
A quantum while loop for amplitude amplification

Pablo Andrés-Mart́ınez
Chris Heunen

September 18, 2020

Abstract

Grover’s algorithm searches an unstructured database of N entries, find-

ing a marked element in time O
(√

N
)

. The algorithm was later generalised

to amplitude amplification. The original algorithm succeeds with probabil-
ity close to one and needs to run for a number of iterations chosen ahead
of time. We discuss an implementation of amplitude amplification that, in-
stead, runs for a number of iterations unspecified a priori and only halts
on success. We prove that this approach maintains the quadratic speed-up
of the original quantum algorithm. The key component is a feedback loop
controlled by a weak measurement that allows limited monitoring of the
evolution of the quantum state.

In classical computer science, it is essential to have loops whose number of iter-
ations is not determined a priori, but instead terminate when (and if) the internal
state reaches some chosen condition. There are various ways to construct such an
iterating structure, general recursion and while loops being the most common ones.
A programming language that allows such a construction as well as natural num-
bers is automatically Turing-complete [7], meaning that any computable function
can be expressed in the language. In contrast, loops whose number of iterations is
determined beforehand are provably less powerful: these loops together with the
natural numbers do not suffice for Turing-completeness.

In quantum computer science, while loops usually do not hold centre stage.
They are used often, but nearly always in a trivial way, for instance, when we
say that a quantum algorithm is repeated until it succeeds. We will refer to this
mundane use of while loops as test-restart loops. Think of a classical computer
controlling a quantum chip, checking whether the outcome of the quantum algo-
rithm was successful and, if not, instructing the quantum chip to run it again –
there is nothing quantum about the while loop itself.

1

This article implements the amplitude amplification quantum algorithm with
a while loop at its core. Whereas the standard approach runs the algorithm for a
predetermined number of iterations and then performs a projective measurement,
our approach applies a weak measurement on the quantum state in every iteration
and stops only when success is certain. Such a while loop is arguably more inter-
esting because we are, in some sense, monitoring an evolving quantum state in real
time. Perhaps surprisingly, the quantum speed-up is maintained: on average, our
approach requires a number of iterations quadratically smaller than any known
classical algorithm. This is possible because the ‘monitoring’ is achieved via weak
measurements, which do not fully collapse the quantum state, but also provide
little information on each application.

This approach was first proposed by Mizel [15] in 2008 with a treatment that
is different from ours. In particular, we make the connection to while loops [20]
and to weak measurements [5]. Furthermore, we take a different route to prove (in
Section 2) that this approach yields the same time-complexity as the standard am-
plitude amplification algorithm. Understanding our proof requires no knowledge of
mixed quantum states; instead, elementary trigonometry and a brief introduction
to weak measurements (in Section 1.3) suffice. This simpler presentation is acces-
sible to a larger audience and gives more insight on the evolution of the quantum
state throughout the algorithm.

We also show (in Section 3) that our approach (as well as Mizel’s) has essentially
the same behaviour as a version of the algorithm that uses a simple test-restart
loop. This means that our notion of while loop provides no algorithmic advantage.
Instead, our results should be regarded as a step towards a better understand-
ing of the role of while loops in quantum computer science. In the long term,
this programme aims to facilitate development of quantum algorithms by identi-
fying useful primitives and programming constructs that are native to quantum
algorithms rather than classical ones.

1 Background

The main result presented in this paper (Section 2) was first proposed by Mizel [15],
although we arrived at it independently, and explore it from a different perspec-
tive and provide simpler proofs. Mizel considers evolving a quantum state through
standard amplitude amplification, measuring it on every iteration to check if the
algorithm has succeeded. However, due to technical reasons we discuss in Sec-
tion 1.3, directly applying projective measurements would prevent the state from
evolving as intended, causing the loss of the quantum speed-up. Instead, Mizel
indirectly monitors the state by including an auxiliary qubit that, on every itera-
tion, is measured after interacting weakly with the system we wish to observe. In

2

Section 1.3, we describe this procedure as the typical example of a weak measure-
ment.

1.1 Amplitude amplification

Amplitude amplification is a generalisation of Grover’s search algorithm [11]. In
Grover’s problem, we are given an unsorted set of elementsB, about which we know
no structure or heuristics, and a function χ : B → {0, 1} that satisfies χ(?) = 1
for only one element ? ∈ B. We are tasked with finding this marked element ?.

Grover’s algorithm does so in O
(√
|B|
)

calls to χ. In contrast, the any classical

algorithm requires |B|
2

calls to χ on average: knowing no information about B,
your only choice is to try each element one by one. Considering that searching a
dataset is a fundamental primitive on a broad range of fields, this algorithm is one
of the most promising applications of quantum computers.

Amplitude amplification [4] generalises Grover’s problem in two ways: there
may be multiple marked elements and it allows us to make use of a procedure A
that may find a marked element with higher chance than picking elements of B at
random, i.e. it allows us to exploit knowledge about B. The algorithm takes this
procedure A and amplifies the probability of it yielding a marked element, so that
it is found quadratically faster. A formal definition is provided below.

Definition 1.1. Let B be a finite set spanning a Hilbert space H = span(B) and
let χ : B → {0, 1} be a function that characterises the marked subset of B. Define
Hilbert spaces

Hi = span{b ∈ B | χ(b) = i}

for i ∈ {0, 1} and H = H0 ⊕ H1. Furthermore, choose some |ψ〉 ∈ H as the
initial state and assume there exists a procedure described by a unitary A such
that |ψ〉 = A|0〉. An algorithm performs amplitude amplification if, starting from
the initial state |ψ〉, it returns a state in H1 with probability close to 1.

Write P1 for the orthogonal projection onto H1 and

ρ = 〈ψ|P1|ψ〉 (1)

for the initial success probability. The algorithm is efficient if its expected number
of calls to an oracle implementing χ is O

(
1/
√
ρ
)
.

Grover’s problem is recovered from Definition 1.1 by making dim(H1) = 1 and
choosing A to generate a state |ψ〉 that is the uniform superposition of all elements
of the basis B.

3

1.2 Standard amplitude amplification algorithm

This section describes the standard algorithm [4] for amplitude amplification. We
use the notation introduced in Definition 1.1. Let |ψ0〉 ∈ H0 and |ψ1〉 ∈ H1 be the
normalised projections of |ψ〉 onto H0 and H1. Then,

|ψ〉 = cosα|ψ0〉+ sinα|ψ1〉 (2)

for some an angle α ∈ [0, π
2
]. As in Definition 1.1, the initial success probability is

ρ = 〈ψ|P1|ψ〉 = sin2 α. (3)

Amplitude amplification is meant to be used when the initial probability of success
ρ is small, then α = arcsin

√
ρ may be approximated as α ≈ √ρ.

Given any state |φ〉 ∈ H we refer to its reflection operator as Sφ, given by

Sφ = 2|φ〉〈φ| − IH. (4)

Define an iteration of amplitude amplification as the operator Qχ

Qχ = Sψ Oχ (5)

Oχ =
∑
b∈B

(−1)χ(b) |b〉〈b| (6)

where Oχ is interpreted as a single call to the oracle function χ. Sψ may be
implemented using procedure A:

Sψ = AS0A−1 (7)

where A is a unitary operator by Definition 1.1.
Consider any state |φ〉 of the form

|φ〉 = cos a|ψ0〉+ sin a|ψ1〉 (8)

for some a ∈ [0, 2π). On these states, the action of Qχ simply corresponds to a
reflection over ψ followed by a reflection over ψ0. Thus, a simple geometry exercise
shows that the state after applying Qχ will remain in the plane spanned by |ψ0〉
and |ψ1〉, increasing the angle a above by 2α. In general, for any number k ∈ N,

Qk
χ|φ〉 = cos (a+ 2kα)|ψ0〉+ sin (a+ 2kα)|ψ1〉. (9)

Thus, consecutive iterations of amplitude amplification gradually shift the distri-
bution of amplitudes. We must apply the right number of iterations so that the
resulting state is as close to |ψ1〉 as possible; this is achieved when a+ 2kα ≈ π

2
.

4

The standard amplitude amplification algorithm executes a total of b π
4α
c con-

secutive iterations Qχ starting on the initial state |ψ〉, then applies a measurement
on the computational basis. The probability of finding a state in H1 is:

p1 = sin2 (α + 2b π
4α
cα) ≥ cos2 (2α) (10)

Observe that p1 = cos2 (2α) ≈ 1 for small α. Executing more (or less) than
b π
4α
c iterations will reduce the probability of success. In the unlikely event that

the measurement does not find a state in H1, the whole algorithm is repeated
again. The expected number of iterations is b π

4α
c, and each one applies Oχ once,

meaning that the expected number of oracle calls is O
(
1/
√
ρ
)
. Thus, according

to Definition 1.1, the standard amplitude amplification algorithm is efficient.

1.3 Weak measurements

From a theoretical standpoint, the simplest kind of measurement is a projection val-
ued measure (PVM): a set of orthogonal projections {Pi}i∈I acting on the Hilbert
space H that are mutually orthogonal and sum to the identity:

i 6= j =⇒ PiPj = 0
∑
i∈I

Pi = IH (11)

Equivalently, a PVM is determined by a set of closed subspaces Hi, that are
mutually orthogonal and span H:

i 6= j =⇒ Hi ⊥ Hj H =
⊕
i∈I

Hi (12)

We can switch between these descriptions by letting Pi be the orthogonal projection
onto Hi, and conversely letting Hi be the range of Pi.

Performing a PVM when the system is in state |ψ〉 ∈ H results in outcome
i ∈ I with probability

pi = 〈ψ|Pi|ψ〉. (13)

The measurement affects the state by projecting it onto Hi and renormalising:

1√
pi
Pi|ψ〉. (14)

Amplitude amplification is interested in whether the state is in the marked
subspace H1 or not. Often, this is checked by applying a measurement on the
computational basis, and using the characteristic function χ (see Definition 1.1)
to check if the measurement outcome is a marked element. Alternatively, we may

5

implement a quantum controlled operation Λχ that acts on an extended space
H⊗P , where P = span{0, 1} is known as the probe. On the basis B, Λχ acts as

Λχ|b, q〉 =

{
|b, q〉 ifb ∈ B
|b, q ⊕ 1〉 ifb 6∈ B

(15)

and may act on states in superposition. Then, given any state ψ ∈ H, applying
a PVM {IH ⊗ |0〉〈0|, IH ⊗ |1〉〈1|} on Λχ|ψ, 0〉 we know whether the outcome state
is within H0 or within H1, without destroying all superposition. However, if this
{H0,H1} PVM is applied on every iteration, the state is always forced into one
of the two subspaces, preventing the gradual evolution described in Section 1.2
and, hence, losing the quantum speed-up. Quantum feedback control [3, 9] has
a similar problem. One solution is to instead use a weak measurement : “this is
measurement which gives very little information about the system on average, but
also disturbs the state very little” [5].

Neumark’s dilation theorem [6] states that any valid notion of measurement
on H comes from PVMs on a larger space H ⊗ P . In this context, we refer
to the space P as the probe, and its initial state is known. To perform a weak
measurement, first entangle the original system H with the probe by applying a
unitary operation E toH⊗P , and then apply a PVM of the form {IH⊗|i〉〈i|}i∈B(P)
indexed by an orthonormal basis B(P) of P . Without entanglement, this PVM
would not provide any information about the state in H, nor would it disturb it.
Entanglement correlates the outcome of this PVM with the actual state in H; the
stronger this correlation, the more we learn about the state we wish to measure,
but also the more we disturb it. In a weak measurement, the unitary E is chosen to
make this correlation weak. Section 2.1 studies in detail the effect of the particular
weak measurement our algorithm uses.

Weak measurements are a natural procedure in practice [1, 19, 8]: we can
identify the probe P with the measuring device itself, and let the unitary operation
E = e−iHt be driven by a Hamiltonian H describing the interaction of H and P
during time t. By choosing an appropriately small value of t, we may make the
interaction as weak as needed.

The field of quantum feedback control monitors a state via weak measurements
(often a continuous measurement) and the stream of measurement outcomes is
used to control the strength of a Hamiltonian that corrects the system; see [21]
for a survey of the field. In the present paper we will work in the discrete-time
regime: the weak measurement is applied at the end of every iteration, instead
of continuously throughout the algorithm. One of the first examples of discrete-
time quantum feedback appears in [3], where it was used to protect a qubit from
decoherence. The concept was later experimentally realised in [9].

Weak measurements are rarely used for algorithmic purposes. The single ap-

6

plication we are aware of is an implementation of Shor’s algorithm using weak
measurements instead of PVMs [14]. However, in that case, weak measurements
are not used to monitor the quantum state throughout its evolution, but rather to
statistically reconstruct the most probable outcome of the conventional PVM at
the end of the computation.

1.4 While loops in quantum computing

There are multiple examples of quantum programming languages in the literature
(see Refs. [10, 2, 16] for a few examples), and many have been shown to be expres-
sive enough to describe quantum algorithms of practical relevance. Most of these
quantum programming languages follow the slogan “quantum data, classical con-
trol” coined by Selinger [18], where algorithms are defined by providing quantum
subroutines – described by unitary matrices – organised in a classical control flow.
Via the control flow, the programmer must indicate which subroutine should be
applied at each point of the algorithm, and this often depends on the outcome of
a measurement.

In this paper, we are interested in while loops whose termination condition is
given by the outcome of a measurement. A simple example of such a loop is:

1 whilePVM q = |⊥〉 do
2 U [φ, q]
3 end

where φ and q are variables representing quantum registers with state space H and
P respectively. Given a selected state |⊥〉 ∈ P , this program first applies a PVM
{P⊥, P>} with

P⊥ = IH ⊗ |⊥〉〈⊥| (16)

P> = IH ⊗ (IP − |⊥〉〈⊥|) (17)

and, as long as the measurement outcome is ⊥, keeps applying unitary U : H ⊗
P → H⊗P on both registers (possibly entangling them). Once the measurement
outcome is >, the program terminates. This pseudocode notation is derived from
previous work studying divergence of these kinds of loops [20].

2 While loop approach

This section presents an amplitude amplification algorithm that makes use of a
while loop controlled by weak measurements. Take χ, |ψ〉, and H = H0⊕H1 as in
Definition 1.1, and Qχ as in (5). Let φ be a variable with state space H, and let
q be the probe’s qubit variable, with state space P ∼= C2 and chosen orthonormal
basis {|⊥〉, |>〉}. We write PVMχ[φ] to indicate that the PVM {H0,H1} is applied

7

UB

⊥

>

UB

⊥

>·(>
Qχ Eκ

>
H

>
H

>
H

> > >

<
H⊗P

>

1 input : χ , |ψ〉
2 output : m
3 begin
4 φ ← |ψ〉
5 q ← |⊥〉
6 whilePVM q = |⊥〉 do
7 Qχ[φ]
8 Eκ[φ⊗ q]
9 end

10 m ← PVMχ[φ]
11 end

Figure 1: Left: pseudocode describing our algorithm. The while loop is controlled
by a PVM acting only on the probe variable q; due to Eκ, this becomes a weak
measurement of φ. Right: algorithm’s information flow; UB applies the canonical
isomorphism H⊗P ∼= H⊕H, separating the orthogonal cases |⊥〉 and |>〉.

to the state of variable φ. Our amplitude amplification algorithm is described by
the pseudocode shown in Figure 1, using the notation described in Section 1.4 and
where

Eκ = P0 ⊗ IP + P1 ⊗Rκ (18)

Rκ =

(√
1− κ

√
κ√

κ −
√

1− κ

)
(19)

for some κ ∈ [0, 1]. Additionally, Figure 1 gives an informal transcription of the
pseudocode into the discrete-time quantum walk model, providing some intuition
of the algorithm’s information flow. Notice that Eκ is an operation that acts
differently onH0 andH1 thus, similarly to Λχ (see Section 1.3) it internally queries
the oracle function χ, and so does Qχ.

The rest of this section is structured as follows. In Section 2.1 we will study,
for any iteration n, the state |φ〉(n) held by variable φ. Similarly to the situation
in Section 1.2, the state |φ〉(n) is a superposition of the form

|φ(n)〉 = cos an|ψ0〉+ sin an|ψ1〉 (20)

where |ψ1〉 = P1|ψ〉 is in the marked subspace H1 and |ψ0〉 = P0|ψ〉 is in H0. We
give the evolution of the angle an across iterations, which comes from the angle
of the previous iteration, adding the contribution of Qχ and subtracting θn; the
collapsing effect of the measurement:

an+1 = an + 2α− θn
a0 = α ≈ arcsin

√
ρ.

(21)

In Proposition 2.3 we prove that, for weak enough measurements κ ≤ √ρ, |θn| < α.
This means that, for any iteration n, an+1 ≥ an + α and thus the state develops

8

towards |ψ1〉 (i.e. to a ≈ π
2
) at a steady pace. Finally, Section 2.2 shows that,

within O (1/κ) iterations, the quantum state stays close to |ψ1〉 for long enough
so that, with high probability, one of the weak measurements may detect it, ter-
minating the algorithm with success. We will set κ ≈ √ρ so that, according to
Definition 1.1, our algorithm is efficient.

There is a trade-off between the strength of the weak measurement κ and the
expected number of iterations. If κ � √ρ, there will be too much collapse on
each iteration, causing the algorithm to behave classically and lose the quantum
speed-up. But, if κ � √ρ the complexity of the algorithm O (1/κ) will increase.
Thus, in contrast to the standard amplitude amplification, where the number of
iterations needs to be chosen a priori to be N ≈ π

4
√
ρ
, we do not indicate for how

long our algorithm runs, but instead need to fix the strength of the measurement
to be κ ≈ √ρ.

2.1 Geometry of a single iteration

In Section 1.2 we used the fact that the state |φ〉 ∈ H at any point of the execution
was described by a superposition of the form

|φ〉 = cos a|ψ0〉+ sin a|ψ1〉 (22)

for some angle a ∈ [0, 2π). This allowed us to describe the evolution of the state
in terms of the angle a. We now study what is the effect of the weak measurement
in the algorithm from Figure 1.

Proposition 2.1. For a state |φ(n)〉 of the form (22), the weak measurement con-
sisting of first applying Eκ and then PVM {IH⊗P⊥, IH⊗P>} to |φ(n)〉|⊥〉 returns

|φ(n)
> 〉 = |ψ1〉 (23)

when the outcome is >, which occurs with probability p> = κ sin2 an, and

|φ(n)
⊥ 〉 =

1
√
p⊥

(
cos an|ψ0〉+

√
1− κ sin an|ψ1〉

)
(24)

when the outcome is ⊥, which occurs with probability p⊥ = 1− p>.

Proof. Applying Eκ to |φ(n)〉|⊥〉 results in an entangled state

Eκ|φ(n)〉|⊥〉 = cos an|ψ0〉|⊥〉+ sin an|ψ1〉
(√

1− κ|⊥〉+
√
κ|>〉

)
=
√
p⊥ |φ(n)

⊥ 〉 |⊥〉 +
√
p> |φ(n)

> 〉 |>〉.
(25)

Applying each of the PVM’s projectors yields the results claimed.

9

cos an |ψ0〉

si
n
a
n

|ψ
1
〉

ξ
si
n
a
n

|ψ
1
〉

|φ(n)〉

|φ(n)⊥ 〉

an

θn

cos an |ψ0〉

si
n
a
n

|ψ
1
〉

ξ
si
n
a
n

|ψ
1
〉

|φ(n)〉

|φ(n)⊥ 〉

an

θn

a) b)

Figure 2: Geometric relation between the angle an before weak measurement and
the offset θn after measuring outcome ⊥. The construction is provided when a) an
is in the first quadrant and when b) an is in the second quadrant. ξ =

√
1− κ.

Proposition 2.1 determines the probability p> that the while loop terminates
on the n-th iteration, where an is the angle representing the state. Thanks to |φ(n)

> 〉
being equal to |ψ1〉 ∈ H1, we know that the algorithm always produces a marked
element upon termination. Otherwise, on outcome ⊥ another iteration of the while
loop occurs, now with variable φ holding the state |φ(n)

⊥ 〉 and the probe holding

state |⊥〉. Furthermore, Proposition 2.1 shows that |φ(n)
⊥ 〉 is still a superposition of

|ψ0〉 and |ψ1〉; we now wish to find an angle a′n that describes the superposition in
the form (22). Figure 2 shows the relationship between an and a′n in terms of an
offset angle θn. Then, Qχ will update the angle, leading to the following recurrence
equation describing the evolution of the state throughout the iterations:

an+1 = an − θn + 2α

a0 = α ≈ arcsin
√
ρ.

(26)

Let’s find an algebraic expression for θn in terms of an and κ. To reduce clutter,
we will use the shorthand

ξ =
√

1− κ (27)

Suppose an ∈ [0, π
2
] and use the properties of sines on the triangle in Figure 2a to

obtain:
sin(an − θn)

ξ sin an
=

sin(π/2− an + θn)

cos an
(28)

10

This simplifies as follows:

sin(an − θn)

ξ sin an
=

cos(an − θn)

cos an
⇐⇒ tan(an − θn) = ξ tan an

⇐⇒ tan an − tan θn
1 + tan an tan θn

= ξ tan an

(29)

Solving for θn gives:

θn = arctan

(
(1− ξ) tan an
1 + ξ tan2 an

)
(30)

If an ∈
[
π
2
, π
]

instead, a similar analysis yields:

θn = − arctan

(
(1− ξ) tan an
1 + ξ tan2 an

)
(31)

which only differs from equation (30) in the sign. If an is in the third quadrant,
then we obtain equation (30) and, if an is in the fourth quadrant, we get (31).

Remark 2.2. These sign changes are convenient: the geometric analysis in Fig-
ure 2 shows that in the first (and third) quadrant, the angle a′n is an−|θn|, whereas
in the second (and fourth) quadrant it is an + |θn|. Succinctly, a′n = an − θn,
independently of which quadrant an is in.

Proposition 2.3. The following bounds apply to θn:

0 ≤ θn ≤ a0 if an ∈ [0, π
2
] ∪ [π, 3π

2
]

−a0 ≤ θn ≤ 0 if an ∈ [π
2
, π] ∪ [3π

2
, 2π]

(32)

if and only if

κ ≤
4
√
ρ

(1 +
√
ρ)2

. (33)

Proof. The geometric construction of θn in Figure 2 makes it clear that 0 ≤ |θn| ≤
π
2

in any case. This gives the desired lower bound when an is in the first or
third quadrant, and the desired upper bound when an is in the second or fourth
quadrants.

When an is in the first quadrant we already know θn ≤ π
2

but we want a tighter
upper bound. To do so, regard (30) as a function of an and study its maximum
value. First we find the critical points, where the derivative

dθn
dan

= 1− ξ

cos2 an + ξ2 sin2 an
(34)

11

vanishes. Within an ∈ [0, π
2
] this happens at:

an = arccos

(√
ξ

ξ + 1

)
. (35)

Applied to equation (30) this gives a tight upper bound:

θn ≤ arctan

(√
(1− ξ)2

4ξ

)
(36)

We wish to find what κ needs to be so that a0 ≥ θn is satisfied. Thanks to
a0, θn ∈ [0, π

2
], a0 ≥ θn is true if and only if sin a0 ≥ sin θn. Using (36), the equality

sin(arctan(x)) = x√
x2+1

and some basic algebra we find that a0 ≥ θn is true if and
only if

sin a0 ≥
1− ξ
1 + ξ

. (37)

By definition (27), we know that ξ =
√

1− κ and (21) implies that
√
ρ ≈ sin a0.

Using these identities on (37) and solving for κ we conclude that a0 ≥ θn if and
only if

κ ≤
4
√
ρ

(1 +
√
ρ)2

(38)

thus, proving the claim when an is in the first quadrant. The same argument
establishes the upper bound when an is in the third quadrant. When an is in
either the second or fourth quadrants we must take into account that equation (30)
yields a negative value. In those cases, a similar argument yields the lower bound
−a0 ≤ θn for the same condition on κ.

The bounds given in Proposition 2.3 ensure that the sequence of angles {ai}i∈N
is monotonically increasing, as stated in the following corollary.

Corollary 2.4. For all k, ` ∈ N:

ak + `a0 ≤ ak+` ≤ ak + 3`a0. (39)

if and only if κ satisfies (33).

Proof. From Proposition 2.3 and equation (21) it follows that

ak + `(2a0 − a0) ≤ ak+` ≤ ak + `(2a0 + a0). (40)

This is the inequality to be proven.

12

Figure 3: Histogram of the number of iterations before success (termination) of
our algorithm. The histogram is composed of 10000 samples; these samples were
obtained by sampling the success probability κ sin2 an where an is given by equa-
tion (21). We used parameters ρ = 10−6 and κ =

√
ρ.

2.2 Running time

According to Corollary 2.4, the angle an monotonically increases at a steady pace
throughout the algorithm. Therefore, during some iterations the angle will be close
to π

2
and thus the probability of the algorithm terminating will be at its maximum.

The histogram of Figure 3 clearly displays this behaviour: the algorithm alternates
between intervals of iterations where termination is likely (i.e. peaks) and intervals
where the angle an is close to 0 or π and thus termination is unlikely (i.e. troughs).
We refer to these two distinct intervals as active and latent iterations, respectively.

In this section we formally define these active and latent iterations and es-
timate their proportion across the algorithm. Then we calculate the number of
active iterations required for the algorithm to succeed with probability over 1

2
,

and conclude that O
(
1/
√
ρ
)

many calls to the oracle are enough for the success
probability to get arbitrarily close to one.

Definition 2.5. For any m ∈ N, the m-th iteration of the algorithm is said to be
an active iteration if and only if

∃i ∈ N :
π

4
+ iπ ≤ am ≤

3π

4
+ iπ. (41)

13

10 15 20 25 30

3π
4

5π
4

7π
4

n

a
n

< `+ 1

> L− 1

Figure 4: Evolution of the angle across iterations 10 to 30, for ρ = 1
100

. The
black dots indicate the value of an at each iteration, starred dots correspond to
active iterations. The angle increases by 2a0 on each iteration, with some small
disturbance introduced by θn. The dashed lines represent the lower and upper
bounds of an, used to estimate ` and L in the general case. In this case, L = 8 = `.

Otherwise, it is called a latent iteration.

Figure 4 shows the evolution of the angle across iterations for ρ = 1
100

. Only
iterations from 10 to 30 are displayed, but because n does not appear as a term
in either equation (21) or (30), the behaviour shown may be extrapolated to any
interval of iterations. We may use the bounds from Corollary 2.4 to give an upper
bound on the number L of consecutive latent iterations.

Proposition 2.6. If ak >
3π
4

+ iπ and ak′ <
5π
4

+ iπ for some i ∈ N and k′ > k,
then k′ − k < π

2a0
.

Proof. Using the lower bound from Corollary 2.4 and the assumption ak >
3π
4

+iπ:

ak′ = ak+(k′−k)

≥ ak + (k′ − k)a0

> 3π
4

+ iπ + (k′ − k)a0

(42)

Hence:
5π
4

+ iπ > ak′ >
3π
4

+ iπ + (k′ − k)a0 (43)

But this simplifies to k′ − k < π
2a0

.

14

If k is the first iteration in an interval of latent ones and k′ is the last, then
k′ = k + (L − 1). The previous proposition ensures that L < π

2a0
+ 1. Similarly,

we can estimate the number ` of consecutive active iterations.

Proposition 2.7. If ak <
π
4

+ iπ and ak′ >
3π
4

+ iπ for some i ∈ N and k′ > k,
then k′ − k > π

6a0
.

Proof. Using the upper bound from Corollary 2.4 and the assumption ak <
π
4

+ iπ:

ak′ = ak+(k′−k)

≤ ak + 3(k′ − k)a0

< π
4

+ iπ + 3(k′ − k)a0

(44)

Hence:
3π
4

+ iπ < ak′ <
π
4

+ iπ + 3(k′ − k)a0 (45)

But this simplifies to k′ − k > π
6a0

.

If k is the last latent iteration before an active interval and k′ the first latent
one after it, then k′ = k+(`+1), and previous proposition ensures that ` > π

6a0
−1.

The dashed lines in Figure 4 summarise these bounds. Now we can estimate the
proportion of active iterations across the algorithm.

Proposition 2.8. The proportion γ of active iterations across the algorithm is:

γ >
1

4
− 3a0

2π
. (46)

Proof. Due to Corollary 2.4 we know that an increases with n, and thus intervals of
active and latent iterations will alternate throughout the runtime of the algorithm.
We further know an upper bound for the length of any latent interval, L < π

2a0
+1,

and a lower bound for the length of any active interval ` > π
6a0
− 1. By definition,

γ =
`

L+ `
, (47)

or equivalently,

γ−1 =
L

`
+ 1. (48)

The latter expression is more amenable to applying our bounds for L and `. With
these bounds and some basic algebra it follows that

γ−1 <
4π

π − 6a0
, (49)

which implies the claim.

15

Remark 2.9. When ρ (and thus a0) is small, the proportion of active iterations
given in Proposition 2.8 is approximately 1

4
. This proportion was estimated using

the arguably loose bounds from Corollary 2.4, which were chosen for the sake of
simplicity. Tighter bounds would yield a better estimate of the proportion of active
iterations which, as shown in Figure 4, appears to be close to 1

2
when ρ is small.

Next, we must calculate the number of active iterations required to achieve
a success probability larger than 1

2
. As stated in Proposition 2.1, the algorithm

terminates on the n-th iteration with probability

p> = κ sin2 an (50)

and it is always successful upon termination. For any active iteration m:

p> = κ sin2 am ≥ κ sin2(π
4
) =

κ

2
(51)

where we have used the definition of active iteration (41). The total probability
Psucc of the algorithm succeeding at some point within 2

κ
active iterations is:

Psucc ≥ 1−
(
1− κ

2

) 2
κ (52)

If x ∈ (0, 1) then (1− x)
1
x < 1

e
. Therefore:

Psucc ≥ 1− 1
e
≥ 1

2
(53)

if the algorithm is allowed to run for 2
κ

active iterations or more.
It only remains to calculate how many iterations are needed to be certain that

at least 2
κ

active iterations occur. Using the proportion of active iterations derived
in Proposition 2.8 we know that the total number T of iterations required to reach
a probability of success greater than 1

2
is

T =
2

κ
γ−1 <

8π

κ(π − 6a0)
. (54)

Assuming ρ is small, a0 ≈ arcsin
√
ρ will also be, and then T will be bounded from

above by 8
κ
.1

T <
8π

√
ρ(π − 6 arcsin

√
ρ)

(55)

If we were unlucky and the algorithm does not succeed after T iterations, it will
continue iterating, replicating the same behaviour for another T iterations or suc-
ceeding (and thus halting) in the process. For any c ∈ N, the probability of

1In fact, Remark 2.9 argues that the required number of iterations is closer to 4√
ρ .

16

success after cT iterations is greater than 1− (1− 1
2
)c, i.e. the probability of suc-

cess increases exponentially. Therefore, we can achieve an arbitrarily high success
probability within O (1/κ) many iterations. Notice that each iteration calls the or-
acle twice: once when checking the while-loop condition, and a second time within
the implementation of Eκ, contributing to the oracle-complexity of the algorithm
by a factor of two. Finally, we set κ =

√
ρ, which satisfies the inequality (33)

required by Proposition 2.3. Overall, the expected number of oracle calls stays
within O

(
1/
√
ρ
)
, and the algorithm is efficient according to Definition 1.1.

3 Comparison to test-restart loop

In this section, we compare the algorithm described in Section 2 with an alterna-
tive algorithm that makes does not make use of weak-measurements, but instead
runs for an arbitrary number of iterations and then applies a PVM, restarting if
the outcome is not a marked element. We find that this alternative test-restart
approach has essentially the same statistical performance as our weakly-measured
approach.

Let Nwm be the random variable denoting the total number of iterations that
may occur when running the algorithm in Figure 1. Figure 3 shows a histogram of
Nwm. Considering that the algorithm terminates upon (first) success, it is natural
that the histogram follows the behaviour of a geometric distribution: larger values
of Nwm are less likely because they imply longer sequences of consecutive failures.

In contrast to the approach we proposed in Figure 1, we now consider the
following test-restart approach

1 input : χ , |ψ〉
2 output : m
3 begin
4 m ← PVMχφ
5 while χ(m) = 0 do
6 φ ← |ψ〉
7 r ← 1
8 while

√
ρ < r do

9 r ← rnd (0 , 1)
10 Qχ[φ]
11 m ← PVMχ[φ]
12 end
13 end

where rnd(0,1) picks a random number from the real interval [0, 1]. This alternative
algorithm does not use weak measurements. The inner while loop applies Qχ a
random number of times described by a geometric distribution with parameter

√
ρ.

The state is measured with a PVM only after exiting the inner loop and, if we fail
to find a marked element, the whole process is repeated again, setting the state to
its initial value |ψ〉. We use the random variable Ntr to denote the total number

17

Figure 5: Cumulative distribution of Nwm (left) and Ntr (right) from a set of 10000
samples each. We used parameters ρ = 10−6 and κ =

√
ρ. Both distributions have

a similar curve, although Nwm displays a staggered growth due to the alternation
between active and latent iterations (see Section 2.2).

of applications of Qχ before success. Unlike in the algorithm from Figure 1, there
is no superposition of control flow: these while loops are purely classical.

It is natural that the expected value of Ntr is 1/
√
ρ: the expected value of

consecutive applications of Qχ is 1√
ρ
, and in that case the PVM finds a marked state

with high probability. However, one might expect that the stochastic behaviour
of Ntr would be noticeably more erratic than that of Nwm as, in the test-restart
case, failing to measure a marked state results in having to start from scratch.
Interestingly, Figure 5 illustrates that this is not the case:

P (Ntr ≤ n) ≈ P (Nwm ≤ n) (56)

for any n ∈ N, meaning that both distributions have roughly the same median
and percentiles. These values are relevant for worst-case analysis, as low and high
percentiles describe the frequency at which extreme values of Ntr and Nwm may
occur. Moreover, both distributions have essentially the same variance.

Notice, however, that the probability distributions of Ntr and Nwm are not ex-
actly the same.2 This is made evident in Figure 5, where the cumulative distribu-
tion of Nwm goes through periodic non-increasing intervals due to latent iterations,
whereas that of Ntr is smoother in comparison.

In summary, although the test-restart and weakly-measured approaches are
fundamentally different, both provide the same average-case and worst-case com-

2We performed statistical tests on the set of samples from Ntr and Nwm and, with sample sizes
of 10000 and significance level of α = 0.01 (i.e. 99% confidence), both the Kolmogorov-Smirnov
test [12] and the Anderson-Darling test [17] indicate the distributions are different.

18

plexity. This means that weak measurements do not yield any algorithmic ad-
vantage in this scenario. As further work, we intend to study whether there is
an algorithmic application of weak measurements where a test-restart loop would
perform poorly.

4 Discussion

In the standard amplitude amplification approach (Section 1.2), a PVM is applied
after a particular number of iterations, so implementing it requires the ability to
control the hardware well enough to count iterations and apply the projective mea-
surement at the right time. Experimentalists may find it easier to build hardware
where a certain quantum subsystem is (weakly) measured on every iteration.

In this paper, we have reproduced Mizel’s [15] version of amplitude amplifi-
cation and analysed its evolution using simple geometry. The algorithm is para-
metrised by κ, which characterises how much of the state is collapsed by the weak
measurement. In the standard amplitude amplification algorithm, it is necessary to
tune the number of iterations according to the value of ρ; in a similar way, we have
shown that our algorithm is efficient only if κ ≈ √ρ, i.e. when the measurements
applied are weak enough.

Extensions of the standard amplitude amplification algorithm where the initial
probability ρ is unknown have been considered in the literature [4]. These proposals
consist in running the standard algorithm multiple times, assuming different values
of ρ – gradually decreased by a factor of two each time – until the actual value of ρ
is reached and the algorithm succeeds. These approaches are efficient and may be
straightforwardly applied to our version of the algorithm. However, they require
restarting the algorithm multiple times, and thus they are not a good match to the
moral behind our perspective: gaining information without destroying the state.
A possible direction of future work is to exploit weak measurements to guide the
search towards the value of ρ when unknown.

Our algorithm applies a weak measurement at the end of each iteration, at dis-
crete times. It would be interesting to study whether it is possible to continuously
apply a weak measurement on the probe space P and achieve the same behaviour.
If it is possible, then this algorithm would have a simple implementation in the
laboratory: evolve the system H⊗P while a passive device is constantly measur-
ing P , thus avoiding the need of an active control mechanism. The main obstacle
of this continuous approach may be the quantum Zeno effect. This idea was not
discussed by Mizel in [15] and, as far as we know, it has not been considered in the
literature yet. We intend to study this problem in future work, using the formalism
of quantum trajectories for continuous measurements [13].

19

References

[1] Y. Aharonov and L. Vaidman. Properties of a quantum system during the
time interval between two measurements. Phys. Rev. A, 41:11–20, Jan 1990.

[2] S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for quantum
programming. The European Physical Journal D-Atomic, Molecular, Optical
and Plasma Physics, 25(2):181–200, 2003.

[3] A. M. Brańczyk, P. E. M. F. Mendonça, A. Gilchrist, A. C. Doherty, and S. D.
Bartlett. Quantum control of a single qubit. Physical Review A, 75(1):012329,
2007.

[4] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp. Quantum amplitude ampli-
fication and estimation. Contemporary Mathematics, 305:53–74, 2002.

[5] T. A. Brun. A simple model of quantum trajectories. American Journal of
Physics, 70(7):719–737, 2002.

[6] P. Busch, M. Grabowski, and P. Lahti. Operational Quantum Physics.
Springer, 1995.

[7] M. Davis. Computability and unsolvability. Courier Corporation, 2013.

[8] J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd. Collo-
quium: Understanding quantum weak values: Basics and applications. Rev.
Mod. Phys., 86:307–316, Mar 2014.

[9] G. G. Gillett, R. B. Dalton, B. P. Lanyon, M. P. Almeida, M. Barbieri, G. J.
Pryde, J. L. O’Brien, K. J. Resch, S. D. Bartlett, and A. G. White. Ex-
perimental feedback control of quantum systems using weak measurements.
Physical review letters, 104(8):080503, 2010.

[10] A. S. Green, P. LeFanu Lumsdaine, N. J. Ross, P. Selinger, and B. Val-
iron. Quipper: A scalable quantum programming language. In Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’13, page 333–342, New York, NY, USA, 2013.
Association for Computing Machinery.

[11] L. K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 212–219, 1996.

[12] J. L. Hodges. The significance probability of the smirnov two-sample test.
Arkiv för Matematik, 3:469–486, 1958.

20

[13] K. Jacobs and D. A. Steck. A straightforward introduction to continuous
quantum measurement. Contemporary Physics, 47(5):279–303, 2006.

[14] A. P. Lund. Efficient quantum computing with weak measurements. New
Journal of Physics, 13(5):053024, may 2011.

[15] A. Mizel. Critically damped quantum search. Phys. Rev. Lett., 102:150501,
Apr 2009.

[16] J. W. Sanders and P. Zuliani. Quantum programming. In R. Backhouse and
J. N. Oliveira, editors, Mathematics of Program Construction, pages 80–99,
Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[17] F. W. Scholz and M. A. Stephens. K-sample anderson–darling tests. Journal
of the American Statistical Association, 82(399):918–924, 1987.

[18] P. Selinger. Towards a quantum programming language. Mathematical Struc-
tures in Computer Science, 14(4):527–586, 2004.

[19] L. Vaidman. Weak-measurement elements of reality. Foundations of Physics,
26(7):895–906, 1996.

[20] M. Ying and Y. Feng. Quantum loop programs. Acta Informatica, 47(4):221–
250, 2010.

[21] J. Zhang, Y. x. Liu, R.-B. Wu, K. Jacobs, and F. Nori. Quantum feedback:
theory, experiments, and applications. Physics Reports, 679:1–60, 2017.

21

