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Abstract. We reconstruct orthoalgebras from their partially ordered set of Boolean subalge-
bras, and characterize partially ordered sets of this form, using a new notion of a direction. For
Boolean algebras, this reconstruction is functorial, and nearly an equivalence.

1. Introduction

Orthoalgebras [5] are certain structures with a partially defined binary operation ⊕ called
orthogonal sum, a unary operation ′ called orthocomplementation, and constants 0, 1. Examples
are obtained by taking any Boolean algebra, orthomodular lattice, or orthomodular poset, and
defining ⊕ to be the join of orthogonal pairs. Below at left is an orthoalgebra constructed
from gluing together two Boolean algebras {0, a, b, c, a′, b′, c′, 1} and {0, c, d, e, c′, d′, e′, 1}. The
orthogonal sum ⊕ is the union of the orthogonal join operations of these Boolean algebras.
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A subalgebra of an orthoalgebra is a subset that is closed under the operations. A subalgebra
naturally forms an orthoalgebra. We say that a subalgebra is a Boolean subalgebra if it is
isomorphic to an orthoalgebra obtained from a Boolean algebra by restricting its join operation
to orthogonal elements. The diagram above at the right gives the Boolean subalgebras of the
orthoalgebra at left, partially ordered by set inclusion.

It is known that every orthoalgebra is the union of its Boolean subalgebras, and that the
operations of an orthoalgebra are determined by the operations of its Boolean subalgebras. Thus
the diagram above at right that describes the Boolean subalgebras by listing their elements and
operations determines the orthoalgebra at left. The first main result of this paper is that each
non-trivial orthoalgebra can be reconstructed up to isomorphism from the order structure of its
partially ordered set of Boolean subalgebras. Let us emphasize that here we forget everything
about the elements of the partially ordered set except that they are Boolean subalgebras.

The main ingredient in this reconstruction is the new notion of a direction. Call an element of
a poset basic if it is of height 1 or 0. Then the basic elements in the poset of Boolean subalgebras
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of an orthoalgebra are the subalgebras {0, a, a′, 1} given by some element a of the orthoalgebra.
In each Boolean subalgebra B covering {0, a, a′, 1} in this poset of Boolean subalgebras, we can
consider the subalgebra ↓ a ∪ ↑ a′. This will be equal to either {0, a, a′, 1} or to B depending
on which of a or a′ is basic in B. A direction assigns a consistent choice of this to each cover
of {0, a, a′, 1}. If we assume that maximal Boolean subalgebras are not small, i.e. having 4 or
fewer elements, each basic element {0, a, a′, 1} in this poset will have exactly 2 directions, and
these serve the role of a and a′ in an isomorphic copy of the given orthoalgebra built from the
directions.

The second result of this paper is a characterization of the partially ordered sets that arise
as those of Boolean subalgebras of an orthoalgebra. Certain obvious properties of the poset of
Boolean subalgebras are abstracted to form what we call orthodomains, but these basic properties
are not sufficient. The crucial ingredient is to have an orthodomain with enough directions. This
is somewhat analogous to the characterization of lattices of open sets of topological spaces as
frames with enough points. We then show that the orthodomains with enough directions whose
structure is fundamentally determined at height 3 are the posets that are isomorphic to the
Boolean subalgebra posets of orthoalgebras. As an interesting byproduct, if one wanted to
describe an orthoalgebra by giving its poset of Boolean subalgebras, our results show that it is
sufficient to give the poset of Boolean subalgebras of height 3 or less, in other words, the poset
of its Boolean subalgebras having at most 16 elements, and one cannot do better.

The third result of this paper is an investigation of functorial aspects of the reconstruction.
We have to make some exceptions because the Boolean algebra with 1 element and the Boolean
algebra with 2 elements have the same partially ordered set of Boolean subalgebras. Similarly,
the Boolean algebra with 4 elements has 2 automorphisms, whereas the lattice of its Boolean
subalgebras has only 1 automorphism. We prove that the category of Boolean algebras is, up to
these restrictions, equivalent to that of Boolean orthodomains. Extending these results to the
orthoalgebra setting remains a work in progress.

These results fit in an established line of research. Sachs showed that every Boolean algebra
with at least 4 elements is determined by its lattice of Boolean subalgebras [17]. Grätzer et.
al. characterized the lattices that arise this way, and reconstructed the original Boolean algebra
as a direct limit. Sachs’ result extends to orthomodular lattices [8], and has versions relating
C∗-algebras and von Neumann algebras to their posets of abelian subalgebras [3, 7] that are
considered in the topos approach to quantum mechanics [10]; for a thorough account see [13].
Grätzer’s limit approach was lifted to a more general setting in [9].

There are two paths for yet more general structures than the orthoalgebras considered here,
the partial Boolean algebras of Kochen and Specker [12], and effect algebras [4]. There are two
non-isomorphic partial Boolean algebras having the same poset of Boolean subalgebras with
one an orthoalgebra and the other not. Effect algebras which are not lattices even need not be
unions of some “nice” maximal subalgebras, e.g., sub-MV-algebras [16]. These are fundamental
barriers to lifting results to the partial Boolean algebra or effect algebra setting. A version of
our results for effect algebras would be worth exploring, but would require a modification of the
notion of a Boolean subalgebra as is seen by considering the 3-element effect algebra. Perhaps
subalgebras that are effect algebra quotients of Boolean algebras may be a path.

This paper is organized in the following way. Section 2 starts by describing directions in
the Boolean setting, and Section 3 introduces orthoalgebras and their Boolean subalgebras. In
Section 4 directions are generalized to orthoalgebras and used to reconstruct an orthoalgebra A
from its partially ordered set BSub(A) of Boolean subalgebras. Directions are used again in
Section 5 to characterize the orthodomains that are isomorphic to BSub(A) for an orthoalgebra
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A. Section 6 discusses the functoriality of these constructions in the Boolean setting, and
Section 7 provides concluding remarks.

2. Subalgebras of Boolean algebras and their directions

We use standard terminology for partially ordered sets, as in e.g. [1]. In particular, for an
element x of a partially ordered set X, denote its principal ideal and principal filter by

↓x = {w ∈ X | w ≤ x} and ↑x = {y ∈ X | x ≤ y}.

Definition 2.1. Write Sub(B) for the set of Boolean subalgebras of a Boolean algebraB partially
ordered by inclusion with ⊥ its least element and > its largest element.

Since the intersection of Boolean subalgebras is a subalgebra, Sub(B) is a complete lattice,
and since finitely generated Boolean algebras are finite, the compact elements of this lattice are
the finite Boolean subalgebras of B. Here we recall that an element x of a partially ordered set
X with directed joins is compact if x ≤

∨
Y for a directed subset Y ⊆ X implies that x ≤ y

for some y ∈ Y . Since every Boolean algebra is the union of its finite subalgebras, Sub(B) is
an algebraic lattice. The algebraic lattices of the form Sub(B) were characterized by Grätzer
et. al. [6] as follows. Here we recall that a partition lattice is a lattice that is isomorphic to the
lattice of the partitions of a set.

Theorem 2.2. [6] A poset X is isomorphic to Sub(B) for a Boolean algebra B if and only if:

(1) X is an algebraic lattice;
(2) ↓x is a finite partition lattice for each compact element x of X.

We call such lattices Boolean domains.

Definition 2.3. A subalgebra of a Boolean algebra is called a (principal) ideal subalgebra when
it is of the form I ∪ I ′ for a (principal) ideal I, where I ′ = {a′ | a ∈ I}.

0

1

a

a′

Principal ideal subalgebras are of the form ↓ a∪↑ a′ for a ∈ B. They will play a central role
throughout the paper. To describe their use, we begin with the order-theoretic characterization
of ideal subalgebras given by Sachs [17].

Definition 2.4. An element x of a lattice is dual modular if (x∨ y)∧ z = x∨ (y ∧ z) for each z
with x ≤ z and (w ∨ x) ∧ y = w ∨ (x ∧ y) for each y with w ≤ y.

Lemma 2.5. [17, Theorem 1] The dual modular elements of Sub(B) are the ideal subalgebras.

The least element ⊥ of the Boolean domain Sub(B) is {0, 1}, the largest element > is B,
and the atoms of Sub(B) are the elements {0, a, a′, 1} for a 6= 0, 1. Hence there is a bijection
between complementary pairs {a, a′} in B and elements of Sub(B) that are either ⊥ or an atom.
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Definition 2.6. Call an element of a poset with a least element basic if it is either an atom or
the least element.

Lemma 2.7. For a Boolean algebra B, the basic elements of Sub(B) that are dual modular are
{0, a, a′, 1} where either a, a′ is basic. In fact, they are principal ideal subalgebras.

Proof. Follows immediately from Lemma 2.5. �

Our key definition is the following:

Definition 2.8. For B a Boolean algebra, we define the mapping ϕ : B → (Sub(B))2 by

ϕ(a) = (↓ a ∪ ↑ a′, ↓ a′ ∪ ↑ a) .

We call ϕ(a) the principal pair corresponding to a.

We call a Boolean algebra small if it has at most 4 elements. Our aim is to show that if B
is not small, than ϕ is one-to-one, and to characterize the range of ϕ in purely order-theoretical
terms. This will allow us to reconstruct an isomorphic copy of B from the poset Sub(B). We
formulate this for a general Boolean domain rather than a special case of Sub(B) for a Boolean
algebra B, although all are isomorphic to such.

Definition 2.9. Let X be a Boolean domain. A principal pair of X is an ordered pair (y, z) of
dual modular elements of X that satisfies one of the following conditions:

(1) y = >, z is a basic element;
(2) z = >, y is a basic element;
(3) y ∨ z = > and y ∧ z is a basic element which is not dual modular.

We say that a principal pair (y, z) (as well as (z, y)) is a principal pair for the basic element x
if y ∧ z = x. Write Pp(X) for the set of principal pairs of X.

Remark 2.10. Notice that in Definition 2.9 the element y∧ z = x is always basic and it is dual
modular iff case (1) or (2) applies. Therefore, if x is a dual modular basic element, then (x,>)
and (>, x) are the only principle pairs for x.

If B = {0, 1}, then ⊥ = > and ϕ[B] = Pp(Sub(B)) = {(>,>)}. If B has 4 elements, then
B = {0, a, a′, 1} = >, a /∈ {0, 1}, and ϕ[B] = Pp(Sub(B)) = {(⊥,>), (>,⊥), (>,>)}, where
(>,>) = ϕ(a) = ϕ(a′). A principal pair (y, z) satisfies y = z only if B is small and y = z = >.

Proposition 2.11. Let B be a Boolean algebra, a ∈ B, and x = {0, a, a′, 1} be the corresponding
basic element of Sub(B). For the map ϕ of Definition 2.8, ϕ(a) and ϕ(a′) are the only principle
pairs for x, and if B is not small these are distinct. So the image ϕ[B] is Pp(Sub(B)), and if
B is not small then ϕ : B → Pp(Sub(B)) is a bijection.
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Proof. If a is basic then ϕ(a) = (x,>), and if a′ is basic then ϕ(a) = (>, x). In both cases, x is
a dual modular basic element. So ϕ(a), ϕ(a′) are the two possible principal pairs for x. If B is
not small, they are distinct (Remark 2.10).

Assume that a is not 0, 1, an atom, or a coatom. So there are b, c with 0 < b < a < c < 1
(and B is not small). Then x is a basic element that is not dual modular. Let y = ↓ a ∪ ↑ a′
and z = ↓ a′ ∪ ↑ a. It is clear that y, z are ideal subalgebras, and hence are dual modular. Also
y ∧ z = x. For any e ∈ B we have e = (e ∧ a) ∨ (e ∧ a′). Since e ∧ a ∈ y and e ∧ a′ ∈ z, then e
is in the subalgebra y ∨ z generated by y, z. So y ∨ z = >. Hence (y, z) and (z, y) are principal
pairs for x. Since b ∈ y and b 6∈ z, these principal pairs are distinct.

We now show these are the only principal pairs for x. Suppose that (v, w) is a principal
pair for x. Since v, w are dual modular, they are ideal subalgebras. So v = I ∪ I ′ and w = J ∪J ′
for ideals I, J ⊆ B. Now x = v ∧ w gives

{0, a, a′, 1} = (I ∩ J) ∪ (I ∩ J ′) ∪ (I ′ ∩ J) ∪ (I ′ ∩ J ′)

It cannot be the case that a ∈ I∩J since then b ∈ I∩J because I and J are ideals, and similarly
a 6∈ I ′ ∩ J ′. So one of a, a′ belongs to I ∩ J ′ and the other to I ′ ∩ J . Say a ∈ I ∩ J ′. Since
J ′ is a filter, there cannot be an element of I other than 1 that is larger than a since it would
belong to I ∩ J ′, and since I is an ideal and a < c < 1 it cannot be that 1 ∈ I since this would
imply that c ∈ I. So a is the largest element of I, and similarly it is the least element of J ′. So
(v, w) = (y, z). If a ∈ I ′ ∩ J , then by symmetry (v, w) = (z, y).

We have shown for any a ∈ B that ϕ(a), ϕ(a′) are principal pairs for x = {0, a, a′, 1}, are the
only principle pairs for x, and that these are distinct if B is not small. Since every principal pair
of Sub(B) is a principal pair for some basic element and all basic elements arise as {0, a, a′, 1}
for some a ∈ B, this shows that ϕ is onto. If a, b ∈ B and ϕ(a) = ϕ(b), then ϕ(a) and ϕ(b) are
principal pairs for the same basic element. Then if B is not small, a = b. �

As every Boolean domain is isomorphic to Sub(B) for some Boolean algebra B, and a
Boolean domain with more than two elements is isomorphic to Sub(B) for some B that is not
small, Proposition 2.11 and Remark 2.10 give the following:

Corollary 2.12. If X is a Boolean domain, then each basic element has at most two principle
pairs, and if X has more than two elements, each basic element has exactly two principle pairs.
In the case where X has two or fewer elements, each element is basic, all elements other than
> have two directions, and > has a single direction.

How do we incorporate the Boolean algebra structure in our considerations? If ϕ(a) = (y, z),
then ϕ(a′) = (z, y). The partial ordering of Pp(Sub(B)) is more subtle. If ϕ(a) = (y1, z1) and
ϕ(b) = (y2, z2), then a ≤ b implies y1 ≤ y2, and z1 ≥ z2. But these relationships can hold
without a ≤ b. If a is an atom of B, so y1 = {0, a, a′, 1} is a dual modular atom of X, then
ϕ(a) = (y1,>) and ϕ(a′) = (>, y1), but of course a 6≤ a′. The following definition excludes this
situation. Notice that this is the only situation requiring an exception. Suppose that y1 ≤ y2,
z1 ≥ z2, and a 6≤ b. We can easily exclude the cases when y1 ∧ z1 is not a dual modular atom or
when y1 = >. In the remaining case, z1 = > and a is an atom. Thus a 6≤ b means that a, b are
orthogonal, i.e., a ≤ b′. If a < b′, then y2 = ↓ b ∪ ↑ b′ does not contain a; a contradiction with
y1 ≤ y2. The case of b = a′ (y2 = z1, z2 = y1) is the only one which needs to be forbidden.

Definition 2.13. Let X be a Boolean domain. Define a unary operation ′ on Pp(X) by

(y, z)′ = (z, y) .
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Define a binary relation ≤ on Pp(X) by (y1, z1) ≤ (y2, z2) when y1 ≤ y2, z1 ≥ z2, and, addition-
ally, if y1 ∧ z1 is a dual modular atom, then (y2, z2) 6= (z1, y1).

Proposition 2.14. For a Boolean algebra B that is not small, ϕ is an order isomorphism that
preserves ′.

Proof. The complement ′ of Pp(Sub(B)) commutes with ϕ.
Suppose a, b ∈ B, a ≤ b. By Proposition 2.11, ϕ(a) is a principal pair for x = {0, a, a′, 1}.

Observe ↓ a ∪ ↑ a′ ⊆ ↓ b ∪ ↑ b′ and ↓ a′ ∪ ↑ a ⊇ ↓ b′ ∪ ↑ b. This suffices for ϕ(a) ≤ ϕ(b) unless x
is a dual modular atom. If x is a dual modular atom, then, by Lemma 2.7, a or a′ is an atom.
Then b 6= a′, so ϕ(b) 6= ϕ(a′) = ϕ(a)′, and hence ϕ(a) ≤ ϕ(b).

Finally, suppose ϕ(a) ≤ ϕ(b). We will show a ≤ b by contradiction; suppose b′ 6≤ a′. Again
↓ a∪ ↑ a′ ⊆ ↓ b∪ ↑ b′ and ↓ a′ ∪ ↑ a ⊇ ↓ b′ ∪ ↑ b. It follows that a′ ∈ ↓ b and b ∈ ↓ a′. So a′ ≤ b and
b ≤ a′, giving a′ = b. Since ϕ(a) ≤ ϕ(b) = ϕ(a)′, the definition of ≤ implies that x = {0, a, a′, 1}
cannot be a dual modular atom of Sub(B). Hence neither of a, a′ is an atom of B. Since a � b
we have a 6= 0, so there is c such that 0 < c < a. Then c ∈ ↓ a∪↑ a′, but c 6∈ ↓ a′∪↑ a = ↓ b∪↑ b′,
a contradiction. �

For a Boolean algebra B that is small, ϕ preserves ≤ and ′, but it is not a bijection, see
the proof of Proposition 2.11.

Theorem 2.15. For a Boolean algebra B with more than 4 elements, and a Boolean domain X
with more than 2 elements:

(1) Sub(B) is a Boolean domain;
(2) Pp(X) is a Boolean algebra;
(3) B is isomorphic to Pp(Sub(B));
(4) X is isomorphic to Sub(Pp(X)).

Proof. Part (1) follows from Theorem 2.2 (even without any limitation of the number of el-
ements of B). Part (3) follows from Proposition 2.14. Since X is a Boolean domain with
more than 2 elements, Theorem 2.2 provides a Boolean algebra A with more than 4 ele-
ments with X ' Sub(A), so Pp(X) ' Pp(Sub(A)), which is Boolean by (3), establishing
part (2). To prove part (4), say X ' Sub(A) for a Boolean algebra A; then part (3) gives
Sub(Pp(X)) ' Sub(Pp(Sub(A))) ' Sub(A) ' X. �

For a Boolean algebra B and a ∈ B, consider the Boolean subalgebras of B that contain a,
and in each of these take the principle pair in its subalgebra lattice corresponding to a. While this
is a more complex object, it leads to an alternative view of how principal pairs encode elements,
and is the tool we use to extend matters to the orthoalgebra setting. For the following, we note
that for x = {0, a, a′, 1}, the upset ↑x is the set of Boolean subalgebras of B that contain a. For
y ∈ ↑x we use the following notation.

↓y a = {b ∈ y : b ≤ a} and ↑y a = {b ∈ y : a ≤ b}

Definition 2.16. For B a Boolean algebra, a ∈ B, and x = {0, a, a′, 1}, let da : ↑x→ (Sub(B))2

be given by
da(y) = (↓y a ∪ ↑y a′, ↓y a′ ∪ ↑y a).

Note that if y is a subalgebra of B, then the lattice of subalgebras Sub(y) of y is the interval
↓ y of Sub(B). Note also that the definition of da can be expanded to

da(y) =
(
y ∧ (↓ a ∪ ↑ a′), y ∧ (↓ a′ ∪ ↑ a)

)
.
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The aim is as before — to characterize the mappings da order-theoretically and show that
when B is not small that these are in bijective correspondence with B. Then we define structure
on the collection of such mappings, and show that with respect to this structure, this bijective
correspondence is an isomorphism.

Definition 2.17. For a Boolean domain X, a direction of X is a map d : ↑x → X2 for some
basic element x ∈ X such that for each y, z ∈ ↑x:

(1) d(y) is a principal pair for x in the Boolean domain ↓ y;
(2) if y ≤ z and d(z) = (v, w), then d(y) = (y ∧ v, y ∧ w).

We say d is a direction for x, and write Dir(X) for the set of directions of X.

Proposition 2.18. Let X be a Boolean domain.

(1) Each direction d of X determines a principal pair d(>) of X and vice versa.
(2) If d is a direction for x and x < y, then d(y) determines d(>) and hence d.
(3) For each principal pair (u, v) of X there is a unique direction d with d(>) = (u, v).

In particular, there is a bijection γ : Dir(X)→ Pp(X) with γ(d) = d(>).

Proof. (1) This is clear from the definition of a direction. (2) Assume first that x = ⊥. Then
the principal pairs for x in X are (>,⊥) and (⊥,>). If d(>) = (>,⊥), then the definition of
a direction gives d(y) = (y,⊥), and if d(>) = (⊥,>), then d(y) = (⊥, y). Since y 6= ⊥, d(y)
determines d(>). Suppose that x is an atom of X. Then, since x < y, ↓ y has more than two
elements. So by Theorem 2.15 the components of the principal pair d(y) for x in ↓ y are different.
If d(>) = (u, v), then d(y) = (y ∧ u, y ∧ v), and if d(>) = (v, u), then d(y) = (y ∧ v, y ∧ u).
Thus d(y) determines d(>). (3) Since every Boolean domain is isomorphic to Sub(B) for some
Boolean algebra B, we may assume X = Sub(B). Suppose (u, v) is a principal pair for a basic
element x of X. By Theorem 2.15 there is a ∈ B with x = {0, a, a′, 1} and ϕ(a) = (u, v). So
u = ↓ a ∪ ↑ a′ and v = ↓ a′ ∪ ↑ a. Define d : ↑x → X2 by d(y) = (↓y a ∪ ↑y a′, ↓y a′ ∪ ↑y a). It is
easily seen that d is a direction with d(>) = (u, v). Its uniqueness follows from (2). �

Proposition 2.18 allows us to count the number of directions for a basic element using the
known number of principal pairs for it.

Corollary 2.19. Let X be a Boolean domain. If x 6= > is a basic element of X, then there are
exactly two directions for x. If > is a basic element of X (so X has at most two elements), then
there is exactly one direction for >.

The bijection of Proposition 2.18 can be used to define a unary operation ′ and binary
relation ≤ on Dir(X) so that Pp(X) is isomorphic to Dir(X). For a direction d, we have that
d′ is the direction with the same domain and if d(y) = (u, v) then d′(y) = d(y)′ = (v, u). For
directions d, e, we have d ≤ e iff the principal pairs d(>) and e(>) satisfy d(>) ≤ e(>). The
following corollary of Theorem 2.15 is then immediate.

Corollary 2.20. For a Boolean algebra B with more than 4 elements, and a Boolean domain
X with more than 2 elements:

(1) Sub(B) is a Boolean domain;
(2) Dir(X) is a Boolean algebra;
(3) B is isomorphic to Dir(Sub(B));
(4) X is isomorphic to Sub(Dir(X)).
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We conclude this section with an alternate view of the reconstruction of a Boolean algebra B
from its Boolean domain X = Sub(B). Let a ∈ B and x = {0, a, a′, 1}. We consider the case
when x 6= ⊥. For each cover y of x we have that the 4-element Boolean algebra x is a subalgebra
of the 8-element Boolean algebra y. The element a ∈ x can either embed as an atom in y, or as
a coatom in y. In the first case (↓y a ∪ ↑y a′, ↓y a′ ∪ ↑y a) is (x, y), and in the second, it is (y, x).
If we use ↓ for (x, y) and ↑ for (y, x), a direction d of X for the basic element x assigns to each
cover y of x the value d(y) = ↓ or d(y) = ↑ describing how x is embedded. This assignment of
↓ and ↑ to the covers of x must be done in a way that is consistent with d being a direction,
and for each x there are only two possibilities, one obtained from the other by interchanging
↓ and ↑ for each cover. Virtually identical remarks hold when x = ⊥, except that we consider
embedding a 2-element Boolean algebra into 4-element ones.

Example 2.21. Consider the power set B = P({1, 2, 3, 4}) of {1, 2, 3, 4}. Its poset X of Boolean
subalgebras is given in Figure 1.

∅

1234

∅

1234
1 234

∅

1234
2 134

∅

1234
3 124

∅

1234
4 123

∅

1234
12 34

∅

1234
13 24

∅
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14 23
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1 2 34

234 134 12
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1 3 24
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134 124 23

∅

1234

2 4 13

134 123 24

∅

1234

3 4 12

124 123 34

B

Figure 1. The poset of subalgebras of a 16-element Boolean algebra

We describe the directions of X corresponding to the elements a = {1} and b = {1, 2} in
Figure 2 by indicating their values ↓ or ↑ on the covers of the basic elements corresponding to
these elements.

↓ ↓ ↓ ↑ ↓

Figure 2. Direction for a distinguished atom in a 16-element Boolean algebra

We note that the upper covers of a basic element will usually be assigned a mixture of values
of ↓ and ↑, a matter we return to in greater detail when we consider orthoalgebras.
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3. Orthoalgebras

This section briefly recalls the basics of orthoalgebras and their subalgebras [5].

Definition 3.1. An orthoalgebra is a set A, together with a partial binary operation ⊕ with
domain of definition ⊥, a unary operation ′, and constants 0, 1, satisfying:

(1) ⊕ is commutative and associative in the usual sense for partial operations;
(2) a′ is the unique element with a⊕ a′ defined and equal to 1;
(3) a⊕ a is defined if and only if a = 0.

An orthoalgebra is Boolean when it arises from a Boolean algebra by restricting the join to pairs
of orthogonal elements.

Any orthoalgebra is partially ordered by a ≤ c if a ⊥ b and a ⊕ b = c for some b. An
orthoalgebra is Boolean if and only if this is the partial ordering of a Boolean algebra.

Definition 3.2. Let A be an orthoalgebra. A subset S ⊆ A is a subalgebra if:

(1) 0, 1 ∈ S;
(2) a ∈ S ⇒ a′ ∈ S;
(3) if a, b ∈ S and a ⊥ b then a⊕ b ∈ S.

A subalgebra that is a Boolean orthoalgebra is a Boolean subalgebra.

Proposition 3.3. An orthoalgebra A is Boolean if and only if every finite subset S ⊆ A is
contained in {

⊕
E | E ⊆ F} for some orthogonal join F .

Proof. First assume A is a Boolean orthoalgebra, say it is the restriction of a Boolean algebra
B. Any finite subset S ⊆ A is contained in a finite subalgebra C of B because finitely generated
subalgebras of Boolean algebras are finite. Let F be the set of atoms of C. This is a jointly
orthogonal set in A. For each b ∈ B let E = {x ∈ F | x ≤ b}. Now, because b is the join of B
in E, we have b =

⊕
E.

For the converse, suppose that every finite subset S ⊆ A is contained in {
⊕

E | E ⊆ F} for
some orthogonal join F . First assume that A is finite. I nthis case, there is a jointly orthogonal
family F such that every element of A equals

⊕
E for some E ⊆ F . Clearly

⊕
F = 1, and if F

contains 0, we may remove 0 from F to get a jointly orthogonal family with the same properties.
So we may choose F to be a partition of unity of L, in the sense that 0 6∈ F , F is jointly
orthogonal, and

⊕
F = 1. Since A = {

⊕
E | E ⊆ F}, it is isomorphic to the orthoalgebra

induced by the Boolean algebra P(F ), and hence A is Boolean.
Now consider the case where A is infinite. For each partition of unity F of A, let BF be the

subalgebra of A generated by F . Explicitly, BF = {
⊕

E | E ⊆ F}, and in particular each BF

is a finite Boolean orthoalgebra. By hypothesis, each finite subset of A is contained in BF for
some partition of unity F . If F1 and F2 are partitions of unity, then BF1 ∪BF2 is a finite subset
of A, hence BF1 ∪BF2 is contained in BF for some partition of unity F . Thus

{BF | F is a finite partition of unity for A}
is an up-directed family of subalgebras of A. Furthermore, each finitely generated subalgebra
of A is contained in some member of this family. But then the union of this family is all of A.
Hence A is Boolean. �

A block of an orthoalgebra is a maximal Boolean subalgebra. A block is small when it has
4 or fewer elements. Write BSub(A) for the set of Boolean subalgebras of A partially ordered
by inclusion.
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When an orthoalgebra A has more than 2 elements, all of its small blocks have 4 elements.
In this case small blocks are also known as horizontal summands. By removing a small block
from such A, we mean removing the two elements of the block that are not 0, 1. Except when A
has only small blocks, removing the small blocks from A leaves an orthoalgebra A∗ without small
blocks, and A can be recovered from A∗ by taking the horizontal sum of A∗ and an appropriate
number of 4-element Boolean algebras.

We collect in the following remark motivation for why orthoalgebras are a natural choice of
ambient structure to reconstruct from Boolean subalgebras.

Remark 3.4. Each element a of an orthoalgebra belongs to the Boolean subalgebra {0, a, a′, 1}.
Thus any orthoalgebra pastes together a family of Boolean orthoalgebras. More generally, call a
family F of Boolean orthoalgebras compatible [2, 1.7] if for each B,C ∈ F :

(1) B and C have the same 0 and 1;
(2) If a ∈ B ∩ C, then a′ in B equals a′ in C;
(3) for a, b ∈ B ∩ C, a⊕ b exists in B iff it exists in C, and when defined they are equal.

Any compatible family gives rise to a structure (A,⊕, ′, 0, 1) by union. A structure (A,⊕, ′, 0, 1)
that arises this way is called a weak orthostructure, extending [2]. This general setup includes
orthoalgebras as well as partial Boolean algebras [12].

A Boolean subalgebra of a weak orthostructure A is a subset B ⊆ A that is closed under
0, 1, ′,⊕ and forms a Boolean orthoalgebra. One might hope to reconstruct A from its poset
BSub(A) of Boolean subalgebras, but this is impossible: the partially ordered set BSub(A) in
the introduction is not only induced by the orthoalgebra A in the introduction, but it is also
isomorphic to BSub(D) for the weak orthostructure D obtained by taking two 8-element Boolean
algebras that intersect in a 4-element Boolean algebra {0, c, c′, 1} where c is an atom of one of
the 8-element Boolean algebras and a coatom of the other 8-element Boolean algebra. This D
is not only a weak orthostructure, but is a partial Boolean algebra. This structure D is not an
orthoalgebra, and cannot be depicted via a Hasse diagram.

0

1

0

1

a b c c′ d e

a′ b′ c′ c d′ e′

4. Orthodomains and directions

This section abstracts basic properties of BSub(A) for orthoalgebras A into a notion of
orthodomain. We generalize directions from Boolean domains to directions on orthodomains,
and show that an orthoalgebra A can be reconstructed from the directions on its orthodomain
BSub(A). First, an example that exhibits some counterintuitive behavior in BSub(A).
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Example 4.1. The Fraser cube is the orthoalgebra A displayed in the diagram. The four vertices
of each face are the atoms of a 16-element Boolean subalgebra of A.

a b

c d

e f

g h

Consider the element a⊕ b. Its orthocomplement in the Boolean algebra corresponding to
the bottom face is c⊕ d, and its orthocomplement in the Boolean algebra corresponding to the
front face is e ⊕ f . Thus c ⊕ d = e ⊕ f . Similarly, the intersection of the Boolean subalgebras
for the top and bottom of the cube consists of 0, a ⊕ b, b ⊕ d, c ⊕ d, a ⊕ c, and 1. Thus the
intersection of two Boolean subalgebras need not be Boolean. This implies that in BSub(A),
two elements need not have a meet, and two elements that have an upper bound need not have
a least upper bound, in contrast to the situation for Boolean domains and posets of Boolean
subalgebras of orthomodular posets.

Definition 4.2. Write l for the covering relation in a partially ordered set: xl z means x < z
and there is no y with x < y < z.

Definition 4.3. An orthodomain is a partially ordered set X with least element ⊥ such that:

(1) every directed subset of X has a join;
(2) X is atomistic and the atoms are compact;
(3) each principal ideal ↓x is a Boolean domain;
(4) if x, y are distinct atoms and x, y l w, then x ∨ y = w.

Lemma 4.4. Each element of an orthodomain lies beneath a maximal element.

Proof. Let X be an orthodomain and x ∈ X. Zorn’s lemma produces a maximal directed set
containing x ∈ X. Taking the join of this maximal directed set provides a maximal element of
X above x. �

We next examine condition (4) more closely.

Definition 4.5. Atoms x, y of an orthodomain are called near if they are distinct, their join
exists and covers x and y. Equivalently, by condition (4): x and y are near if they are distinct
and have an upper bound of height 2.

The following property, similar to the exchange property of geometry, will be key.

Proposition 4.6 (Exchange property). If x, y are near atoms of an orthodomain with x∨y = w,
then there is exactly one atom z that is distinct from x, y and with z l w. Further, any two of
x, y, z are near.

Proof. By nearness, x∨y = w exists and covers x and y, and by the definition of an orthodomain,
↓w is a Boolean domain. Since the top of this Boolean domain covers an atom in it, the Boolean
domain w must be isomorphic to the subalgebra lattice of an 8-element Boolean algebra. Then
↓w must have 3 distinct atoms, so there is a third atom z distinct from x, y with z l w. Then
x, y, z lw. It follows from the definition of orthodomain that w is the join of any two of x, y, z,
hence any two of x, y, z are near. �
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Definition 4.7. For an orthodomain X, Let N be the partial binary operation on X which, for
two near atoms x, y, assigns the third near atom z from Proposition 4.6, thus N(x, y) = z.

Proposition 4.8. If A is an orthoalgebra, BSub(A) is an orthodomain where directed joins are
given by unions.

Proof. Let S ⊆ BSub(A) be a directed family. By directedness, B =
⋃
S is closed under

⊕, ′, 0, 1, and is hence is a subalgebra. Also by directedness, Proposition 3.3 shows that B is
Boolean. Thus BSub(A) has directed joins given by union.

The atoms of BSub(A) are the Boolean subalgebras {0, a, a′, 1} where a 6= 0, 1. Since
directed joins are given by unions, it follows that the compact elements of BSub(A) are exactly
the finite Boolean subalgebras, and hence every atom is compact. Any B ∈ BSub(A) is the
union and hence join of the atoms beneath it, making BSub(A) atomistic. Finally, for a Boolean
orthoalgebra B, its Boolean subalgebras are exactly its subalgebras that are Boolean, so (3)
holds in BSub(A).

For (4), suppose x, y ∈ BSub(A) be distinct atoms with x, y l w. Say x = {0, a, a′, 1} and
y = {0, b, b′, 1} with 0, a, a′, b, b′, 1 all distinct. Since w covers an atom and ↓w is a Boolean
domain, it is an 8-element Boolean subalgebra of A containing x, y. So w = {0, a, a′, b, b′, c, c′, 1}
is an 8-element Boolean subalgebra of A for some c ∈ A. One of a, a′ is an atom of w, as is one
of b, b′, and one of c, c′. We may assume that a, b, c are atoms. Then a ⊕ b = c′ in w, and so
a ⊕ b = c′ in A. Then if v is a Boolean subalgebra of A that contains x, y, we have a, b ∈ v,
hence a ⊕ b = c′ ∈ v. Thus w = {0, a, a′, b, b′, c, c′, 1} ⊆ v, and x ∨ y = w. Thus BSub(A) is an
orthodomain. �

We now begin the task of reconstructing an orthoalgebra A from its orthodomain BSub(A).
The idea is to extend the directions used in the Boolean case to the orthoalgebra setting. The
reader should consult Definitions 2.16 and 2.17.

Definition 4.9. Let A be an orthoalgebra, a ∈ A, and x = {0, a, a′, 1}. Define the direction
corresponding to a to be the map da : ↑x→ (BSub(A))2 given by

da(y) = (↓y a ∪ ↑y a′, ↓y a′ ∪ ↑y a).

We seek an order-theoretic description in terms of an orthodomain X of the mappings da.
These are again called directions, since when restricted to the setting of Boolean domains, these
are the directions given in Definition 2.17.

Definition 4.10. A direction for a basic element x of an orthodomain X is a map d : ↑x→ X2

such that for each y, z ∈ ↑x:

(1) d(y) is a principal pair for x in the Boolean domain ↓ y;
(2) if y ≤ z and d(z) = (v, w), then d(y) = (y ∧ v, y ∧ w);
(3) if xl y, z and d(y) = (x, y), d(z) = (z, x), then y ∨ z exists and y, z l y ∨ z.

Write Dir(X) for the set of directions for basic elements of X.

Condition (3) of Definition 4.10 looks strange, but its effect will become clear in the proof
of Proposition 4.12.

Note that if d is a direction for some basic element x, then x can be determined from the
partial mapping d as the least element of its domain.

Proposition 4.11. Let d be a direction for a basic element x of an orthodomain X.

(1) for any x ≤ y ≤ z, the value of d(y) is determined by d(z);
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(2) for any x < y ≤ z, the value of d(z) is determined by d(y).

Proof. (1) This is immediate from the definition of direction. For (2), let v, w ∈ ↓ z be such that
(v, w) and (w, v) are the two principal pairs for x in ↓ z, so d(z) = (v, w) or d(z) = (w, v). In the
first case, d(y) = (y ∧ v, y ∧w), in the second d(y) = (y ∧w, y ∧ v). We claim that y ∧ v 6= y ∧w,
so d(y) determines d(z). To see this, Definition 2.9 gives that v ∧ w = x. So if y ∧ v = y ∧ w,
then x = y ∧ v ∧w = y ∧ v = y ∧w, but d(y) = (x, x) contradicts d(y) being a principal pair for
x in ↓ y (Remark 2.10). �

We will show that the directions of an orthodomain BSub(A) form an orthoalgebra A, but
we will see that not all orthodomains are of the form BSub(A) for an orthoalgebra A. So our
task in the orthodomain setting is more complex than in the Boolean domain setting. To make
our path efficient, we next prove the following result that is valid for any orthodomain.

Proposition 4.12. A basic element x of an orthodomain X has at most two directions.

Proof. If x is maximal, (x, x) is the only principal pair for x in ↓x, so there is only one direction
for x in X. Suppose that x is not maximal. By Lemma 4.4 and the definition of a direction,
any direction d for x is determined by its value on the maximal elements w > x. For any such
w, the value d(w) is a principal pair for x in ↓w, so by Corollary 2.12 can take two values.

Suppose there are three distinct directions d1, d2, d3 for x. Choose any maximal w > x.
Then two of d1, d2, d3 must agree at w, say d1 and d2. Since d1 6= d2, there is a maximal v with
d1(v) 6= d2(v). Choose y, z with xl y ≤ w and xl z ≤ v. Since d1(w) = d2(w) and y ≤ w, we
have d1(y) = d2(y), and since d1(v) 6= d2(v), we have d1(z) 6= d2(z).

As x is basic and xl y, either x = ⊥ and y is an atom, or x is an atom and y has height 2.
In either case the principal pairs for x in ↓ y are (x, y) and (y, x), and similarly the principal
pairs for x in ↓ z are (x, z) and (z, x). Suppose that d1(y) = d2(y) = (x, y). As d1(z) 6= d2(z),
one of them is (x, z) and the other is (z, x). We apply condition (3) of Definition 4.10 and
find an upper bound u = y ∨ z of y, z. According to Proposition 2.18, d1, d2 are uniquely
determined on ↓u by d1(y) = d2(y), a contradiction with d1(z) 6= d2(z), z ∈ ↓u. The case
d1(y) = d2(y) = (y, x) is excluded analogously with the role of y, z interchanged in (3) of
Definition 4.10. This contradiction shows x has at most two directions. �

Now we begin putting structure on the set of directions of an orthodomain.

Proposition 4.13. Let d be a direction for a basic element x of an orthodomain X. There is a
direction d′ for x given by d′(w) = (z, y) if d(w) = (y, z). Further, there are directions 0 and 1
for the basic element ⊥ ∈ X, given by

0(w) = (⊥, w) and 1(w) = (w,⊥).

Proposition 4.14. For an orthodomain with no basic maximal elements, the following are
equivalent:

(1) each basic element has a direction;
(2) each basic element has exactly two directions.

Proof. The direction (2) ⇒ (1) is trivial. For the converse, let d be a direction for x. Then so
is d′ given by Proposition 4.13. If d = d′, then for a maximal element w above x we have that
d(w) = d′(w), so w is basic, contrary to our assumptions. Thus each basic element has at least
two directions, so by Proposition 4.12 has exactly two directions. �

Definition 4.15. Call an orthodomain proper if it has no maximal elements that are basic. Say
it has enough directions if it is proper and each basic element has a direction.
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Note that the situation is somewhat analogous to that of spatial frames, which are defined
through the existence of a sufficient supply of points.

Definition 4.16. For X an orthodomain with enough directions, let ⊕ be a partial binary
operation on Dir(X) defined by the following three cases. For each direction d set

(1) d⊕ 0 = d = 0⊕ d
(2) d⊕ d′ = 1

For d a direction for x and e a direction for y with x, y near and z the third atom beneath
x ∨ y = w, then d⊕ e is defined if d(w) = (x,w) and e(w) = (y, w), and in this case

(3) d⊕ e is the direction for z with (d⊕ e)(w) = (w, z)

We will write d ⊥ e and say d is orthogonal to e if d⊕ e is defined.

Theorem 4.17. Let A be an orthoalgebra without small blocks. Then the orthodomain BSub(A)
has enough directions and A is isomorphic to Dir(BSub(A)).

Proof. By Proposition 4.8, X = BSub(A) is an orthodomain. Let a ∈ A and x = {0, a, a′, 1}.
Let us verify the three conditions of Definition 4.10 for the direction da given by Definition 4.9.
Condition (1) follows because da(y) is a principal pair in ↓ y for x. Condition (2) follows by
construction of da. For condition (3), consider first the case x = ⊥, where a is either 0 or 1.
If a = 0 then da(y) = (⊥, y) for all y, and if a = 1 then da(y) = (y,⊥) for all y, so (3) holds
vacuously. Suppose x is an atom of X with xl y, z and that da(y) = (x, y) and da(z) = (z, x).
This means that y, z are 8-element Boolean algebras, that a is an atom in y, and a is a coatom
in z. Let b1, b2 be the atoms of y distinct from a and c1, c2 be the atoms of z distinct from a′.
We depict y below on the left, and z on the right.

0

ab1b2

b′2 b′1 a′

1

0

a′ c1 c2

c′2c′1a

1

Then c1⊕ c2 = a and b1⊕ b2 = a′ in A. Therefore b1, b2, c2, c2 are the atoms of a 16-element
Boolean subalgebra u of A. Clearly u = y ∨ z and y, z l u, establishing condition (3). Thus da
is a direction. Since this holds for each a ∈ A, the orthodomain X has enough directions.

Define ϕ : A → Dir(X) by ϕ(a) = da. Every basic element of X is of the form {0, a, a′, 1}
and has 2 directions. Since da and da′ are directions for {0, a, a′, 1}, the map ϕ is surjective. If
ϕ(a) = ϕ(b), then since da is a direction given by a and db is a direction given by b, we must
have that b = a or b = a′. But da 6= da′ , so ϕ is injective.

To show that ϕ is an isomorphism, it is easily seen that ϕ maps 0, 1 of A to the directions
0, 1 of X, and that ϕ(a′) = ϕ(a)′. It remains to show that a ⊥ b if and only if ϕ(a) ⊥ ϕ(b)
and that then ϕ(a ⊕ b) = ϕ(a) ⊕ ϕ(b). Consider the possibilities to have a ⊥ b. For any a we
have a ⊥ 0, ϕ(a) ⊥ ϕ(0), and ϕ(a ⊕ 0) = ϕ(a) = ϕ(a) ⊕ ϕ(0). For any a we have a ⊥ a′ and
a⊕ a′ = 1. Since ϕ(a′) = ϕ(a)′, then ϕ(a) ⊥ ϕ(a′) and ϕ(a⊕ a′) = 1 = ϕ(a)⊕ ϕ(a′).

The remaining possibility to have a ⊥ b is when a, b are distinct atoms of an 8-element
Boolean subalgebra w of A. In this case, x = {0, a, a′, 1} and y = {0, b, b′, 1} are basic elements
that are near, x∨y = w, z = {0, a⊕b, (a⊕b)′, 1} is the third atom beneath w, and da(w) = (x,w),
db(w) = (y, w). Thus ϕ(a) ⊥ ϕ(b), and as da ⊕ db is the direction for z with (da ⊕ db)(w) =
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(w, z), we have ϕ(a) ⊕ ϕ(b) = ϕ(a ⊕ b). Conversely, suppose ϕ(a) ⊥ ϕ(b) via condition (3) of
Definition 4.16. Since da is a direction for x = {0, a, a′, 1} and db is a direction for y = {0, b, b′, 1},
this condition assumes x, y are near and generate an 8-element Boolean subalgebra of A. Further,
since da(w) = (x,w) and db(w) = (y, w), we have that a, b are atoms of w, hence a ⊥ b in A.
Finally, da ⊕ db is the direction for the third atom z = {0, a ⊕ b, (a ⊕ b)′, 1} beneath w with
(da ⊕ db)(w) = (w, z), so da ⊕ db = da⊕b. �

Remark 4.18. The previous theorem achieves one of our primary aims: a means to reconstruct
an orthoalgebra A from its poset of Boolean subalgebras. It only applies if A has no small
blocks, but, with one exception, we can still recover A from BSub(A) without this restriction.
The exception is when BSub(A) has a single element, which occurs when A is a 1-element
orthoalgebra and also when A is a 2-element orthoalgebra. In these cases it is clearly impossible
to recover A from BSub(A).

Suppose then that A has more than two elements. If it does have small blocks, these appear
in BSub(A) as maximal atoms. Provided A has a block that is not small, removing these blocks
from A yields an orthoalgebra A∗, and BSub(A∗) is obtained from BSub(A) from removing
maximal atoms. Since we can reconstruct A∗ as Dir(BSub(A∗)), we can then reconstruct A by
adding a number of horizontal summands equal to the number of maximal atoms of BSub(A).
If A consists of only small blocks, it is determined by the cardinality of the set of its maximal
atoms.

5. Characterizing orthodomains of the form BSub(A)

In this section, we show, for any orthodomain X with enough directions, that Dir(X) is
an orthoalgebra, and characterize those orthodomains that are of the form BSub(A) for some
orthoalgebra A.

Definition 5.1. For an orthodomain X, let X∗ be the set of elements of X of height 3 or less.
A shadow of X is a nonempty subset S ⊆ X∗ satisfying:

(1) S is a downset of X∗;
(2) S is closed under existing joins in X∗.

Note, the second condition means that if T ⊆ S and there is w ∈ X∗ that is the least upper
bound of T in X, which will imply that w is also the least upper bound of T in X∗, then w ∈ S.

Proposition 5.2. Let X be an orthodomain, S be a shadow of X, x be a basic element of X
with x ∈ S, and d be a direction of X for x. Then:

(1) S is an orthodomain;
(2) the restriction d |S of d to ↑x ∩ S is a direction of S.

Hence if X has enough directions and S has no maximal elements which are basic, then S has
enough directions.

Proof. Since X∗, and hence S, has finite height, every directed set has a maximal element and
hence a join, and each element is compact. Since X is atomistic and S is a downset, it is
atomistic. Since S is a downset of X, for each s ∈ S the ideal ↓ s is a Boolean domain. Finally,
if x, y are atoms of S and x, y l w, then x ∨ y = w in X, hence x ∨ y = w in S as well. Thus S
is an orthodomain, establishing part (1).

To see part (2) we verify the three conditions of Definition 4.10. The first two are trivial
consequences of restricting. For the third, suppose there are x l y, z with y, z ∈ S and d(y) =
(x, y), d(z) = (z, x). Since d is a direction of X, then y ∨ z = w exists in X and y, z l w. Since
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x is basic and xl y, z l w then w has height at most 3. So w ∈ X∗ and w is the join of y, z in
X∗. Since S is a shadow, it is closed under joins in X∗, so w ∈ S and w = y ∨ z in S. �

Definition 5.3. Let X be an orthodomain with enough directions and S be a shadow of X
without maximal elements which are basic. Write DirS(X) for the set of directions of X for
basic elements x ∈ S, and let µS : DirS(X)→ Dir(S) be given by µS(d) = d|S.

Proposition 5.4. Let X be an orthodomain with enough directions and S be a shadow of X
without maximal elements which are basic. Then:

(1) DirS(X) contains 0, 1 and is closed under ′ and ⊕;
(2) µS is a bijection from DirS(X) to Dir(S);
(3) µS preserves 0, 1 and ′;
(4) d ⊥ e if and only if µS(d) ⊥ µS(e), and in this case µS(d⊕ e) = µS(d)⊕ µS(e).

Proof. (1) Since 0, 1 are directions for ⊥ and ⊥ ∈ S, we have 0, 1 ∈ DirS(X). If d is a direction
for x, then d′ is also a direction for x, giving closure under ′. For closure under ⊕, suppose
d, e ∈ DirS(X) with d a direction for x ∈ S, e a direction for y ∈ S, and d ⊥ e. There are several
cases for ⊥. If one of d, e is 0, then d ⊕ e equals d or e, and if e = d′, then d ⊕ e = 1, so these
cases are trivial. In the remaining case x and y are near. Say x ∨ y = w with z the third atom
beneath w. Then w ∈ S since S is closed under joins in X∗, and so z ∈ S since S is a downset
of X. Since d⊕ e is a direction for z, we have d⊕ e ∈ DirS(X).

(2) For a basic x ∈ S, the two directions for x in X are d and d′. These restrict to directions
of S for x and their restrictions are orthocomplements. Then as S has no basic maximal elements,
these restrictions are distinct and are the only two directions for x in S. Part (3) is trivial.

For part (4), suppose d, e ∈ DirS(X) with d a direction for x and e a direction for y. Note
that one of d, e is 0 iff one of µS(d), µS(e) is 0, and in this case µS(d⊕ e) = µS(d)⊕µS(e). Next,
e = d′ iff µS(e) = µS(d)′, and in this case µS(d ⊕ e) = µS(d) ⊕ µS(e). For the remaining case
we have d ⊥ e if and only if x, y are near and d(w) = (x,w), e(w) = (y, w) where x ∨ y = w.
But this is equivalent to µS(d) ⊥ µS(e). In this case, d ⊕ e is the direction for the third atom
z beneath w with (d ⊕ e)(w) = (w, z), and thus its restriction is a direction for z taking value
(w, z) at w, and hence is µS(d)⊕ µS(e). �

A specific instance of the previous proposition is of particular interest. It is easily seen that
X∗ is a shadow of X that has no basic maximal elements when X has none. Furthermore, since
every basic element of X belongs to X∗, we have DirX∗(X) = Dir(X).

Corollary 5.5. If X is an orthodomain with enough directions, then so is X∗, and restriction
gives an isomorphism Dir(X) ' Dir(X∗).

We next set out to prove that Dir(X) is an orthoalgebra for any orthodomain X with enough
directions.

Lemma 5.6. For X an orthodomain with enough directions, the partial binary operation ⊕
on Dir(X) is commutative and associative: when one side of an expression d ⊕ e = e ⊕ d or
(d⊕ e)⊕ f = d⊕ (e⊕ f) is defined, so is the other, and the two are equal.

Proof. Clearly ⊕ is commutative. Making use of this and symmetry, it suffices to show that if
(d⊕ e)⊕ f is defined, then d⊕ (e⊕ f) is defined, and the two are equal. For this, we consider
a number of cases.

If any of d, e, f are 0, then it is easily verified. The only direction orthogonal to 1 is 0, so
we may also assume that none of d, e, d⊕ e, f is 1. So there are atoms x, y, z with d a direction
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for x, e a direction for y, and f a direction for z. Having d = e′ gives d ⊕ e = 1, so x, y are
distinct, and therefore to have d ⊥ e we must have that x, y are near. Let x ∨ y = w and let p
be the third atom beneath w. Then d⊕ e is the direction for p with (d⊕ e)(w) = (w, p).

Since neither d ⊕ e or f equals 0 or 1, there are two possibilities to have (d ⊕ e) ⊥ f . We
consider first the case that f = (d⊕e)′. Since d⊕e is the direction for p with (d⊕e)(w) = (w, p),
this means that f is the direction for z = p with f(w) = (p, w). Since x, y, p are the three pairwise
near atoms under w, we then have that e ⊕ f is defined, and that e ⊕ f is the direction for x
with (e⊕ f)(w) = (w, x). Thus e⊕ f = d′. So d⊕ (e⊕ f) is also defined and both sides of the
expression in this case evaluate to 1.

⊥

x y p z q

w v

u

⊥

x y z q p · ·

w · · · · v

u

Figure 3. A part of the Hasse diagram of the shadow from the proof of Lemma 5.6
(two possible partial diagrams of the same situation)

For the final case (see Figure 3), it must be that item (3) in Definition 4.16 applies to
(d⊕ e) ⊥ f . Since d⊕ e is the direction for p with (d⊕ e)(w) = (w, p) and f is a direction for z,
the assumptions of (3) give that p, z are near. Say p∨z = v, and let q be the third atom distinct
from p, z under v. Then to have d ⊕ e ⊥ f we have (d ⊕ e)(v) = (p, v) and f(v) = (z, v), and
the sum (d⊕ e)⊕ f is the direction for q with

(
(d⊕ e)⊕ f

)
(v) = (v, q).

Since (d ⊕ e)(w) = (w, p) and (d ⊕ e)(v) = (p, v), we have w 6= v. Since the three atoms
beneath w are x, y, p, the three atoms beneath v are p, q, z, and w, v cannot have more than one
common atom beneath them since they are distinct, we have that x, y, p, q, z, w, v are distinct.
Since d⊕ e is a direction for p, by Definition 4.10

pl w, v, (d⊕ e)(w) = (w, p) and (d⊕ e)(v) = (p, v) ⇒ w ∨ v exists and w, v l w ∨ v

Let u = w ∨ v. Since p is an atom and p l w, v l u then u has height 3 so belongs to X∗.
Let S = ↓u and note that this is a shadow of X. Since S is isomorphic to Sub(B) for a
16-element Boolean algebra B, Theorem 4.17 gives that Dir(S) ' B. Proposition 5.4 gives
DirS(X) ' Dir(S). Since d, e, f all belong to DirS(X), their associativity under ⊕ follows. �

Theorem 5.7. If X is an orthodomain with enough directions, then Dir(X) is an orthoalgebra.

Proof. Lemma 5.6 shows that ⊕ is commutative and associative. There are directions 0, 1. For
each direction d also d′ is a direction, d ⊕ d′ is defined, and d ⊕ d′ = 1. Suppose e is another
direction with d ⊕ e defined and d ⊕ e = 1. Since 1 is a direction given by the basic element
0, it cannot be that d ⊥ e is defined because of reason (3) in Definition 4.16. If it is defined
because of reason (2), then e = d′. If it is defined because of reason (1), then one of d, e is 0,
and because we have required d ⊕ e = 1, the other must be 1, hence again e = d′. So d′ is the
unique direction with d⊕ d′ = 1. Finally, suppose that d is a direction with d⊕ d defined. This
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cannot be defined because of reason (3) of Definition 4.16. It cannot be because of reason (2)
since d 6= d′. So it must be defined because of reason (1), giving d = 0. �

Remark 5.8. For an orthodomain X with enough directions, X ' BSub(Dir(X)) does not
usually hold. By Corollary 5.5 Dir(X) ' Dir(X∗), and we clearly do not have X ' X∗ for each
orthodomain X with enough directions. In fact, X = BSub(A) provides a counterexample for
any orthoalgebra A with no small blocks and a block with more than 4 atoms.

Definition 5.9. A shadow S ⊆ X∗ of an orthodomain X is a Boolean shadow if either:

(1) S = ↓x for some basic x ∈ X;
(2) S has enough directions and Dir(S) is a Boolean orthoalgebra.

Write BShad(X) for the partially ordered set of Boolean shadows of X under inclusion.

Definition 5.10. Let X be an orthodomain with enough directions, and let B be a Boolean
subalgebra of Dir(X). Define:

TB = {x | x is basic in X and there is some d ∈ B with d a direction for x},
SB = the closure of TB under existing joins in X∗.

Proposition 5.11. Let X be an orthodomain with enough directions and let B be a Boolean
subalgebra of Dir(X). Then:

(1) if B has more than 4 elements, then SB is proper and B = DirSB
(X);

(2) SB is a Boolean shadow of X.

Proof. We first prove that SB is a shadow of X.
By definition, SB ⊆ X∗ and is closed under existing joins in X∗. It suffices to show that

SB is a downset of X∗. Clearly if w is a basic element of X that belongs to SB, then any x ≤ w
also belongs to S. This covers the case that w is of height 0 or 1. Suppose w ∈ SB is of height
2 in X. Then w belonging to SB means it is the join w = x∨ y of two elements x, y of TB, both
of which are atoms of X. Since x, y ∈ TB there are directions d, e ∈ Dir(X) with d a direction
for x and e a direction for y. Further, these may be chosen so that d ⊥ e. If z ≤ w, then either
z is one of 0, x, y, w, or z is the third atom beneath x ∨ y. In the last case d ⊕ e is a direction
for z and d⊕ e belongs to B, so z ∈ TB ⊆ SB.

Our final case is when w ∈ SB is of height 3. Since w ∈ SB, it is the join of atoms of TB.
Since w ∈ X we have ↓w isomorphic to the poset of subalgebras of a 16-element Boolean algebra
as shown in Figure 1. Our task is to show that all 7 atoms x in ↓w belong to TB since this then
shows that all elements of height 2 in ↓w are in SB. The atoms in ↓w can be divided into two
groups, the four at left and the three at right. There are two possibilities to consider:

(i) w is the join of two atoms w = x ∨ y from the right with x, y ∈ TB;
(ii) w is the irredundant join of 3 atoms of TB.

Using the result above that if z ∈ SB is of height 2 then ↓ z ⊆ SB, and that SB is closed
under joins in X∗, the second case can be reduced to the first, so we just consider the first. Let
d, d′ be the directions for x and e, e′ be the directions for y. So d, d′, e, e′ ∈ B and neither of d, d′

is orthogonal to either of e, e′. Since B is a Boolean subalgebra of Dir(X), then d, e generate a
16-element subalgebra Y of B. So there are directions f1, . . . , f4 ∈ B that are the atoms of Y .
These must be directions for the four basic atoms at the left of ↓w. But f1, . . . , f4 in B imply
that these four atoms at left belong to TB. Since the remaining atom beneath ↓w lies under a
join of two of the atoms at left, it also belongs to TB. This establishes that SB is a shadow.



BOOLEAN SUBALGEBRAS OF ORTHOALGEBRAS 19

For part (1), assume B has more than 4 elements. To see that SB is proper, first note that
it is not the case that 0 is maximal in SB. Let x be an atom in SB and hence in TB. Then
there is a direction d in B that is a direction for x. Since B has more than 4 elements, there is a
nonzero direction e in B orthogonal and unequal to one of d or d′. If e is a direction for y, then
x, y are near, and w = x ∨ y ∈ SB. So no atom is maximal in SB, and SB is proper.

It remains to show that B = DirSB
(X). Let d be a direction in B for a basic element x. Then

by definition, x ∈ TB ⊆ SB. Thus by definition d ∈ DirSB
(X). Conversely, let d ∈ DirSB

(X) be
a direction for the basic element x of X. By definition, x ∈ SB. But SB consists of the elements
of X∗ that are joins of elements of TB, and as x is basic, it must be that x ∈ TB. Thus there is
a direction e in B for x. But there are only two directions for x, namely d, d′. So either e = d
or e′ = d, and in either case d is in B since B is closed under orthocomplementation.

For part (2), it remains to show that the shadow SB is Boolean. If B has 4 or fewer elements,
then TB = ↓x for a basic element x, so SB = TB, and so SB is Boolean. Suppose B has more
than 4 elements. Then by (1) B = DirSB

(X). Proposition 5.4 gives DirSB
(X) ' Dir(SB). So

Dir(SB) is Boolean, giving that SB is a Boolean shadow. �

Proposition 5.12. For X an orthodomain with enough directions, there is an isomorphism of
posets Γ: BSub(Dir(X))→ BShad(X) given by Γ(B) = SB.

Proof. The map is well-defined by Proposition 5.11. If B1 ⊆ B2, then surely SB1 ⊆ SB2 , so Γ
preserves order. Suppose SB1 ⊆ SB2 . Since elements of SB2 are joins of elements of TB2 , and
elements of TB1 are basic and hence join irreducible, this implies that TB1 ⊆ TB2 and this gives
that B1 ⊆ B2. So Γ is an order embedding.

To see that it is surjective, let S be a Boolean shadow of X. If S is either {⊥} or {⊥, x} for
some atom x of X, then S = Γ(B) where B = {0, 1} or B = {0, d, d′, 1} where d is a direction
for x respectively. Suppose that S has enough directions and Dir(S) is a Boolean orthoalgebra.
Let B = DirS(X). By Proposition 5.4, B is a subalgebra of Dir(X) and the restriction map from
B to Dir(S) is an isomorphism, so B is a Boolean subalgebra of Dir(X). Then Γ(B) = SB is
the shadow generated by TB, and the elements of TB are those basic elements x of X that have
a direction d ∈ B = DirS(X). By definition, the elements of DirS(X) are those directions that
are for some basic x ∈ S. Thus TB consists of the basic elements in S, so Γ(B) = S. �

Definition 5.13. Let X be an orthodomain. We say X is short if X = X∗. We say X is tall if
m =

∨
S exists and ↓m ∩X∗ = S for each Boolean shadow S.

Proposition 5.14. Let A be an orthoalgebra without small blocks. Then X = BSub(A) is a tall
orthodomain with enough directions.

Proof. By Theorem 4.17, X is an orthodomain with enough directions, and there is an ortho-
algebra isomorphism ϕ : A → Dir(X) where ϕ(a) = da is the direction for xa = {0, a, a′, 1}
with

da(w) = (↓w a ∪ ↑w a′, ↓w a′ ∪ ↑w a).

Let S be a Boolean shadow of X. If S = ↓x for a basic element x it is clear that x =
∨
S

exists and ↓x ∩ X∗ = S. Assume that S has enough directions and Dir(S) is Boolean. By
Proposition 5.4 Dir(S) ' DirS(X), hence DirS(X) is Boolean. Let w = ϕ−1(DirS(X)). Then w
is a Boolean subalgebra of A, and consists of all the a ∈ A with ϕ(a) ∈ DirS(X), hence all a ∈ A
with da ∈ DirS(X), and therefore all a ∈ A with xa ∈ S. Since each basic element of X is of
the form xa given by some a ∈ A, we have for a basic element x ∈ X, that x ∈ S exactly when
x ≤ w. Since S is a downset and X is atomistic w =

∨
S, and since S is closed under existing

joins in X∗ we have X∗ = S. Thus X is tall. �
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Proposition 5.15. If X is a tall orthodomain with enough directions, then X ' BSub(Dir(X)).

Proof. By Proposition 5.12, we have BSub(Dir(X)) ' BShad(X). Define ψ : BShad(X) → X
by ψ(S) =

∨
S, and λ : X → BShad(X) by λ(m) = ↓m ∩ X∗. Since X is tall,

∨
S exists

and ↓(
∨
S) ∩ X∗ = S. For any w ∈ X we have ↓w ∩ X∗ is a downset of X∗ that is closed

under existing joins in X∗, hence is a shadow. If w is basic in X, then by definition ↓w is a
Boolean shadow. Otherwise ↓w is a proper Boolean domain, hence has enough directions. Since
↓w ∩X∗ = (↓w)∗, Corollary 5.5 gives that ↓w ∩X∗ is an orthodomain with enough directions
and that Dir(↓w ∩X∗) is isomorphic to Dir(↓w), and hence is Boolean. In any case, ↓w ∩X∗
is a Boolean shadow of X. So ψ and λ are well-defined. Since ↓(

∨
S) ∩ X∗ = S we have

λ ◦ ψ = id. For w ∈ X, by atomisticity w =
∨

(↓w ∩X∗), so ψ ◦ λ = id. Thus BShad(X) ' X,
so BSub(Dir(X)) ' X. �

Theorem 5.16. The following are equivalent for an orthodomain X:

(1) X is tall and has enough directions;
(2) X ' BSub(A) for an orthoalgebra A without small blocks.

When these conditions hold, Dir(X) is an orthoalgebra and X ' BSub(Dir(X)).

Proof. The direction (1) ⇒ (2) follows from Theorem 5.7 and Proposition 5.15. The direction
(2) ⇒ (1) follows from Theorem 4.17 and Proposition 5.14. �

Remark 5.17. The previous theorem only characterizes orthodomains of the form BSub(A) for
an orthoalgebra A without small blocks. This can be extended to orthoalgebras A with small
blocks as follows. If A has two or fewer elements, then BSub(A) is a 1-element orthodomain.
If A has more than two elements and all its blocks are small, then BSub(A) is an orthodomain
where all elements are basic, and each orthodomain where all elements are basic arises this way
as the horizontal sum of 4-element Boolean algebras, one for each atom of the orthodomain.
Otherwise not all blocks of A are small. Let A∗ be the orthoalgebra obtained by removing small
blocks from A. Then BSub(A∗) is a tall orthodomain with enough directions, and BSub(A) is
obtained from this by adding a maximal atom to BSub(A∗) for each small block of A. So the
orthodomains isomorphic to BSub(A) for some orthoalgebra A are exactly those that have one
element, have all their elements basic, or are constructed by adding a set of maximal atoms to
a tall orthodomain with enough directions.

Theorem 5.18. The following are equivalent for an orthodomain X:

(1) X is short and has enough directions;
(2) X ' BSub(A)∗ for an orthoalgebra A without small blocks.

When these conditions hold, Dir(X) is an orthoalgebra and X ' BSub(Dir(X))∗.

Proof. The direction (2) ⇒ (1) follows from Theorem 4.17 and Corollary 5.5. For the converse,
assume (1). By Proposition 5.12 there is an isomorphism Γ: BSub(Dir(X)) → BShad(X)
given by Γ(B) = SB where SB is from Definition 5.10. Then Γ restricts to an isomorphism
of posets Γ′ : BSub(Dir(X))∗ → BShad(X)∗. We will show that BShad(X)∗ is equal to the
poset of principle downsets ↓w where w ∈ X, hence is isomorphic to X. This will show that
BSub(Dir(X))∗ is isomorphic to X, establishing (2) and the further remark.

Suppose w ∈ X. If w is basic, then by definition ↓w is a Boolean shadow that clearly has
height at most 1 in BShad(X). Otherwise ↓w is a Boolean domain with enough directions and
Dir(↓w) is a Boolean algebra. Thus ↓w is a Boolean shadow. Since X is short, w has height at
most 3, so ↓w has height at most 4 in BShad(X), so belongs to BShad(X)∗.
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From the isomorphism Γ′, the elements of BShad(X)∗ are the SB where B is a Boolean
subalgebra of Dir(X) with at most 16 elements. We must show that all such SB are equal to
↓w for some w ∈ X. If B has 4 or fewer elements then SB is equal to ↓w for a basic element
w ∈ X. Suppose B has 8 elements. Let d1, d2, d3 be the directions that are the atoms of B and
assume di is a direction for the basic element xi of X for i = 1, 2, 3. Since d1 is orthogonal to
d2 we have that x1, x2 are near, so have a join w = x1 ∨ x2, and this belongs to SB. By simple
counting, SB must be equal to ↓w. Finally, suppose that B has 16 elements and d1, . . . , d4 are
the atoms of B with di a direction for xi for i = 1, . . . , 4. Since d1, d2 are orthogonal x1, x2 are
near, so z = x1 ∨ x2 exists. Suppose x is the third atom beneath z. Then (d1 ⊕ d2)(z) = (z, x).
Let y = x3 ∨ x4. Since d3 ⊕ d4 = (d1 ⊕ d2)

′ we have that the third atom under y is x. Also
(d3⊕d4)(y) = (y, x), so (d1⊕d2)(y) = (x, y). Then by condition (3) of Definition 4.10 w = y∨ z
exists and has height 3. Then simple counting gives that SB = ↓w. �

Remark 5.19. The previous theorem extends to small blocks as in Remark 5.17. This provides a
bijective correspondence between isomorphism classes of orthoalgebras and isomorphism classes
of short orthodomains with enough directions.

Remark 5.20. We have shown that for an orthoalgebra A, the poset BSub(A)∗ of elements of
height 3 or less in BSub(A) is sufficient to reconstruct A. We will show one cannot make due
with the order structure of the elements of height 2 or less. Specifically, for an orthodomain X,
let X† be the poset of elements of height 2 or less in X. We will give two non-isomorphic
orthoalgebras A and C where BSub(A)† and BSub(C)† are isomorphic.

Let A be the 16-element Boolean algebra shown in Figure 1. The diagram below shows
the Fano plane minus a single line, the circle connecting the middle elements of each side. This
figure gives a poset P with bottom ⊥, seven atoms given by the vertices of this figure, and six
elements of height 2 given by the lines of the figure, with the understanding that a vertex lies
beneath a line if it lies on the line. Then P is isomorphic to the elements BSub(A)† of height 2
or less in BSub(A).

Figure 4. The hypergraph view of the subalgebras of a 16-element Boolean algebra

However, it follows from the usual hypergraph representation of orthoalgebras (see [14] with
a correction [15]) that this poset also represents the atom structure of an orthoalgebra C. This
means that there is an orthoalgebra C whose blocks all have 8 elements where the atoms of C
are the vertices of this figure, and the sets of atoms forming a block of C are exactly the vertices
lying on a line in the figure. Then BSub(C) is isomorphic to P , and as every element of it is of
height 2 or less, BSub(C)† = BSub(C). Thus BSub(A)† ' BSub(C)†, but A 6' C.

6. Categorical aspects in the Boolean setting

In Section 2 we gave a correspondence between Boolean algebras and Boolean domains.
In this section we include morphisms in our discussion in the Boolean setting. The idea is to
take Sub(B) as the object part of a functor from the category of Boolean algebras to a suitable
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category of Boolean domains, and to take a Boolean homomorphism f : B1 → B2 to the direct
image map f [−] : Sub(B1) → Sub(B2). From the outset, there are limitations on what can be
achieved. The 2-element and 1-element Boolean algebras both have 1-element Boolean domains
as their subalgebra lattices, and the 4-element Boolean algebra has 2 automorphisms, while its
subalgebra lattice is a 2-element lattice, and has only the trivial automorphism. So there cannot
be an equivalence of categories. Nevertheless, barring these obstacles, we come as close as one
could hope to an equivalence.

Definition 6.1. Write BoolAlg for the category of Boolean algebras having more than one
element and the Boolean algebra homomorphisms between them.

Recall that for a Boolean domain X, we worked initially with principal pairs for a basic
element x ∈ X. The approach based on directions for Boolean domains was equivalent to that
based on principal pairs, and in some ways more intuitive. But principal pairs are easier to work
with, and we will formulate our discussion here in terms of them.

Definition 6.2. Write BoolDom for the category whose objects are Boolean domains, and
whose morphisms are functions α : X1 → X2 that preserve arbitrary joins and for each w ∈ X1:

(1) α[↓w] = ↓α(w);
(2) if (y, z) is a principal pair in ↓w, then (α(y), α(z)) is a principal pair in ↓α(w);
(3) if (y1, z1) ≤ (y2, z2) in Pp(↓w), then (α(y1), α(z1)) ≤ (α(y2), α(z2)) in Pp(↓α(w)).

Remark 6.3. The third condition in Definition 6.2 is not so elegant, and carries less weight
than it may seem. Since α preserves joins, it preserves order. Hence (y1, z1) ≤ (y2, z2) implies
(α(y1), α(z1)) ≤ (α(y2), α(z2)) except when (α(y1), α(z1)) is a dual modular atom of ↓α(w). The
content of condition (3) is to guarantee that in this case (α(y2), α(z2)) 6= (α(y1), α(z1))

′. We do
not know if (3) is necessary, or whether it is independent of (1) and (2). Perhaps a way around
this trouble would be to define ⊕ for Pp(X) instead of ≤.

Proposition 6.4. There is a functor Sub: BoolAlg→ BoolDom that takes a Boolean algebra
B to its lattice Sub(B) of subalgebras, and that takes a homomorphism f : B1 → B2 to f [−].

Proof. In general, the image under a homomorphism of the subalgebra generated by the union
of a family of sets is equal to the subalgebra generated by the union of the images of the sets. So
f [−] preserves arbitrary joins. Let w ∈ Sub(B1) and q = f [w]. We verify (1)–(3) of Definition 6.2
for w. If p ∈ Sub(B2) with p ≤ q, then y = f−1[ p ] ∩ w is a subalgebra of B1 that is contained
in w and f [ y ] = p. So f [−] maps ↓w onto ↓ f [w], giving (1).

Suppose that (y, z) is a principal pair in ↓w. By Proposition 2.11 there is a ∈ w with

y = ↓w a ∪ ↑w a′ and z = ↓w a′ ∪ ↑w a.

Since f maps the subalgebra w of B1 onto the subalgebra q of B2, we have f [↓w a] = ↓q f(a)
and f [↑w a′] = ↑q f(a)′. So f [ y ] = ↓q f(a) ∪ ↑q f(a′) and f [ z ] = ↓q f(a)′ ∪ ↑q f(a). Then, by
Proposition 2.11 this is a principal pair in ↓ q = ↓α(w), giving (2).

For part (3), if (y1, z1) ≤ (y2, z2) are principal pairs in ↓w, then there are a ≤ b in w with
y1 = ↓w a∪↑w a′, z1 = ↓w a′∪↑w a, y2 = ↓w b∪↑w b′, and z2 = ↓w b′∪↑w b. By the argument used
in part (2) we have (f [y1], f [z1]) is the principal pair in ↓ f [w] given by f(a) and (f [y2], f [z2]) is
the principal pair in ↓ f [w] given by f(b). Since f(a) ≤ f(b) part (3) follows. �

Remark 6.5. The opening of this section mentioned several obstacles to an equivalence between
the categories BoolAlg and BoolDom. There are more. Suppose that B1 and B2 are Boolean
algebras with B2 having more than 1 element. Then every prime ideal of B1 gives a distinct
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homomorphism f : B1 → B2 whose image has 2 elements. For each of these homomorphisms,
f [−] is the map sending each element of Sub(B1) to ⊥ ∈ Sub(B2). For another pathology,
suppose f : B1 → B2 is a Boolean algebra homomorphism whose image has 4 elements. Then
composing with the nontrivial automorphism of this image gives a homomorphism g : B1 → B2

distinct from f with f [−] and g[−] equal. Thus the functor Sub is not faithful with respect to
homomorphisms whose image has four or fewer elements.

A functor F : C→ D gives an equivalence of categories if it is full, faithful, and essentially
surjective on objects, i.e. each object of D is isomorphic to some F (C) for an object C of C.
The functor Sub: BoolAlg→ BoolDom does not have these properties, but it comes close.

Lemma 6.6. Let B be a Boolean algebra with more than 4 elements, and let (y, z), (y1, z1), (y2, z2)
be principal pairs for the basic elements x, x1, x2 in Sub(B).

(1) If x is dual modular, one of y, z is basic and the other equals >.
(2) If x is not dual modular, neither of y, z is basic or equal to >.
(3) If y1 = y2 and either y1 6= > or x1 = x2, then z1 = z2.
(4) The join (y1, z1) ∨ (y2, z2) in Pp(B) has first component y1 ∨ y2.

Proof. Proposition 2.11 gives a, a1, a2 ∈ B with (y, z) = (↓ a ∪ ↑ a′, ↓ a′ ∪ ↑ a) and with (yi, zi) =
(↓ ai∪↑ a′i, ↓ a′i∪↑ ai) for i = 1, 2. Part (1) now follows from Definition 2.9. Part (2) follows from
Lemma 2.7 because a, a′ are not 0, 1, atoms, or coatoms. For part (3), since ↓ a1∪↑ a′1 = ↓ a2∪↑ a′2
either a1 = a2, which implies z1 = z2, or y1 = y2 = >. If y1 = y2 = >, then (1) gives that
(yi, zi) = (>, xi) for i = 1, 2 and the result follows. Finally, part (4). Proposition 2.14 shows
the first component of (y1, z1) ∨ (y2, z2) is S = ↓(a1 ∨ a2) ∪ ↑(a1 ∨ a2)′ = ϕ(a1 ∨ a2). Clearly S
contains y1, y2 hence S contains the subalgebra y1 ∨ y2 they generate. If b ∈ ↓(a1 ∨ a2), then
b = (b ∧ a1) ∨ (b ∧ a2). It follows that S ⊆ y1 ∨ y2. �

Lemma 6.7. Let B1 and B2 be Boolean algebras with B2 having more than 4 elements, and let
f : B1 → B2 be a function that preserves order and complementation. If f(a ∨ b) = f(a) ∨ f(b)
whenever f(a) ∨ f(b) is not a coatom or 1, then f is a homomorphism.

Proof. Since f preserves order and complementation, it preserves orthogonality. We will show
that f preserves orthogonal joins. From this it follows that f preserves binary joins, so is a
homomorphism. Indeed, for any a, b there are pairwise orthogonal c, d, e with a = c ∨ d and
b = d ∨ e. Then if f preserves orthogonal joins, f(a ∨ b) = f(c ∨ d ∨ e) = f(c) ∨ f(d) ∨ f(e) =
(f(c) ∨ f(d)) ∨ (f(d) ∨ f(e)) = f(a) ∨ f(b).

We must show that f preserves joins of orthogonal a and b. By assumption f preserves
their join if f(a) ∨ f(b) is not a coatom or 1, and since f is order preserving it clearly preserves
their join if f(a)∨ f(b) = 1. The case remains when f(a)∨ f(b) is a coatom c of B2. Since f(a)
and f(b) are orthogonal, they cannot both be coatoms of B2, and we assume that f(b) is not a
coatom. Suppose for a contradiction that f(a ∨ b) 6= f(a) ∨ f(b), hence f(a ∨ b) = 1. Since f
preserves complementation, f(a′ ∧ b′) = 0. So f(a′ ∧ b′)∨ f(b) = f(b) is not a coatom or 1. This
implies that f(b) = f(a′ ∧ b′) ∨ f(b) = f((a′ ∧ b′) ∨ b) = f(a′ ∨ b). Then f(a′) ≤ f(b) ≤ c and
f(a) ≤ f(a) ∨ f(b) = c. This contradicts that f preserves complementation. �

Lemma 6.8. Suppose that B1 and B2 are Boolean algebras and α : Sub(B1) → Sub(B2) is a
Boolean domain morphism with α(B1) = T having more than 4 elements. Then there is a unique
homomorphism f : B1 → B2 with α = f [−].

Proof. Note first that α(B1) = T implies by the definition of a morphism of Boolean domains
that α maps Sub(B1) onto Sub(T ). Since T has more than 4 elements, it follows that B1 has
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more than 4 elements. Then by Theorem 2.15 there are isomorphisms

B1 ' Pp(Sub(B1)) a 7→ (↓ a ∪ ↑ a′, ↓ a′ ∪ ↑ a) = ϕB1(a),

T ' Pp(Sub(T )) b 7→ (↓T b ∪ ↑T b′, ↓T b′ ∪ ↑T b) = ϕT (b).

For (y, z) a principal pair of Sub(B1), Definition 6.2 gives that (α(y), α(z)) is a principal
pair in ↓α(B1) = ↓T = Sub(T ). So there is a function (α, α) : Pp(Sub(B1)) → Pp(Sub(T ))
taking (y, z) to (α(y), α(z)). Let f : B1 → T be the unique function making the square below
commute.

B1

Pp(Sub(B1))

T

Pp(Sub(T ))

f

ϕTϕB1

(α, α)

Explicitly, f is given for each a ∈ B1 by f(a) = b where b ∈ T is the unique element with

α(↓ a ∪ ↑ a′) = ↓T b ∪ ↑T b′,
α(↓ a′ ∪ ↑ a) = ↓T b′ ∪ ↑T b.

Suppose g : B1 → B2 is a homomorphism with α = g[−]. Then g[B1] = α(B1) = T , so the
image of g is T . Thus g[↓ a ∪ ↑ a′] = ↓T g(a) ∪ ↑T g(a)′, and g[↓ a′ ∪ ↑ a] = ↓T g(a)′ ∪ ↑T g(a),
and this gives g(a) = f(a). So there is at most one homomorphism from B1 to B2 whose image
mapping is α, and the candidate for this homomorphism is the function f .

It remains to show that f is a homomorphism and the image map f [−] equals α. To show
that f is a homomorphism, it suffices to show that (α, α) is a homomorphism, which will follow
from Lemma 6.7, whose conditions we verify. Condition (3) of Definition 6.2 shows that (α, α)
is order preserving. For (y, z) ∈ Pp(Sub(B1)) with (α(y), α(z)) = (v, w), we see that (α, α)
preserves complementation since

(α, α)((y, z)′) = (α(z), α(y)) = (α(y), α(z))′ = ((α, α)(y, z))′.

To show the final condition of Lemma 6.7, suppose that (y1, z1) and (y2, z2) are such that
(α(y1), α(z1)) ∨ (α(y2), α(z2)) is not 1 or a coatom of Pp(Sub(T )). This means that the first
coordinate of this join is not T . Using Lemma 6.6 and the fact that α preserves joins, we have
the following, where ? indicates an irrelevant second component:

(α, α)((y1, z1) ∨ (y2, z2)) = (α, α)(y1 ∨ y2, ?) = (α(y1) ∨ α(y2), ?)

(α, α)(y1, z1) ∨ (α, α)(y2, z2) = (α(y1), α(z1)) ∨ (α(y2), α(z2)) = (α(y1) ∨ α(y2), ?)

These are principal pairs in Sub(T ) with the same first component that is different from T , so
by Lemma 6.6 they are equal. Thus (α, α) satisfies the hypotheses of Lemma 6.7, so it, and
hence also f , is a homomorphism.

Finally, it remains to show that f [−] = α. Let a ∈ B1. Then
(
↓ a ∪ ↑ a′, ↓ a′ ∪ ↑ a

)
is a

principal pair for x = {0, a, a′, 1}. By Definition 6.2,
(
α(↓ a ∪ ↑ a′), α(↓ a′ ∪ ↑ a)

)
is a principal

pair for α(x). By construction this is the principal pair
(
↓ f(a) ∪ ↑ f(a)′, ↓ f(a)′ ∪ ↑ f(a)

)
for

{0, f(a), f(a)′, 1}. Thus α(x) = f [x]. So α and f [−] agree on the basic elements of Sub(B1).
Preservation of joins then shows α = f [−]. �
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Theorem 6.9. The functor Sub: BoolAlg → BoolDom is essentially surjective on objects,
faithful except with regards to Boolean algebra homomorphisms whose image has 4 or fewer
elements, and full except possibly with regards to Boolean domain morphisms whose image has
2 elements.

Proof. Essential surjectivity follows from Sachs’ result [17], which determines a Boolean alge-
bra B up to isomorphism except when Sub(B) has a single element. The statements about
fullness and faithfulness follow from Lemma 6.8. �

7. Concluding remarks

Preceding descriptions of quantum structures were mostly based on maximal Boolean subal-
gebras (blocks) and their intersections, which are again maximal common Boolean subalgebras.
This approach led to serious combinatorial problems in applications. In contrast to it, we pro-
pose here two other approaches. First, we use the structure of all Boolean subalgebras. This
description is not optimized, but it is well understood thanks to the previous work of Sachs
on the Boolean case. Besides, we have shown that the lattice of Boolean subalgebras itself
determines an orthoalgebra, without refering to their elements at all. The second step is that
we prove that even the structure of “small” Boolean subalgebras is sufficient to reconstruct an
orthoalgebra. (Here “small” means with up to 16-elements.) There were attempts to describe
quantum structures by the orthogonality relation only [11], thus refering only to Boolean subal-
gebras with up to 8-elements, but there was no progress for decades. Although our descriptions
are not very concise, they at least offer two alternatives to the standard approach which did not
bring substantial progress during the last 30 years.

We have reconstructed up to isomorphism a nontrivial Boolean algebra B from its Boolean
domain Sub(B) first with principal pairs, and then with directions. The posets of the form
Sub(B) for a Boolean algebra B had been earlier characterized [6]. These results provide a
bijection between isomorphism classes of nontrivial Boolean algebras and isomorphism classes
of Boolean domains. This object level correspondence is lifted to a functorial correspondence
between the category of nontrivial Boolean algebras and Boolean domains. This functor is shown
to be nearly an equivalence.

We extended our method to reconstruct up to isomorphism a nontrivial orthoalgebra A
from its orthodomain BSub(A) using directions. We further characterized the posets that arise
as BSub(A) for some orthoalgebra A as the tall orthodomains with enough directions. This
provides a bijection between isomorphism classes of nontrivial orthoalgebras and isomorphism
classes of tall orthodomains with enough directions. We also provide an isomorphism between
isomorphism classes of nontrivial orthoalgebras and isomorphism classes of short orthodomains
with enough directions.
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