources by identifying application pairs which

don’t lose performance when colocated together. SMiTe [5]

is the state-of-the-art software scheduling technique targeting

SMT-level interference. SMiTe predicts interference between

a pair of applications using online profiling. Based on the

prediction, SMiTe determines colocation-friendly mappings

and avoids colocations where a latency-sensitive thread

suffers significant interference from a co-runner.

In this section, we compare Stretch to an ideal software

scheduling. We show that software scheduling delivers lower

performance for batch applications than Stretch. Moreover,

we demonstrate that software scheduling is complementary

to Stretch, and could be used to avoid contentious application

pairing at high load rates.

Software scheduling, such as SMiTe, only selects

colocation-friendly application pairs and is unable to provi-

sion individual microarchitectural resources to threads. Given

a sufficiently large set of potential colocation pairs, some

will likely be found contentious and disallowed to share a

core using a scheme like SMiTe. To understand the limits

of software scheduling, we study an idealized case where

all colocation pairs experience no contention in all of the

dynamically shared structures in an SMT core; namely, L1-I,

L1-D and branch predictor. We model this ideal software

scheduling by simulating private L1-I, L1-D and branch

predictor structures for each of the colocated threads. ROB

(and similarly, LSQ) contention under software scheduling

is avoided through static equal ROB partitioning, as in the

baseline processor.

Figure 13 compares this idealized setup to Stretch B-mode

with a ROB skew 56-136 without any idealization (i.e., fully

shared L1-I, L1-D and branch prediction structures). Ideal

software scheduling provides a moderate gain of 8%, on

average, as compared to the baseline core. Remember that

this result is an unrealistic upper bound achieved through

complete contention elimination, which is not actually

possible in software. Meanwhile, Stretch, which is a practical

0%

10%

20%

30%

Data

Serving

Web

Serving

Web

Search

Media

Streaming

Average

S
p

e
e

d
u

p

Ideal Software Scheduling

Stretch

Stretch + Ideal Software Scheduling

Figure 13: Speedup of batch applications colocated with the indi-
cated latency-sensitive application with ideal software scheduling
and Stretch. Data normalized to performance of the baseline core
with equally partitioned ROB.

mechanism, improves the performance of batch co-runners

by 13%, on average. The advantage of the Stretch can be

explained by the fact that Stretch directly controls the ROB,

which Section III-B showed to be the most critical resource

for batch applications.

Finally, we note that Stretch and software scheduling are

complementary and can be directly combined. We evaluate

this option, which is labeled “Stretch + Ideal Software

Scheduling” in the figure, and find that it improves the

performance of batch applications by 21%, demonstrating

that the benefits of the two techniques are additive as they

target different sources of performance loss.

D. Impact Case Studies

In this section, we quantify benefits of Stretch for specific

service deployments. Specifically, we aim to understand

throughput gains for batch workloads that can be uncovered

by enabling Stretch’s B-mode when the load on a specific

latency-sensitive service is low. Throughout this section, we

consider a B-mode configuration with ROB skew 56-136.

Firstly, we consider a Web Search cluster. According to

recent studies, a typical Web Search deployment is operating

below 85% of its max load for about 11 hours per day (see

the Figure 14(a)) [1], [9]. During this time, Stretch B-mode

can be enabled to boost the throughput of batch jobs without

sacrificing QoS guarantees for the Web Search workload.

Using the Stretch B-mode configuration with ROB skew 56-

136, batch workloads are able to gain 11% over the baseline

SMT deployment. Extrapolating to 11 hours per day that

this mode can be engaged, we find that Stretch can improve

cluster throughput by an average of 5% in a 24-hour period.

Next, we consider a YouTube cluster. Gill et al. [28] show

how the the interval 10am to 7pm concentrates most of the

requests, peaking at 2pm (see the Figure 14(b)). During

the other 17 hours of the day the amount of requests does

not exceed 85% of peak. Similar to Web Search cluster

case, Stretch B-mode configuration can be effectively applied

during this time. In particular, applying the configuration

B-mode with a skew 56-136 for 17 out of 24 hours improves

11

100%

75%

50%

25%

0 4 8 12 16 20 23
hours

17 hours

(b) - traffic to a YouTube cluster

~11 hours

0 12 24

100%

75%

50%

25%

hours

Lo
a

d
 (

%
 o

f
m

a
x
)

4 8 16 20

(a) - query rate for a Web Search cluster

- B-mode used

- equal partitioning

used

Figure 14: Diurnal pattern of load for different latency-sensitive services. Data is taken from [9] and [28].

the cluster throughput by 11% over a 24-hour period, without

compromising QoS.

It is worth noting that both cases are doing a very

coarse exploitation of the capabilities of Stretch. Finer grain

management of the capabilities during the load times can

lead to further improvements in cluster throughput.

VII. RELATED WORK

There is a large amount of work addressing management of

shared resources on SMT cores. Several techniques leverage

fetch policies to maximize throughput [17], [18], [24], [25]

without regard to quality-of-service of individual threads.

Others have proposed mechanisms to improve throughput

while maintaining fairness through dynamic distribution of

shared microarchitectural resources [29], [15], [16], [30],

[31]. For example, DCRA [29] tracks per-thread resource

usage and partitions issue queue and register file entries

dynamically. Sharkey et al. [30] follow up with using adaptive

ROB partitioning to achieve the same goal. Choi et al. [31]

present a mechanism that learns the best resource distribution

via a hill-climbing framework.

Our work differs from these prior efforts in two important

dimensions. First, Stretch intentionally sacrifices fairness to

deliver more throughput for one thread at the expense of the

other using the insight that a latency-sensitive application

is not sensitive to core performance at sub-peak load rates.

Secondly, Stretch uses two or three ROB configurations that

are provisioned at processor design time and are engaged

by application or system software based on readily-available

QoS metrics. The design-time provisioning employed by

Stretch avoids the tremendous complexity of finding preferred

resource configurations required by adaptive/dynamic ROB

management policies. Meanwhile, Stretch’s software control

relieves the hardware from maintaining application-level QoS

metrics such as a request latency distribution.

Other researches have studied non-fair resource allocation

across threads [32], [33], [34], [35], [36] with the aim of

preserving the performance of a QoS-sensitive thread. In

general, these techniques target strict QoS preservation (i.e.,

little to no performance drop), which means that the co-

runner can suffer greatly depending on the dynamically-

chosen configuration.

An important limitation of these works is their lack of

analysis of when QoS targets should be enforced, how much

performance loss is acceptable in practice, and when (if

ever) QoS can be sacrificed for throughput. Stretch differs

from these papers in observing that some QoS-sensitive

workloads have performance slack that can be exploited to

boost the performance of the co-runner at the expense of the

QoS-sensitive thread, characterizes when such a trade-off is

appropriate, and presents simple microarchitectural support

for enabling it.

Core resource partitioning has been also studied in the

context of reconfigurable CMP architectures. For example,

The Sharing Architecture [37] distributes all core resources

among small slices and form virtual cores from them

on demand. Rather than introducing high complexity of

forming virtual cores using a distributed ROB (along with

other complex mechanisms), Stretch shows that a trivial

static partitioning of just ROB and LSQ is sufficient, thus

simplifying design and deployment.

VIII. CONCLUSION

With the slowdown in technology scaling, neither transis-

tors not the energy to operate them is “free”. This reality

pushes processor design into a new regime of delivering

higher performance without a commensurate complexity or

energy cost.

In this work, we observe that latency-sensitive applications

operating at a sub-peak load require only a fraction of

performance afforded by today’s out-of-order cores. We

exploit this insight by shifting microarchitectural resources

(namely, ROB and LSQ capacity) away from a latency-

sensitive thread to its co-runner on an SMT core. By

making minimal hardware modifications to an existing SMT

core and without introducing any new hardware structures,

the proposed Stretch design improves the performance of

batch applications by 13% on average (30% max). This

improvement comes without sacrificing service guarantees of

latency-sensitive threads sharing the SMT core by exploiting

existing software QoS monitoring and contention mitigation

mechanisms. Stretch is one of the first instances of hard-

ware support for improving core performance under QoS

constraints.

12

ACKNOWLEDGEMENTS

The authors thank Priyank Faldu, Cheng-Chieh Huang,

Rakesh Kumar, Amna Shahab, Dmitrii Ustiugov and the

anonymous reviewers for their helpful comments. This

work was supported by the EPSRC CDT in Pervasive

Parallelism at the University of Edinburgh and Arm PhD

Scholarship Program.

REFERENCES

[1] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes,
“CPI2: CPU performance isolation for shared compute clusters,” in Pro-
ceedings of the European Conference on Computer Systems, 2013, pp.
379–391.

[2] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” in
Proceedings of the International Symposium on Computer Architecture,
2015, pp. 158–169.

[3] X. Yang, S. M. Blackburn, and K. S. McKinley, “Elfen scheduling: Fine-
grain principled borrowing from latency-critical workloads using simulta-
neous multithreading,” in Proceedings of the USENIX Annual Technical
Conference, 2016, pp. 309–322.

[4] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in Proceedings of the
International Symposium on Computer Architecture, 2015, pp. 450–462.

[5] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang, “SMiTe: Precise QoS
prediction on real-system SMT processors to improve utilization in ware-
house scale computers,” in Proceedings of the International Symposium
on Microarchitecture, 2014, pp. 406–418.

[6] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Reinhardt,
“Understanding and designing new server architectures for emerging
warehouse-computing environments,” in Proceedings of the International
Symposium on Computer Architecture, 2008, pp. 315–326.

[7] V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Web search
using mobile cores: Quantifying and mitigating the price of efficiency,”
in Proceedings of the International Symposium on Computer Architecture,
2010, pp. 314–325.

[8] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: A study of emerging scale-out workloads on modern hardware,”
in Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems, 2012, pp. 37–48.

[9] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch,
“Power management of online data-intensive services,” in Proceedings of
the International Symposium on Computer Architecture, 2011, pp. 319–
330.

[10] J. Leverich and C. Kozyrakis, “Reconciling high server utilization and sub-
millisecond quality-of-service,” in Proceedings of the European Confer-
ence on Computer Systems, vol. 4, 2014, pp. 1–14.

[11] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez, “Rubik: Fast
analytical power management for latency-critical systems,” in Proceed-
ings of the International Symposium on Microarchitecture, 2015, pp. 598–
610.

[12] M. E. Haque, Y. h. Eom, Y. He, S. Elnikety, R. Bianchini, and K. S. McKin-
ley, “Few-to-many: Incremental parallelism for reducing tail latency in
interactive services,” in Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, 2015, pp. 161–175.

[13] T. Palit, Y. Shen, and M. Ferdman, “Demystifying cloud benchmarking,”
in Proceedings of the International Symposium on Performance Analysis
of Systems and Software, 2016, pp. 122–132.

[14] A. Pahlevan, J. Picorel, A. P. Zarandi, D. Rossi, M. Zapater, A. Bartolini,
P. G. Del Valle, D. Atienza, L. Benini, and B. Falsafi, “Towards near-
threshold server processors,” in Proceedings of the Conference on Design,
Automation & Test in Europe, 2016, pp. 7–12.

[15] J. Alastruey, T. Monreal, F. Cazorla, V. Viñals, and M. Valero, “Selec-
tion of the register file size and the resource allocation policy on SMT
processors,” in Proceedings of the International Symposium on Computer
Architecture and High Performance Computing, 2008, pp. 63–70.

[16] H. Wang, I. Koren, and C. M. Krishna, “An adaptive resource partitioning
algorithm for SMT processors,” in Proceedings of the International Con-
ference on Parallel Architectures and Compilation Techniques, 2008, pp.
230–239.

[17] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and
R. L. Stamm, “Exploiting choice: Instruction fetch and issue on an
implementable simultaneous multithreading processor,” in Proceedings of
the International Symposium on Computer Architecture, 1996, pp. 191–
202.

[18] D. M. Tullsen and J. A. Brown, “Handling long-latency loads in a si-
multaneous multithreading processor,” in Proceedings of the International
Symposium on Microarchitecture, 2001, pp. 318–327.

[19] Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume
3A: System Programming Guide, Part 1, Intel Corporation.

[20] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal,
and R. Iyer, “Cache QoS: From concept to reality in the Intel® Xeon®
processor E5-2600 v3 product family,” in Proceedings of the International
Symposium on High Performance Computer Architecture, 2016, pp. 657–
668.

[21] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing with strict
QoS for latency-critical workloads,” in Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems, vol. 49, no. 4, 2014, pp. 729–742.

[22] CloudSuite: The Benchmark Suite of Cloud Services, http://cloudsuite.ch/.

[23] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and
J. C. Hoe, “SimFlex: Statistical sampling of computer system simulation,”
IEEE Micro, vol. 26, pp. 18–31, 2006.

[24] F. J. Cazorla, E. Fernandez, A. Ramı́rez, and M. Valero, “Improving
memory latency aware fetch policies for SMT processors,” in Proceedings
of the International Symposium on High Performance Computing, 2003,
pp. 70–85.

[25] S. Eyerman and L. Eeckhout, “A Memory-Level Parallelism aware fetch
policy for SMT processors,” in Proceedings of the International Sympo-
sium on High-Performance Computer Architecture, 2007, pp. 240–249.

[26] B. Hall, P. Bergner, A. S. Housfater, M. Kandasamy, T. Magno, A. Mericas,
S. Munroe, M. Oliveira, B. Schmidt, W. Schmidt et al., Performance
optimization and tuning techniques for IBM Power Systems processors
including IBM POWER8. IBM Redbooks, 2017.

[27] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via sensible
co-locations,” in Proceedings of the International Symposium on Microar-
chitecture, 2011, pp. 248–259.

[28] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characterization:
A view from the edge,” in Proceedings of the Conference on Internet
Measurement, 2007, pp. 15–28.

[29] F. J. Cazorla, A. Ramı́rez, M. Valero, and E. Fernández, “Dynamically
controlled resource allocation in SMT processors,” in Proceedings of the
International Symposium on Microarchitecture, 2004, pp. 171–182.

[30] J. Sharkey, D. Balkan, and D. Ponomarev, “Adaptive reorder buffers for
SMT processors,” in Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques, 2006, pp. 244–253.

[31] S. Choi and D. Yeung, “Learning-based SMT processor resource distribu-
tion via hill-climbing,” in Proceedings of the International Symposium on
Computer Architecture, vol. 34, no. 2, 2006, pp. 239–251.

[32] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernández,
A. Ramı́rez, and M. Valero, “Predictable performance in SMT processors:
Synergy between the OS and SMTs,” IEEE Transactions on Computers,
vol. 55, no. 7, pp. 785–799, 2006.

[33] S. E. Raasch and S. K. Reinhardt, “Applications of thread prioritization
in SMT processors,” in Proceedings of the Workshop on Multithreaded
Execution And Compilation, 1999.

[34] G. K. Dorai and D. Yeung, “Transparent threads: Resource sharing in
SMT processors for high single-thread performance,” in Proceedings of
the International Conference on Parallel Architectures and Compilation
Techniques, 2002, pp. 30–41.

[35] C. Boneti, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu, C.-Y. Cher,
and M. Valero, “Software-controlled priority characterization of POWER5
processor,” in Proceedings of the International Symposium on Computer
Architecture, vol. 36, no. 3, 2008, pp. 415–426.

[36] A. Herdrich, R. Illikkal, R. Iyer, R. Singhal, M. Merten, and M. Dixon,
“SMT QoS: Hardware prototyping of thread-level performance differentia-
tion mechanisms,” in Proceedings of the USENIX Workshop on Hot Topics
in Parallelism, 2012.

[37] Y. Zhou and D. Wentzlaff, “The sharing architecture: sub-core configura-
bility for IaaS clouds,” in Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2014, pp. 559–574.

13

http://cloudsuite.ch/

