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We provide a universal construction of the category of finite-dimensional C*-algebras and completely
positive trace-nonincreasing maps from the rig category of finite-dimensional Hilbert spaces and
unitaries. This construction, which can be applied to any rig groupoid, is described in three steps,
each associated with their own universal property, and draws on results from dilation theory in finite
dimension. In this way, we explicitly construct the category that captures hybrid quantum/classical
computation with possible nontermination from the category of its reversible foundations. We discuss
how this construction can be used in the design and semantics of quantum programming languages.

1 Introduction

The account of quantum measurement offered by decoherence establishes that the irreversible nature of
mixed-state evolution occurs when a system is considered in isolation from its environment. When the
environment is brought back into view, via mathematical techniques such as quantum state purification
and Stinespring dilation, the reversible underpinnings of mixed-state evolution are exposed.

This perspective has in recent years led to the study of quantum theory through categorical comple-
tions of its reversible foundations, the category of finite-dimensional Hilbert spaces and unitaries, demon-
strating connections between universal constructions and effectful quantum programming [9]. This ar-
ticle constructs in a universal way the category of finite-dimensional C*-algebras and partial quantum
channels (completely positive trace-nonincreasing maps) from the rig category of finite-dimensional
Hilbert spaces and unitaries. The construction has three stages, each with a universal property of its own.

• Freely allowing partiality respecting the dagger structure (by making the additive unit a zero
object) allows contractive maps to be described by unitaries through Halmos dilation [6, 23, 18].

• Freely allowing the hiding of states in a way that respects partiality (by making the multiplicative
unit terminal for total maps) allows completely positive trace-nonincreasing maps to be described
through contractions, using a variant of Stinespring dilation [27]. This construction has an inter-
esting universal property as a pushout of monoidal categories.

• Freely splitting measurement maps between finite-dimensional Hilbert spaces yields finite-dimen-
sional C*-algebras, which describe hybrid quantum/classical computation.

All three universal constructions are abstract and apply to any suitably structured category. They show
that the traditional model of C*-algebras inevitably arises from the mere concepts of quantum circuits,
partiality, hiding, and classical communication, without any concept of e.g. norm. Thus they inform the
design of quantum programming languages [9], as part of a highly effective broader approach to program
semantics from universal properties [28, 14, 25].
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2 Universal Properties of Partial Quantum Maps

Related work The role of universal properties and categorical completions in quantum theory, in par-
ticular the monoidal indeterminates construction [7], has been studied in recent years [22, 12, 13, 3, 8, 9]
(see also [26] for a related approach in the probabilistic case, and [29, 20] for other accounts of dila-
tions as universal properties). The role of partiality in effectus theory was studied in [2]. We deepen
the connections between dilations and universal properties of functors between categories of quantum
systems first observed in [12, 13]. A direct connection between universal constructions and the design
and semantics of quantum programming languages with effects was demonstrated in [9]. The idempo-
tent splitting of the category of Hilbert spaces and completely positive maps, in particular the fact that it
contains all C*-algebras, has been the subject of study and discussion in [10, 22].

Overview Section 2 recalls some facts about rig categories and their additive affine completion and
relation to partiality, which we extend in Section 3 to the biaffine completion and dagger partiality,
and show that the biaffine completion of the category Unitary of (finite-dimensional Hilbert spaces
and) unitaries is precisely Contraction of contractive maps. Section 4 describes a construction that
completes Contraction to the category FHilbCPTN of partial quantum channels (completely positive
trace-nonincreasing maps) using a variant of Stinespring dilation, and we show that this construction
satisfies a universal property as a pushout in the category of monoidal categories. Finally, Section 5 shows
that splitting along a particular class of idempotents, corresponding in FHilbCPTN to measurements,
completes FHilbCPTN to the category FCstarCPTN of finite-dimensional C*-algebras and partial quantum
channels. We end in Section 6 with a discussion of the applications of these constructions to the design
and semantics of quantum programming languages.

2 The additive affine completion of rig categories

We enter the story assuming that the reader is familiar with monoidal categories and dagger cate-
gories [11], and proceed with preliminaries about rig categories and their additive affine completion.

A rig category is a category which is symmetric monoidal in two different ways, such that one
monoidal product distributes over the other, subject to a large amount of coherence equations [17]. In
analogy with the situation in Hilbert spaces, we usually write these monoidal products as (⊗, I) (the
“tensor product”) and (⊕,O) (the “direct sum”) with ⊗ distributing (up to natural isomorphism) over ⊕
via distributors δ L : A⊗ (B⊕C) → (A⊗B)⊕ (A⊗C) and δ R : (A⊕B)⊗C → (A⊗C)⊕ (B⊗C) and
annihilators (“nullary distributors”) δ L

0 : O⊗A → O and δ R
0 : A⊗O → O. A dagger rig category is a

dagger category with a rig structure such that all coherence isomorphisms are unitary (i.e., satisfy f−1 =
f †). Natural examples of rig categories are distributive categories where ⊗ is a categorical product,
⊕ is a categorical coproduct, and their units are terminal respectively initial objects. However, not all
rig categories are of this form: the category Unitary of finite-dimensional Hilbert spaces and unitaries
(with tensor product and direct sum) and the category FinBij of finite sets and bijections (with cartesian
product and disjoint union) are both (dagger) rig categories, but neither has products or coproducts.

2.1 Partiality and the additive affine completion

What is the appropriate notion of partiality for a given rig category? If coproducts and a terminal object
are available the lift monad (−) + 1 can answer this question, but not every rig category has these.
Instead, we can think of a partial map A → B as a map A → B⊕E, i.e., extend the output state space
with an extra part E to receive all the inputs we wish to be undefined. Any map f : A → B can be lifted
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to a total map ρ
−1
⊕ ◦ f : A → B⊕O using the inverse right unitor, and partial maps f : A → B⊕E and

g : B →C⊕E ′ can be composed by composing to α⊕ ◦g⊗ idE ◦ f : A →C⊕ (E ′⊕E) only their defined
parts. This is an information-preserving variant of Kleisli-composition for the lift monad.

This describes the additive affine completion of a rig category, barring one detail: given that E
describes where the map is undefined, it shouldn’t actually matter how we represent this particular part.
For example, given some partial map f : A → B⊕E and some manipulation m : E → E ′ of the undefined
part, f and (id⊕m)◦ f morally describe the same partial map. Therefore, given morphisms f : A→B⊕E
and f ′ : A → B⊕E ′, we write f ≤L f ′ if and only if there exists some mediator m : E → E ′ such that

A

B⊕E B⊕E ′

f f ′

id⊕m

commutes. This straightforwardly gives a preorder, though not (necessarily) an equivalence relation since
mediators need not be invertible. However, since we would like momentarily to treat it as an equivalence,
we consider instead its equivalence closure ∼L, i.e.,, the least equivalence relation containing ≤L.

Definition 1. Given a rig category C, its additive affine completion L⊕(C) is the category whose

• objects are those of C,

• morphisms [ f ,E] : A → B are pairs of an object E and a morphism f : A → B⊕E of C quotiented
by ∼L,

• identities A → A are [ρ−1
⊕ ,O] (with ρ⊕ : A⊕O → A the right unitor), and

• composition of [ f ,E] : A → B and [g,E ′] : B →C is [α⊕ ◦g⊗ idE ◦ f ,E ′⊕E].

There is a dual to this construction, the additive coaffine completion R⊕(C), defined as L⊕(Cop)op.
Explicitly, morphisms A → B in R⊕(C) are equivalence classes of morphisms A⊕E → B, and so hide
part of their source space rather than their target space. We summarise some features of these categories.

Proposition 2. When C is a rig category, so are L⊕(C) and R⊕(C).

Proof. That R⊕(C) is a rig category was shown in [9, Lemma 12]; that L⊕(C) is also a rig category
follows by L⊕(C)∼= R⊕(Cop)op and the fact that C is a rig category iff Cop is.

Proposition 3. The additive unit O is terminal in L⊕(C) and initial in R⊕(C).

Proof. The inverse left unitor λ
−1
⊕ : A→O⊕A of C represents a morphism A→O in L⊕(C); this satisfies

the universal property of the terminal object by definition of ∼L. Dually, O is initial in R⊕(C).

We call a rig category additively coaffine when the additive unit is initial, and additively affine when
it is terminal.

Proposition 4. There are strict rig functors D : C → L⊕(C) and E : C → R⊕(C).

Proof. Define D(A) = A on objects, and D( f ) = [ρ−1
⊕ ◦ f ,O] on morphisms, and E dually. Straightfor-

ward calculations show that this defines strict rig functors.

As the name suggests, these are, indeed, completions on rig categories.
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Proposition 5. L⊕(C) is the additive affine completion of C in the following sense: given any additively
affine rig category D and strong rig functor F : C → D, there is a unique strong rig functor F̂ : L⊕(C)→
D making the diagram below commute.

C L⊕(C)

D

D

F̂F

Proof. By [9, Theorem 19] and duality.

Dualising this result exhibits R⊕(C) as the additive coaffine completion of C.

3 Dagger partiality and the additive biaffine completion

As the (co)affine completion explicitly involves hiding a part of the source or target space of a morphism,
we cannot expect to lift either construction to a completion of dagger rig categories. A great example
of this fact is demonstrated by considering R⊕(Unitary). Write Isometry for the category of finite-
dimensional Hilbert spaces and morphisms satisfying f † ◦ f = id, and coIsometry for its dual.

Proposition 6. There are rig equivalences R⊕(Unitary)≃ Isometry and L⊕(Unitary)≃ coIsometry.

Proof. That R⊕(Unitary) ≃ Isometry was shown in [12]. The other statement follows from duality:
L⊕(Unitary)≃ R⊕(Unitaryop)op ≃ R⊕(Unitary)op ≃ Isometryop ≃ coIsometry.

However, though Unitary is a dagger rig category, Isometry and coIsometry are mere rig categories.
This must intuitively be the case because dagger categories are self-dual (i.e., satisfy C ∼= Cop) so limits
and colimits coincide, but the affine completion only adds (certain) limits without the corresponding
colimits. However, this also suggests that if we seek a notion of partiality that respects daggers, we
would need the additive unit to be both initial and terminal, i.e., a zero object. Fortunately, we can ensure
this by applying the dual construction.

Proposition 7. The additive unit O is a zero object in both L⊕(R⊕(C)) and R⊕(L⊕(C)).

Proof. By [9, Lemma 11], R⊕(−) preserves terminal objects, and by duality, L⊕(−) preserves initial
objects. Thus O is both initial and terminal (i.e., a zero object) in both L⊕(R⊕(C)) and R⊕(L⊕(C)).

The situation is interesting: neither L⊕(−) nor R⊕(−) on their own preserve dagger rig categories,
but as we will see, their combination does. Hence it is advantageous to consider them together for dagger
rig categories, which also leads to a slightly simpler presentation. In a rig category, define ∼LR⊕ as the
least equivalence relation containing the three relations ∼id⊕ , ∼L⊕ , and ∼R⊕ defined as follows, for all
f : A⊕H → B⊕G:

• f ∼L⊕ (id⊕m)◦ f for all m : G → G′;

• f ∼R⊕ f ◦ (id⊕n) for all n : H ′ → H;

• f ∼id⊕ α⊕ ◦ ( f ⊕ idX)◦α
−1
⊕ for all identities idX .

Definition 8. Given a rig category C, its biaffine completion LR⊕(C) is the category whose

• objects are those of C,
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• morphisms [H, f ,G] : A → B are triples consisting of two objects H and G and a morphism A⊕
H → B⊕G of C quotiented by ∼LR⊕ ,

• identities A → A are [idA⊕O,O], and

• the composition of f : A⊕H → B⊕G and g : B⊕H ′ →C⊕G′ is given by

A⊕(H⊕H ′)
α
−1
⊕−−→ (A⊕H)⊕H ′ f⊕id−−−→ (B⊕G)⊕H ′ ∼=−→ (B⊕H ′)⊕G

g⊕id−−→ (C⊕G′)⊕G
α⊕−→C⊕(G′⊕G).

We state some properties of the LR⊕-construction, the proofs of which can be found in the appendix.

Proposition 9. The additive unit O is a zero object in LR⊕(C).

Proposition 10. When C is a dagger rig category, so is LR⊕(C).

As before, there is a functor F : C → LR⊕(C) given on objects by F (A) = A and on morphisms by
F( f ) = [0, f ⊕ id0,0], making LR⊕(C) a completion in the formal sense. We say that a rig category is
additively biaffine if the unit of the sum is a zero object.

Theorem 11. LR⊕(C) is the additive biaffine completion of C in the following sense: given any ad-
ditively biaffine rig category D and strong rig functor F : C → D, there is a unique strong rig functor
F̂ : LR⊕(C)→ D making the diagram below commute.

C LR⊕(C)

D

F

F̂F

Proof. Assuming such a functor exists, we first prove its uniqueness. Imposing F = F̂ ◦F implies that
F̂(A) = F(A) on objects and, on morphisms in the image of F we have that F̂(F ( f )) = F( f ). It is easy
to check (for instance, diagrammatically) that any [H, f ,G] : A → B in LR⊕[C] decomposes as follows:

[H, f ,G] = A
ρ−1

−−→ A⊕O id⊕!−−→ A⊕H
F ( f )−−−→ B⊕G id⊕!−−→ B⊕O

ρ−→ B

where the objects and morphisms shown are in LR⊕[C], where O is a zero object, and ! refer to the
corresponding unique morphisms. The image under F̂ of each of these morphisms is uniquely determined
because F̂ is assumed to be monoidal, the fact that D has 0 ∼= F(O) as its zero object, and the equality
F̂(F ( f )) = F( f ) discussed above. Thus it only remains to prove that F̂ as defined above is indeed
a strong rig functor. By definition, F̂(id) = F(id), and functoriality is easy to check using naturality
of ρ and the fact that 0 is a zero object. The fact that F̂ is a strong rig functor follows directly the
same property for F , since F is a strict rig functor, F̂(O) = F(O) ∼= 0, and F̂(A⊕B) = F(A⊕B) ∼=
F(A)⊕F(B) = F̂(A)⊕ F̂(B).

Using this characterisation, we can show commutativity of the L⊕ and R⊕ constructions, the proof of
which is found in the appendix.

Proposition 12. When C is a rig category, L⊕(R⊕(C))∼= LR⊕(C)∼= R⊕(L⊕(C)).
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3.1 Dagger partial unitaries are contractions

A linear map f : A → B between normed spaces A and B is (weakly) contractive iff ∥ f (x)∥ ≤ ∥x∥ for all
x ∈ A. So contractive maps include all isometries, coisometries, and unitaries. We now show that apply-
ing the LR⊕-construction to the category of finite-dimensional Hilbert spaces and unitaries is equivalent
to the category Contraction of finite-dimensional Hilbert spaces and contractions. Another way of say-
ing this is that the dagger partial unitaries are precisely the contractions.

Theorem 13. LR⊕(Unitary)∼= Contraction.

Proof. Proposition 12 gives LR⊕(Unitary)∼=L⊕(R⊕(Unitary)), and Proposition 6 gives R⊕(Unitary)∼=
Isometry, so it suffices to show L⊕(Isometry) ∼= Contraction. The strategy is to define a functor
F : Contraction → L⊕(Isometry) and prove it is full, faithful and essentially surjective. On objects,
F(A) = A so F is essentially surjective. Let T : A → B be a contraction and let f : A → B⊕G be an isom-
etry such that T = πB ◦ f : for example, by [6, 23], an isometric dilation A → B⊕A can be constructed
as

f =
(

T
(1−T †T )

1
2

)
.

Let F(T ) = [ f ,G]. We need to check this mapping is well-defined, i.e., if f ′ : A → B⊕G′ also satisfies
T = πB ◦ f ′, verify that [ f ,G] = [ f ′,G′]. To do this, first consider the Hilbert space im( f ) ⊆ B⊕G and
similarly im( f ′) and define a function g : im( f ′)→ im( f ) by f ′(a) 7→ f (a). This function is well-defined
because f and f ′ are isometries and hence injective. It is easy to see that g is linear; also notice that〈

g( f ′a)
∣∣g( f ′a)

〉
= ⟨ f a| f a⟩= ⟨a|a⟩=

〈
f ′a
∣∣ f ′a〉

because f and f ′ are isometries. This applies to all vectors in im( f ′), so g is an isometry; in fact, because
dim(im( f )) = dim(im( f ′)) is finite, g has an inverse that is also an isometry, so g : im( f ′)→ im( f ) is
unitary. Whenever f (a) ∈ B it is necessary that f (a) = f ′(a) for them to be dilations of T , which means
that g acts as the identity on B and thus it has the shape

g =

(
id 0
0 h

)
.

Next we lift g to a map B⊕G′ → B⊕G. Assume without loss of generality that dim(G′)≤ dim(G) and
pick an isometry k : G′ → G satisfying k( f ′(a)) = f (a); for any x ∈ G′ not in the image of f ′ there will
be multiple choices for k(x), just make sure to send orthogonal vectors to orthogonal vectors and k will
be an isometry. Finally, f = (g⊕ k) ◦ f ′ = (idB ⊕ (h⊕ k)) ◦ f ′ and h⊕ k is an isometry, so f ∼L f ′ and
[ f ,G] = [ f ′,G′] as promised. Moreover, if F(T ) = [ f ,G] and F(S) = [g,G′] then it’s easy to check that
S◦T = π ◦ (g⊕ idG)◦ f , so F is indeed a functor. If F(V ) = F(V ′) then there is an isometry f such that
V = π ◦ f =V ′ and, hence, F is faithful. Now π ◦ f is a contraction for all [ f ,G], so F is full.

4 Hiding in a partial setting

The previous section considered (co)affine completions with respect to the direct sum. But rig categories
have another monoidal structure, the tensor product. Just as we can form the additive affine completion
L⊕(C) of a rig category C, we can also form the multiplicative one L⊗(C): objects are those of C,
morphisms A→B are equivalence classes of morphisms A→B⊗G in C, with identities and composition
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just as in Definition 1. Where the L⊕-construction captures partiality by allowing part of the state space
to be hidden, the L⊗-construction models discarding by allowing any state to be hidden (partly or fully).

This construction was shown to capture Stinespring dilation in [12], where the authors argued that
L⊗(Isometry) is monoidally equivalent to the category FHilbCPTP of finite-dimensional Hilbert spaces
and completely positive trace-preserving (CPTP) maps (or quantum channels). A drawback is that this
does not generally preserve the direct sum, so L⊗(C) is generally only monoidal (under tensor product)
when C is a rig category (though remnants of the direct sum persist, see [9, Section 4.4]).

Unfortunately, we cannot hope to use the L⊗-construction to construct the category FHilbCPTN of
finite-dimensional Hilbert spaces and completely positive trace-nonincreasing (CPTN) maps (or partial
quantum channels) for a simple reason: the unit I of the tensor product is terminal in L⊗(C), but unlike
FHilbCPTP, it is not terminal in FHilbCPTN. The unique map A → I in FHilbCPTP is given by the trace of
a density matrix on A, and is unique because all density matrices have unit trace. On the other hand, the
subnormalised density matrices found in FHilbCPTN take their traces in the unit interval, so even though
there is only one trace-preserving map A → I, there are as many trace-nonincreasing ones as there are
real numbers in [0,1]. Another way to say this is that the L⊗-construction fails to respect partiality in
FHilbCPTN (as also discussed in [8]).

This section generalises that result to the partial case. To do this, we show a variant of Stinespring
dilation for completely positive trace-nonincreasing maps, describe a construction Lt

⊗(C) that extends C
with unique total deletion maps, and relate the two by showing that Lt

⊗(Contraction)≃ FHilbCPTN. We
relate this to the total case by showing that Lt

⊗(C) has a universal property as a certain pushout in the
category of (locally small) monoidal categories.

4.1 Stinespring dilation for partial quantum channels

We begin with a small lemma, which turns out to be incredibly useful when working with contractions.

Proposition 14. T is contractive if and only if T †T ≤ 1.

Proof. By definition T †T ≤ 1 iff 1−T †T is positive semidefinite, which in turn is the case iff ⟨φ |(1−
T †T ) |φ⟩ ≥ 0 for all |φ⟩. But since

⟨φ |(1−T †T ) |φ⟩= ⟨φ |φ⟩−⟨φ |T †T |φ⟩= ∥|φ⟩∥2 −∥T |φ⟩∥2,

1−T †T is positive semidefinite iff ∥|φ⟩∥2 −∥T |φ⟩∥2 ≥ 0 for all |φ⟩, i.e., when T is contractive.

The previous proposition links handily to the following theorem about the Kraus representation of
completely positive trace-nonincreasing maps.

Proposition 15 ([1]). Any CPTN map Φ admits a representation Φ(ρ) = ∑
k
i=1 MiρM†

i with ∑i M†
i Mi ≤ 1.

As in the trace-preserving case, we can construct a Stinespring dilation from the Kraus representation.

Proposition 16. Every CPTN map Φ admits a Stinespring dilation Φ(ρ) = trE(T ρT †) for some con-
traction T and Hilbert space E.

Proof. Let B(A) Φ−→B(B) be a partial quantum channel with Kraus representation Φ(ρ) = ∑
k
i=1 MiρM†

i .
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Define E = Ck, let A⊗C
UR−→ A denote the right unitor, and let T =

(
∑

k
i=1 Mi ⊗|i⟩

)
U†

R . Now for any ρ:

trE(T ρT †) = trE

((
k

∑
i=1

Mi ⊗|i⟩
)

U†
R ρ UR

(
k

∑
j=1

M†
j ⊗⟨ j|

))
= trE

(
k

∑
i=1

k

∑
j=1

MiρM†
j ⊗|i⟩⟨ j|

)

=
k

∑
i=1

k

∑
j=1

tr(|i⟩⟨ j|)MiρM†
j =

k

∑
i=1

MiρM†
i = Φ(ρ) .

It remains to show that T is contractive:

T †T =UR

(
k

∑
j=1

M†
j ⊗⟨ j|

)(
k

∑
i=1

Mi ⊗|i⟩
)

U†
R =UR

(
k

∑
j=1

k

∑
i=1

M†
j Mi ⊗⟨ j|i⟩

)
U†

R

=UR

(
k

∑
i=1

M†
i Mi ⊗⟨i|i⟩

)
U†

R =
k

∑
i=1

M†
i Mi ≤ 1

which finishes the proof.

This representation is essentially unique, i.e., unique up to an isometry applied to the ancilla.

Lemma 17 ([19, Theorem 8.2 ]). Let Φ be a CP map with two Kraus representations Φ(ρ) =∑
k
i=1 EiρE†

i
and Φ(ρ) = ∑

k′
j=1 FjρF†

j . Assume k = k′; if k < k′, add some Ei = 0 for all k < i ≤ k′. There is a unitary
k-by-k matrix U = (ui j) such that Ei = ∑

k
j=1 ui jFj for all i.

Proposition 18. Let Φ be a CPTN map, and let TE : A→B⊗G, TF : A→B⊗G′ be two contractions such
that Φ(ρ) = trG(TEρT †

E ) = trG′(TFρT †
F ). If dim(G) ≤ dim(G′), then there is an isometry W : G → G′

such that TF = (1⊗W )TE .

Proof. Write UR for the right unitor. Fix an orthonormal basis for G and define Ei =UR(1⊗⟨i|)TE ; do the
same for Fj =UR(1⊗⟨ j|)TF . Notice that TE = (∑i Ei⊗|i⟩)U†

R thanks to ∑i |i⟩⟨i|= 1G for an orthonormal
basis. Take V to be the injection of G into a Hilbert space with the same dimension as G′. Let U = (ui j)
be the unitary from the lemma above. Then:

TE = (∑
i

Ei ⊗|i⟩)U†
R = (∑

i
(∑

j
ui jFj)⊗|i⟩)U†

R = (∑
i
(∑

j
ui jFj ⊗|i⟩))U†

R = (∑
j

Fj ⊗ (∑
i

ui j |i⟩))U†
R.

Because U is unitary,
∣∣ ĵ〉 = ∑i ui j |i⟩ form an orthonormal basis for G′. Finally, we obtain the isometry

W : G → G′ by composing W = RUV where R is the unitary mapping
∣∣ ĵ〉 7→ | j⟩.

Moreover, as in the trace-preserving case, contractions give rise to CPTN maps through conjugation.

Proposition 19. Every contraction T gives rise to a CPTN map Φ(ρ) = T ρT †.

Proof. Conjugation by any linear map is completely positive. That Φ is trace-nonincreasing follows by
tr
(
T ρT †

)
= tr

(
ρT †T

)
≤ tr(ρ 1) = tr(ρ).

Taken together, these results show that the situation between Contraction and FHilbCPTN mirrors
that between Isometry and FHilbCPTP: there is a (strict monoidal) functor Contraction → FHilbCPTN
that sends a contraction T to conjugation by T , and every CPTN map can be expressed this way (in an
essentially unique way) if we allow ourselves an ancilla system.
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4.2 Total eclipse of the state

We now formulate the new Lt
⊗-construction, adding a notion of hiding that cooperates with the total

maps in a monoidal dagger category. Consider a monoidal dagger category C with a monoidal (dagger)
subcategory of distinguished total maps Ct . For our purposes, the appropriate subcategory DagMon(C)
is that of dagger monomorphisms (i.e., morphisms f satisfying f † ◦ f = id). The significance of the total
maps is that, instead of being able to mediate with arbitrary maps from C (as in the L⊗-construction), we
are only permitted to mediate with total maps from DagMon(C) in the Lt

⊗-construction. Explicitly, for
f : A → B⊗G and f ′ : A → B⊗G′, write f ≤Lt

⊗
f ′ iff there exists a dagger monomorphism m : G → G′

making
A

B⊗G B⊗G′
id⊗m

f f ′

commute. Let ∼Lt
⊗

denote the equivalence closure of ≤Lt
⊗

.

Definition 20. The partial multiplicative affine completion Lt
⊗(C) of a symmetric monoidal dagger cat-

egory C is the category whose

• Objects are those of C,

• morphisms [ f ,G] : A → B are an object G and morphism f : A → B⊗G of C quotiented by ∼Lt
⊗

,

• identities are [ρ−1
⊗ , I], and

• composition of [ f ,G] : A → B and [g,G′] : B →C is [α⊗ ◦g⊗ idG ◦ f ,G′⊗G].

Before proceeding with the universal property of this construction, we first establish that it succeeds
in constructing FHilbCPTN.

Theorem 21. There is an equivalence Lt
⊗(Contraction)≃ FHilbCPTN of monoidal categories.

Proof. Construct a functor Lt
⊗(Contraction)→ FHilbCPTN acting as the identity on objects, by sending

[ f ,G] : A → B to the map ρ 7→ trG( f †ρ f ), which is CPTN by Proposition 19 and since the partial trace
is trace-preserving. This is well-defined since dagger monomorphisms in Contraction are precisely
the isometries, and since Stinespring dilations are invariant under isometric manipulation of the ancilla
system G. This functor is essentially surjective since it is identity on objects and Lt

⊗(Contraction) and
FHilbCPTN have the same objects; it is full since every CPTN map admits a Stinespring dilation (by
Proposition 16); it is faithful since different Stinespring dilations of the same CPTN map are always
apart by an isometry on the by Proposition 18; and it is (strict) monoidal since it preserves coherence
isomorphisms.

An immediate consequence of the definition of Lt
⊗(C) is that each object comes equipped with a

discarding map and chosen projections.

Proposition 22. Every object A of Lt
⊗(C) has a discarding map A → I, giving canonical projections

π1 : A⊗B → A and π2 : A⊗B → B.

Proof. As in L⊕, construct the discarding map A → I as the equivalence class of the inverse right unitor
ρ
−1
⊗ : A→ I⊗A of C. Projections are given by the equivalence class of the identity idA⊗B : A⊗B→ A⊗B

and the symmetry σ⊗ : A⊗B → B⊗A.
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We state some basic properties of this construction, shown analogously to those for the L⊕-construction.
Proposition 23. When C is a symmetric monoidal dagger category, Lt

⊗(C) is symmetric monoidal.
Proposition 24. There is a strict monoidal functor Et : C → Lt

⊗(C) given by Et(A) = A on objects and
Et( f ) = [ρ−1

⊗ ◦ f , I] on morphisms.
The connection between the L⊗ and the Lt

⊗ construction is made clear by the following inclusion.
Proposition 25. There is a strict monoidal inclusion functor It : L⊗(DagMon(C))→ Lt

⊗(C).
Indeed, as we will see momentarily, the Lt

⊗-construction is characterised by this inclusion. Interest-
ingly, this construction can be seen as a particular instance of the monoidal indeterminates-construction [7].
This gives a very useful factorisation lemma, which may be regarded as an instance of purification.
Lemma 26. Let C be a symmetric monoidal dagger category. Then

(i) morphisms [ f ,E] of L⊗(DagMon(C)) factor uniquely as π1 ◦E ( f ′) for some f ′ in DagMon(C),

(ii) morphisms [ f ,E] of Lt
⊗(C) factor uniquely as π1 ◦Et( f ′) for some f ′ in C, and

(iii) morphisms [ f ,E] of Lt
⊗(C) factor uniquely as It(π1)◦E ( f ′) for some f ′ in C.

Proof. (i,ii) are the expansion-raw factorisation of [7], and (iii) holds as π1 = It(π1) in Lt
⊗(C).

We are now ready to establish the universal property of Lt
⊗(C).

Theorem 27. Lt
⊗(C) is a pushout of E : DagMon(C) → L⊗(DagMon(C)) along the inclusion functor

DagMon(C)↣ C in the category of locally small symmetric monoidal categories and strong monoidal
functors.

DagMon(C) C

L⊗(DagMon(C)) Lt
⊗(C)

D

I

E

It

Et

F

Ft

F̂

Proof sketch. Notice first that the upper square commutes since all functors involved are strict monoidal,
and I and It are merely inclusions behaving as the identity on objects and morphisms, while E is precisely
Et restricted to dagger monomorphisms of C.

Next, since objects on C, DagMon(C), Lt
⊗(C), and L⊗(DagMon(C)) all coincide, F and Ft must

agree on objects, so we may define F̂(X) = F(X) = Ft(X) on objects, and F̂ ◦ It = F and F̂ ◦Et = Ft

on objects follows immediately. On morphisms we define F̂([ f ,E]) = F(π1) ◦Ft( f ). That this defini-
tion satisfies F̂ ◦ It = F and F̂ ◦Et = Ft on morphisms as well, and that F̂ is unique, follows using the
factorisation lemma above (full proof in the appendix).

Instantiating this property to the case of Contraction, where the functors Contraction → Isometry
and FHilbCPTP →FHilbCPTN are inclusions, and the functors Isometry→FHilbCPTP and Contraction→
FHilbCPTN conjugating by an isometry or contraction, we obtain the following characterisation.
Corollary 28. The following square is a pushout of symmetric monoidal categories:

Isometry Contraction

FHilbCPTP FHilbCPTN
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Proof. That DagMon(Contraction)≃ Isometry follows by the fact that every isometry f is contractive
(it satisfies ∥ f (x)∥= ∥x∥, so specifically ∥ f (x)∥≤∥x∥) and satisfies f †◦ f = id. Finally, L⊗(Isometry)≃
FHilbCPTP is known [12], and Lt

⊗(Contraction)≃ FHilbCPTN by Theorem 21.

5 Splitting measurements

The category FHilbCPTN does not have coproducts, but it can nevertheless be instructive to see why
a given candidate for cotupling fails. Working in Lt

⊗(Contraction), given two Stinespring dilations
f : A →C⊗G and g : B →C⊗G′, a candidate for the Stinespring dilation of their cotupling is the map
δ
−1
L ◦ f ⊕ g : A⊕B → C ⊗ (G⊕G′). In particular, if we were to try to cotuple the trivial Stinespring

dilations of the canonical injections i1 : A → (A⊕B)⊗ I and i2 : B → (A⊕B)⊗ I in Contraction, the
result would be the map δ

−1
L ◦ i1 ⊕ i2 : A⊕B → (A⊕B)⊗ (I ⊕ I) . Notice the non-trivial nature of the

ancilla of this dilation, which tracks whether the result came from i1 or i2. This is not simply the identity,
as it should be if this were an actual cotupling. Computing, we see that this map acts on block diagonal
density matrices on A⊕B by measuring whether the result falls in A or in B, i.e., by the mapping(

X Y
Z W

)
7→
(

X 0
0 W

)
.

Clearly, maps such as these are idempotent, but interestingly they do not split in FHilbCPTN. However,
they do have a very natural splitting in the category FCstarCPTN of finite-dimensional C*-algebras and
CPTN maps, via m : B(A⊕B)→ B(A)⊕B(B) and p : B(A)⊕B(B)→ B(A⊕B) given by

m
(

X Y
Z W

)
= (X ,W ) and p(X ,W ) =

(
X 0
0 W

)
(1)

as we then have m◦ p = id and p◦m is precisely the idempotent we started with. Indeed, this is a defining
characteristic of finite-dimensional C*-algebras compared to Hilbert spaces.
Definition 29. When C is an additively coaffine rig category, define a measurement in Lt

⊗(C) to be the
equivalence class of any n-ary “attempted cotupling” of injections

(δ−1
L )n−1 ◦

⊕
1≤ j≤n

i j :

( ⊕
1≤ j≤n

A j

)
→

( ⊕
1≤ j≤n

A j

)
⊗ (I⊕n).

Note that identities are measurements where n = 1. In FHilbCPTN, these correspond to projections
onto arbitrary block diagonals, the images of which are precisely the C*-algebras. We spell out Karoubi’s
concrete characterisation of the idempotent splitting of measurements in C.
Definition 30. The idempotent splitting of measurements in C is the category SplitM(C) whose

• objects are pairs (A,e) of an object A of C and a measurement e : A → A,

• morphisms f : (A,e)→ (B,e′) are morphisms f : A → B of C satisfying e′ ◦ f ◦ e = f ,

• each identity (A,e)→ (A,e) is e, and

• composition is as in C.
There is an inclusion of C in SplitM(C) sending objects A to (A, id) and leaving morphisms un-

changed. This construction is well-known to be the free splitting of these idempotents; more abstractly,
it is the completion of a category with regards to certain absolute colimits [21]. Now for the main result
of this section.
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Theorem 31. There is an equivalence SplitM(FHilbCPTN)≃ FCstarCPTN of categories.

Proof sketch. Define a functor F : SplitM(FHilbCPTN)→ FCstarCPTN as follows:

• on objects, set F((A,e)) = im(e), the image of the idempotent e as a subspace of A;

• on morphisms, F
(

f : (A,e)→ (B,e′)
)
= me′ ◦ f ◦ pe.

Here, pe is the inclusion of the subspace im(e) in A, and me′ is the projection of B onto its subspace im(e′),
as in (1). This is straightforwardly seen to be functorial. That this functor is essentially surjective follows
by Artin-Wedderburn, and that it is full and faithful follows using the unique splitting of measurement
idempotents in FCstarCPTN (see appendix for full proof).

We noted about the Lt
⊗-construction that it does not preserve direct sums, so even when acting on a rig

category, it is only a completion of monoidal categories. However, when splitting its measurements using
the construction above, the failed cotupling in FHilbCPTN does become an actual cotupling of coproducts
in SplitM(FHilbCPTN). Likewise, though Lt

⊗(C) does contain enough remnants of the direct sum of a rig
category C to make it an arrow with choice [9] and so allows for a description of measurements even in
the abstract, it is admittedly awkward. For this reason, though Lt

⊗ and SplitM are described by universal
properties separately, they are much better considered in combination, just like the LR⊕-construction.

6 Discussion

We have presented three universal constructions which, taken together, construct the category of finite-
dimensional C*-algebras and completely positive trace-nonincreasing maps from the category of finite-
dimensional Hilbert spaces and unitaries. Though we have kept to the finite-dimensional case in this
paper, there is reason to suspect that many of these results will generalise to infinite dimensions. For
example, Halmos dilation has a far stronger statement as Sz. Nagy dilation in the infinite-dimensional
case, and the usual Stinespring dilation theorem generalises to the infinite-dimensional case as well.

The key application that we envision for this work is in the design and semantics of quantum pro-
gramming languages. One application of the LR⊕-construction is in the quantisation of reversible clas-
sical programs. It can be shown that applying the LR⊕-construction to the category FinBij of finite
sets and bijections yields the category FinPInj of finite sets and partial injective functions. In partic-
ular, this means that the quantisation functor FinBij → Unitary lifts uniquely to a functor FinPInj →
Contraction. This is interesting since FinPInj is the setting for (finite) reversible classical computing
(see e.g. [16, 5]), in particular reversible (classical) flowcharts [30, 4] (with a finite state space). This
suggests that Contraction may be similarly considered as a setting for reversible quantum flowcharts, a
kind of quantum flowcharts (see also [24]) which eschew measurements in favour of quantum control.

Another application concerns extending the quantum programming language U Π
χ
a (“yuppie-chi-

a”) [9] with classical types. U Π
χ
a is an effectful extension of U Π, a quantum extension to the strongly

typed classical reversible programming language Π [15]. The effectful part of U Π
χ
a is that it uses the L⊗

and R⊕ constructions in a very direct way to add measurement as an effect to an otherwise measurement-
free language, taking its semantics from Unitary to FHilbCPTP. Since the measurement idempotents
described in Section 5 can all be described as U Π

χ
a programs, the SplitM-construction can similarly

be used very directly to add classical types to this language as a computational effect. This addresses
a known shortcoming of the language by allowing a distinction between e.g. the type of bits and the
type of qubits (as in e.g. [24]), but also allows for a much more fine-grained type-level separation of
measurement maps in how much they measure.
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A Deferred proofs

Proposition 9. The additive unit O is a zero object in LR⊕(C).

Proof. Define maps A → O and O → A as the equivalence classes of the symmetry σ⊕ : A⊕O → O⊕A
and σ⊕ : O⊕A → A⊕O. To see that the map A → O is unique, let f : A⊕H → O⊕G be any other
morphism of C. Then [O,σ ,A]∼LR⊕ [H, f ,G] can be seen using the graphical language [11]:

A O

O A

A O

O A

∼id⊕

H

H

A O

O

∼R⊕

H

f
O G

A O

=

H

f

GOO

A O
H

f

G
OO

∼LR⊕

A H

f

GO

=

That the map O → A is unique follows analogously, so O is both initial and terminal, i.e., a zero object.

Proposition 10. When C is a dagger rig category, so is LR⊕(C).

http://dx.doi.org/10.4204/EPTCS.236.15
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Proof. For any morphism [H, f ,G] : A → B in LR⊕(C), its dagger is defined to be

[H, f ,G]† = [G, f †,H].

First, we need to check this is well-defined, i.e., given [H, f ,G] = [H ′, f ′,G′], verify [H, f ,G]† = [H ′, f ′,G′]†.
This is straightforward, as f ∼LR⊕ g implies f † ∼LR⊕ g†; to see this, notice that

f ∼L⊕ g =⇒ f † ∼R⊕ g†

f ∼R⊕ g =⇒ f † ∼L⊕ g†

by using the dagger of the mediators and, furthermore, f ∼id⊕ g trivially implies f † ∼id⊕ g†. Clearly, this
dagger is involutive and

id†
A = [O, idA⊕O,O]† = [O, id†

A⊕O,O] = idA.

Checking explicitly that (g◦ f )† = f † ◦g† is more involved, but conceptually trivial: flip the diagram and
use the fact that C is a dagger category. This works because, in LR⊕(C) there is symmetry between input
and output: the dagger turns hidden parts of the input into a hidden part of the output, and vice versa.
That coherence isomorphisms are unitary follows immediately by the fact that they are inherited from C,
where are they unitary by C a dagger rig category.

Proposition 12. When C is a rig category, L⊕(R⊕(C))∼= LR⊕(C)∼= R⊕(L⊕(C)).

Proof. The fact that O is initial in LR⊕(C) together with the universal property of R⊕ implies that the top
triangle of the diagram below commutes, for a unique functor Φ. Then, the fact that O is also terminal
in LR⊕(C) and the universal property of L⊕ implies that the bottom triangle also commutes, for a unique
functor F̂ .

C R⊕(C)

LR⊕(C) L⊕(R⊕(C))

D

F
Φ

E

F̂

Moreover, O is a zero object in L⊕(R⊕(C)) and, thus, the universal property of LR⊕ implies there is
a unique strong monoidal functor Ê ◦D : LR⊕(C) → L⊕(R⊕(C)) such that E ◦D = Ê ◦D ◦F . This,
together with the commuting diagram above implies:

Ê ◦D ◦ F̂ ◦E ◦D = Ê ◦D ◦Φ◦D = Ê ◦D ◦F = E ◦D

which is captured in the outer triangle of the diagram below

C R⊕(C) L⊕(R⊕(C))

L⊕(R⊕(C))

D E

Ê ◦D◦F̂E ◦D

Due to the universal property of R⊕, the functor shown above as a diagonal dashed line is unique, so it
must be E ; then, Ê ◦D ◦ F̂ = 1L⊕(R⊕(C)) as both functors make the inner right triangle commute but, by
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the universal property of L⊕, there is only one such functor. By a similar argument F̂ ◦ Ê ◦D = 1LR⊕(C)

and hence L⊕(R⊕(C)) ∼= LR⊕(C). This is an equivalence of rig categories, as F̂ and Ê ◦D are rig
functors by construction. The same strategy proves R⊕(L⊕(C))∼= LR⊕(C).

Theorem 27. Lt
⊗(C) is a pushout of E : DagMon(C) → L⊗(DagMon(C)) along the inclusion functor

DagMon(C)↣ C in the category of locally small symmetric monoidal categories and strong monoidal
functors.

DagMon(C) C

L⊗(DagMon(C)) Lt
⊗(C)

D

I

E

It

Et

F

Ft

F̂

Proof. Notice first that the upper square commutes since all functors involved are strict monoidal, and I
and It are merely inclusions behaving as the identity on objects and morphisms, while E is precisely Et

restricted to dagger monomorphisms of C.
Next, since objects on C, DagMon(C), Lt

⊗(C), and L⊗(DagMon(C)) all coincide, F and Ft must
agree on objects, so we may define F̂(X) = F(X) = Ft(X) on objects, and F̂ ◦ It = F and F̂ ◦Et = Ft on
objects follows immediately. On morphisms we define F̂([ f ,E]) = F(π1)◦Ft( f ). Then

F̂(It([ f ,E])) = F̂(It(π1 ◦E ( f ))) = F̂(It(π1)◦ It(E ( f ))) = F̂(It(π1)◦Et(I( f )))

= F̂([I( f ),E]) = F(π1)◦Ft(I( f )) = F(π1)◦F(E ( f ))

= F(π1 ◦E ( f )) = F([ f ,E])

so F̂ ◦ It = F on morphisms as well. For the other triangle,

F̂(Et( f )) = F̂(π1 ◦ρ
−1 ◦Et( f )) = F̂(π1 ◦Et(ρ

−1)◦Et( f )) = F̂(π1 ◦Et(ρ
−1 ◦ f ))

= F̂([ρ−1 ◦ f , I]) = F(π1)◦Ft(ρ
−1 ◦ f ) = F(π1)◦F(ρ−1)◦Ft( f )

= F(π1)◦Ft(I(ρ−1))◦Ft( f ) = F(π1)◦F(E (ρ−1))◦Ft( f )

= F(π1 ◦E (ρ−1))◦Ft( f ) = F([ρ−1, I])◦Ft( f ) = F(id)◦Ft( f ) = Ft( f )

establishing F̂ ◦Et = Ft on morphisms. Finally, suppose G satisfies G◦ It = F and G◦Et = Ft . Then

G([ f ,E]) = G(It(π1)◦Et( f )) = G(It(π1))◦G(Et( f )) = F(π1)◦Ft( f ) = F̂([ f ,E])

on morphisms, and since G and F̂ must agree on objects as well (e.g. F̂(X) = F(X) = G(It(X)) = G(X)),
we get G = F̂ . Finally, F̂ is strong monoidal since Et is strict monoidal and Ft and F̂ agree on objects, so
F̂ may reuse the coercions I ∼= Ft(I) and Ft(A⊗B)∼= Ft(A)⊗Ft(B).

Theorem 31. There is an equivalence SplitM(FHilbCPTN)≃ FCstarCPTN of categories.

Proof. Define a functor F : SplitM(FHilbCPTN)→ FCstarCPTN as follows:

• on objects, set F((A,e)) = im(e), the image of the idempotent e as a subspace of A;

• on morphisms, F
(

f : (A,e)→ (B,e′)
)
= me′ ◦ f ◦ pe.
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Here, pe is the inclusion of the subspace im(e) in A, and me′ is the projection of B onto its subspace
im(e′), as in (1). This preserves identities since

F(id(H,e)) = F(e) = me ◦ e◦ pe = me ◦ pe ◦me ◦ pe = id◦ id = id.

Likewise, if f : (A,e)→ (B,e′) and g : (B,e′)→ (C,e′′), then

F(g◦ f ) = me′′ ◦g◦ f ◦ pe = me′′ ◦g◦ e′ ◦ f ◦ pe = me′′ ◦g◦ pe′ ◦me′ ◦ f ◦ pe = F(g)◦F( f )

using the fact that e′ splits as e′ = pe′ ◦me′ . Thus F is functorial. That
Any finite-dimensional C*-algebra is, up to isomorphism, of the form

⊕
B(Hi), so the image of a

block diagonal projection on B(
⊕

Hi). Thus F is essentially surjective.
Given any CPTN map of C*-algebras f :

⊕
B(Ai)→

⊕
B(B j), let mA :

⊕
B(Ai)→ B(

⊕
Ai) and

mB :
⊕

B(B j) → B(
⊕

B j) denote the projections onto this subspace, and pA and pB their inclusions
in the other direction. We see that pB ◦ f ◦mA : (

⊕
Ai, pA ◦mA) → (

⊕
B j, pB ◦mB) is a morphism of

SplitM(FHilbCPTN) since mA ◦ pA = id and mB ◦ pB = id, and so

(pB ◦mB)◦ (pB ◦ f ◦mA)◦ (pA ◦mA) = pB ◦ (mB ◦ pB)◦ f ◦ (mA ◦ pA)◦mA = pB ◦ f ◦mA.

Further,

F(pB ◦ f ◦mA) = mB ◦ (pB ◦ f ◦mA)◦ pA = (mB ◦ pB)◦ f ◦ (mA ◦ pA) = id◦ f ◦ id = f

so F is full.
Finally, let f : (A,e) → (B,e′) and f ′ : (A,e) → (B,e′) be morphisms of SplitM(FHilbCPTN) such

that F( f ) = F( f ′), i.e., me′ ◦ f ◦ pe = me′ ◦ f ′ ◦ pe. Since f = e′ ◦ f ◦ e and f = e′ ◦ f ′ ◦ e by definition of
morphisms in SplitM(−), we have

f = e′ ◦ f ◦ e = pe′ ◦me′ ◦ f ◦ pe ◦me = pe′ ◦me′ ◦ f ′ ◦ pe ◦me = e′ ◦ f ′ ◦ e = f ′

so F is faithful, and so an equivalence of categories.
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