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Sequences of commuting quantum operators can be parallelized using entanglement. This trans-
formation is behind some optimal quantum metrology protocols and recent results on quantum
circuit complexity. We show that dephasing quantum maps in arbitrary dimension can also be par-
allelized. This implies that for general dephasing noise the protocol with entanglement is not more
fragile than the corresponding sequential protocol and, conversely, the sequential protocol is not less
effective than the entangled one. We derive this result diagrammatically, in the language of string
diagrams in dagger compact closed categories. Therefore, it applies verbatim to other theories.

One of the main goals of quantum computation and
quantum information is the understanding of entangle-
ment and its use to surpass the classical bounds for some
given task. Quantum metrology is a case in point. It
tries to exploit entanglement to measure physical param-
eters of a system to high precision [1–61]. Consider, for
example, the phase estimation problem in which one is
given a phase gate e−iφσz/2 as a black box and one is
to find the corresponding phase φ. A standard method
to approach this problem is the so-called Ramsey inter-
ferometry, where the unitary e−iφσz/2 is applied to each
subsystem of an initial quantum state (|0〉+ |1〉)⊗n /

√
2n.

We are interested in the scaling with n of the uncer-

tainty δφ̂ of the estimator φ̂. In Ramsey interferometry

δφ̂ ∝ 1/
√
n, a scaling called the shot noise or standard

quantum limit. In fact, as long as the initial state remains
separable and one operator is applied to each subsystem,
this bound cannot be surpassed (see Appendix A).

One way to improve this scaling is to introduce entan-
glement on the probe. The initial state, prior to the evo-
lution, is now transformed into (|0 · · · 0〉+ |1 · · · 1〉) /

√
2.

This state can be achieved with an entangling operator
(as described in detail below). Applying the phase gate
to each subsystem and then a disentangling operator we
obtain

(
|0〉+ e−inφ|1〉

)
⊗ |0 · · · 0〉/

√
2. The uncertainty

scaling is now δφ̂ ∝ 1/n, which is called the Heisenberg
limit [26, 31]. Intuitively, entanglement in the probe im-
proves the measurement sensitivity [2]. This principle
has been corroborated experimentally on several occa-
sions [14, 15, 35].

The scaling δφ̂ ∝ 1/n can also be obtained in a dif-
ferent way. The final state of the first qubit in the
entangled protocol is

(
|0〉+ e−inφ|1〉

)
/
√

2. The same
state results when acting with n sequential phase gates(
e−iφσz/2

)n
= e−inφσz/2 on the first qubit initialized to

(|0〉 + |1〉)/
√

2. Notice that, if with a single application
of the phase gate per measurement the uncertainty is

constant δφ̂ ∝ 1, then with n sequential unitaries the un-

certainty is δ(nφ̂) ∝ 1, giving δφ̂ ∝ 1/n. This sequential
version has been explored in frame synchronization [13]
and clock synchronization [23, 29] between two parties.

Given a unitary operator U as a black box and an in-
put state |ψ〉 =

∑
j cj |ej〉, where |ej〉 are eigenvectors

of U =
∑
eiϕj |ej〉〈ej |, Kitaev’s phase estimation algo-

rithm [62] outputs an approximation of the phase ϕj
corresponding to |ej〉 with probability |cj |2. This algo-
rithm is known to be optimal [33], and it can also be
transformed into the sequential protocol [63]. The se-
quentialization is done by changing the quantum Fourier
transform used in Kitaev’s phase estimation into a semi-
classical Fourier transform [64].

The transformation between sequential and entangled
protocols has also been used to study the class QNC of
quantum circuits with polylogarithmic depth [65]. This
class includes, for instance, standard quantum error-
correction encoding and decoding. Interestingly, if we
had entangling gates with arbitrary fan-out at our dis-
posal, then certain important functions that require clas-
sical circuits of logarithmic depth could be computed by
quantum circuits of constant depth [66].

We study the relation between entangled and sequen-
tial protocols diagrammatically. We use the so-called
string diagrams for dagger compact closed categories, of
which the category of finite dimensional Hilbert spaces
is a particular case [72–76]. The diagrams for opera-
tors between Hilbert spaces are also tensor networks [67–
71]. We first introduce this notation for protocols with
unitary operators. Because the diagrams are completely
general, they apply verbatim to quantum maps, that is,
to protocols with noise. String diagrams encompass simi-
lar notations for Liouville space [77], quantum games [78]
and the so-called quantum combs [79, 80]. We will con-
clude with some observations relating to its application
to other theories.

For a given Hilbert space H and a choice of basis {j}
the isometry δ =

∑
j |jj〉〈j| is an entangling operator. Its

notation is . This is a generalization of the following
quantum circuit:

•
|0〉

(1)

We now characterize commuting operators in finite-
dimensional Hilbert spaces. States are represented by

the diagram . For a given state |a〉, we can use the
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entangling operator to obtain a new operator

a :=
a

(2)

Commuting operators correspond exactly to different
states with the same entangling operator or choice of
basis. These operators are seen to commute with the
entangling operator diagrammatically because, using the
associative property of the entangling operator δ, we get

a
=

a
=

a

= a

The physical interpretation is that there is no difference
whatsoever between applying a commuting gate first and
then the entangling operator or first entangling and then
applying the gate.

We now obtain the equivalence between the following
two diagrams for any set of commuting operators {fj}:

fn

. .
. . . .

...

fn−1

f2

f1

(3)

fπ(1) fπ(2) · · · fπ(n−1) fπ(n) (4)

for any permutation π ∈ S(n). Diagram (3) corresponds
to the entangled protocol in three steps: entangling gate,
commuting gate acting on each component, disentangling
gate. Diagram (4) clearly corresponds to the sequential
protocol. The equivalence follows diagrammatically be-
cause every commuting operator fj can be moved to the
beginning of the diagram, and the remaining loops can
be cancelled by the isometry property = .
The main step is as follows:

fj

(5)

= fj (6)

= fj (7)

Note that this equivalence also establishes the commuta-
tivity of the operators among themselves.

We have shown that the operators defined by the dia-
gram of Eq. (2) commute with the entangling gate. We
now prove the converse. For that we use the (unnormal-
ized) equal superposition state for a given choice of basis,

∑
|j〉, depicted as . Its adjoint has the property

= (8)

Now, given an operator a which commutes with an en-
tangling operator, the following diagram defines the cor-
responding state

a
:= a (9)

It is easy to see diagrammatically that the state and op-
erator are then related by Eq. (2).

We have given a complete diagrammatic characteriza-
tion of all the commuting operators and reviewed the
known equivalence of the corresponding entangled and
sequential protocols. We now extend this equivalence to
quantum maps with general dephasing (a similar ques-
tion has been addressed before for maps on qubits [23]).
We denote byH∗ the dual space ofH. The diagrammatic
notations for an operator c from HA to HB , its transpose
c∗, adjoint c† and conjugate c∗ = (c†)∗ are depicted

c =

HA

c

HB

c∗ =

H∗B

c∗

H∗A

c† =

HB

c†

HA

c∗ =

H∗A

c∗

H∗B

We will also use the notation for the (entangled)

state
∑
j

∣∣j̃j〉 ∈ H∗ ⊗H.

Now, let A(ρ) =
∑
t at · ρ · a

†
t be a completely positive

map with Kraus operators {at}. Define the operator a =∑
t |t〉 ⊗ at (where the states |t〉 live in a environment

Hilbert space HE). Its diagrammatic representations are

A =

H∗B HB

H∗A HA

HE

a∗ a =

H∗A ⊗HA

A

H∗B ⊗HB

(10)

The first diagram corresponds to the Stinespring repre-
sentation of A. All completely positive operators can be
put in this form. The second diagram is defined as a
more concise representation. Positive states B = b†b also
have this form, with trivial input space HA = C.

b∗ b†

Every operator between Hilbert spaces can be lifted to
a completely positive quantum map. The quantum map
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obtained by lifting the entangling operator δ for a given
choice of basis has the form

= (11)

For any positive state and a choice of basis we can then
characterize all commuting quantum maps in that basis.
They are obtained exactly as in the diagrams of Eq. (2),
and take the form

b∗ b = B (12)

All the diagrams introduced for unitary operators that
commute with the entangling operator apply verbatim to
quantum maps. Indeed, the quantum maps constructed
through an entangling map commute and all maps com-
muting with an entangling map are of this particular
form. Further, the equivalence between the entangled
and sequential protocols is upheld.

We now give explicit equations for quantum maps that
commute with an entangling map. From the defining di-
agram Eq. (12) we see that the quantum map B corre-
sponding to a positive operator B acts as

B(ρ) = B∗ ◦ ρ ,

where ◦ is the Schur product in the basis of the entangling
map. All quantum maps of that form are completely pos-
itive (already shown diagrammatically), but in addition
we want them to be trace preserving, which imposes

Bjj = 1 . (13)

The positive operator B has a spectral decomposition

B =
∑
s

|χs〉〈χs| .

This gives the Kraus decomposition of B(ρ) =
∑
s bs·ρ·b†s,

with Kraus operators

bs =
∑
j

〈χs|j〉 |j〉〈j| ,

Notice that in this representation the commuting quan-
tum maps also have commuting Kraus operators.

For unitary phase maps the matrix B must have the
form

(Bphases)jk = e−i(φj−φk)|j〉〈k|

for any choice of phases {φj}. Maps with dephasing with
respect to the basis of the entangling map are more in-
teresting. The noise must be dephasing because it does
not alter the populations, due to Eq. (13):

(B(ρ))jj = Bjjρjj = ρjj .

For the qubit case (i.e. when the dimension of the Hilbert
space is two), the positive matrix B has the form(

1 e−γ−iφ

e−γ+iφ 1

)
,

where φ is a phase and γ ≥ 0 parametrizes the dephasing.
This quantum channel is

e−iφσz/2 · ((1− p) ρ+ p σzρσz) · e−iφσz/2 ,

where p = 1−e−γ
2 can be interpreted as the probability of

a random phase flip.
We can also write explicitly a more generic map that is

fully sequentializable. We do that by defining appropri-
ate (unnormalized) vectors |χs〉 for the positive matrix
B =

∑
s |χs〉〈χs|. These vectors should be orthogonal

and for the trace preserving condition should obey

Bjj =
∑
s

〈j|χs〉〈χs|j〉 =
∑
s

|(χs)j |2 = 1 . (14)

Denote the n roots of unity by

ωj = e−i2πj/n , (15)

where n is the dimension of the underlying Hilbert space.
Define

|χs〉 =
√
rs
∑
j

e−iφjωsj |j〉 (16)

for arbitrary phases φj and (dephasing) positive con-
stants rj such that

∑
j rj = 1. Then

〈χs|χt〉 =
√
rsrt

∑
j

ωt−sj =
√
rsrtnδs,t , (17)

which makes the vectors orthogonal. Further,∑
s

|(χs)j |2 =
∑
s

rs = 1 , (18)

which makes the corresponding completely positive map
trace preserving. The Kraus operators of this map are

bs =
√
rs
∑
j

e−i(φj+2πjs/n)|j〉〈j| . (19)

The map without dephasing (a pure rotation) is recov-
ered by choosing rs = δs,0.

All diagrams we have used can equally well be inter-
preted in (dagger compact closed) categories other than
tensor networks of Hilbert spaces. In the context of
category theory, the morphism corresponding to the en-
tangling gate δ is called a classical structure, because
it abstracts the process of copying classical information.
It also abstracts a choice of orthonormal basis [81, 82].
The corresponding “equal superposition” state is the
unique unit of the classical structure. Sequentialization
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and parallelization of commuting morphisms are conse-
quences of the generalized spider theorem [83], which is
deduced by similar diagrammatic manipulations. Fur-
ther, a dagger compact closed category with completely
positive morphisms can be constructed from any dag-
ger compact closed category [84], giving the correspond-
ing abstract “dephasing morphisms” that commute with
the classical structure. Therefore our results have con-
sequences in e.g. conformal or topological quantum field
theories [85–88], and geometric quantization [89].

We have derived the equivalence between the entangled
and sequential protocols using only the abstract proper-
ties of the classical structures. These properties are as-
sociativity, commutativity, isometry, and the Frobenius
equation. For bounded linear operators between (pure
states in) finite-dimensional Hilbert spaces, it is known
that these properties characterize uniquely the entan-
gling gates [81, 82]. A natural question is if there are
quantum maps (between mixed states), other than the
ones corresponding to entangling maps, with the same
properties. This would lead to sequentializable or par-
allelizable protocols different from the ones already cov-
ered. It turns out not to be the case. Because a classical
structure is an isometry, it obeys

Tr (δ(|ψ〉〈ψ|))2 = Tr|ψ〉〈ψ| = 1 . (20)

Now, because a quantum map preserves trace, this im-
plies that a trace preserving classical structure defines
a linear operator between pure states, and, by the result
referenced above, must correspond to an entangling gate.

In summary, we have shown that quantum maps com-
posed of phase gates and general dephasing are exactly
the maps that commute with the entangling map. This
implies that the sequential and quantum protocols are
equivalent. In particular, they are equally sensitive to
noise and have exactly the same responsiveness for quan-
tum metrology. The entangled (parallel) protocol is bet-
ter suited for rapidly changing signals, but is technically
challenging. The diagrammatical derivation we presented
has advantages over direct computations: is completely
general and, arguably, simpler. Also, the abstract point
of view sheds some light on the fundamental structures
of some quantum protocols and applies to other theories.

Acknowledgement. Much of this work has been done
while both authors were at the Institute for Quantum In-
formation at the California Institute of Technology. We
thank Peter Selinger for pointing out [90], and David
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Appendix A: Bound on the Fisher information
scaling for separable states

The quantum Cramér-Rao inequality [5] states that

δφ̂ ≥ 1√
In
, (A1)

where In is the (quantum) Fisher information cor-
responding to the evolution of the quantum state
parametrized by φ. This appendix proves In ≤ nIbound
for separable states, where Ibound is a bound on the
Fisher information for one system. This is a well known
fact, which we include here for completeness (see e.g. [39]
for a different proof). We also note that for subsystems
evolving with Hamiltonian h (so the total Hamiltonian is∑
h) there exists a bound Ibound ≤ ‖h‖ [26, 31].
Consider a quantum state ρ, implicitly parametrized

by φ. The quantum Fisher information for the state ρ is
defined as

In = TrρL2
n

where the symmetric logarithmic derivative L is the Her-
mitian operator implicitly defined by the equation

1

2
(Lnρ+ ρLn) =

∂ρ

∂φ
.

If follows directly from this definition that

TrρL = Tr
1

2
(Lnρ+ ρLn) = Tr

∂ρ

∂φ
=
∂ Trρ

∂φ
= 0. (A2)

Now assume that ρ is a product quantum state ρp =

ρ(1) ⊗ · · · ⊗ ρ(n). It is easy to check directly that if L(j)

is the symmetric logarithmic derivative corresponding to
ρ(j), then the symmetric logarithmic derivative of the
product state ρ is

Lp =
∑
j

1⊗ · · · ⊗ 1⊗ L(j) ⊗ · · · ⊗ 1 =
∑
j

L(j).

The corresponding Fisher information is

Ip = TrρpL2
p =

∑
j

Trρp(L(j))2 +
∑
j 6=k

TrρpL(j) ⊗ L(k)

=
∑
j

Trρp(L(j))2

=
∑
j

I(j)p ≤ nIbound.

The fact that TrρpL(j)⊗L(k) = 0 for j 6= k follows almost
directly from (A2).

Finally consider an ensemble of states ρe =
∑
j pjρj .

To calculate the symmetric logarithmic derivative of an
ensemble it is simpler to start with the correspond-
ing quantum superposition ρex =

∑
j pjρj ⊗ |j〉〈j|. It

is easy to check directly that the corresponding sym-
metric logarithmic derivative for this superposition is
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Lex =
∑
j L(j) ⊗ |j〉〈j|. This gives the quantum Fisher

information for the superposition

Iex = TrρexL2
ex =

∑
j

pjI(j)ex ≤ max
j
I(j)ex .

Now, the difference between the quantum ensemble ρe
and the quantum superposition ρex is simply a trace over
the auxiliary system that marks the particular state of
the ensemble. That is, we forget or lose information. The
corresponding Fisher information can only decrease as a

result: Ie ≤ Iex. Formally, this is a consequence of the
monotonicity of the Fisher information [91].

To conclude, we recall that a separable quantum state

has the form ρs =
∑
j pjρ

(j)
1 ⊗· · ·⊗ρ

(j)
N . Putting together

the bounds for ensembles and product states we conclude
that Is ≤ nIbound, or, in other words,

δφ̂ ≥ 1√
nIbound

.
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