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Abstract. Freyd categories provide a semantics for first-order effectful
programming languages by capturing the two different orders of eval-
uation for products. We enrich Freyd categories in a duoidal category,
which provides a new, third choice of parallel composition. Duoidal cat-
egories have two monoidal structures which account for the sequential
and parallel compositions. The traditional setting is recovered as a full
coreflective subcategory for a judicious choice of duoidal category. We
give several worked examples of this uniform framework, including the
parameterised state monad, basic separation semantics for resources, and
interesting cases of change of enrichment.
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1 Introduction

Computational effects encapsulate interactions of a computer program with its
environment in a modular way, and are a staple of modern programming lan-
guages [17]. Originally captured by strong monads [15], they have been extended
to Arrows to deal with input as well as output [12], to Lawvere theories to bet-
ter combine effects algebraically [20], to PROs and PROPs to deal with non-
cartesian settings [13], and to Freyd categories to deal with effects that are not
higher-order [14].

Freyd categories let one compose effectful computations both in sequence
and, to some extent, in parallel, and reason about such compositions rigorously.
For an effectful computation f : a → b, we may embed it, the domain, and the
codomain into a larger context by extending with − ⊗ c for any object c and
monoidal-like operation ⊗, which we write as f ⊗ id : a⊗ c → b⊗ c. Intuitively,
f ⊗ id does not interact with c. Effectful computations need not commute as
they may alter the environment: (f ⊗ id).(id ⊗ g) ̸= (id ⊗ g).(f ⊗ id) in general.

But what if we want to track more data about computations than just types
and effects? For example, suppose we want to annotate every computation with
its resource needs: there could e.g. be a set R of resources, and every computation
f requires a certain subset P ⊆ R of resources for it to execute. Sequencing two
computations needs all resources to execute both, so if f : a → b and g : b → c
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require resources P and Q respectively, then g.f requires P ∪ Q. The same is
true for parallel composition: if f1 : a1 → b1 and f2 : a2 → b2 require P1 and P2

respectively, then f1 ⊗ f2 : a1 ⊗ a2 → b1 ⊗ b2 requires P1 ∪ P2. However, it is
often desirable to restrict P1 and P2 by requiring P1∩P2 = ∅ so that morphisms
composed in parallel use different resources. If we have an identity map id : a → a
for all a which requires ∅ ⊆ R, then we can always form f ⊗ id for any f , but
what of the general case?

This article proposes a solution that achieves just this: enrich Freyd cate-
gories in duoidal categories. Duoidal categories carry two interacting monoidal
structures that will account for the sequential and parallel composition of both
the effectful computations and the extra data we want to track, such as the
resources above. We provide a concrete example for resources in Section 3.1.

Section 2 introduces duoidally enriched Freyd categories. Section 3 shows the
breadth of such categories by treating disparate examples: separation semantics
for resources as above, indexed state monads, and Kleisli categories of Lawvere
theories. Section 4 shows that a judicious choice of duoidal enriching category
recovers traditional Freyd categories as a full coreflective subcategory, and Sec-
tion 5 gives an abstract characterisation of duoidally enriched Freyd categories
in purely algebraic terms. Section 6 considers changing the enriching duoidal
category, accounting for e.g. changing the underlying permission model in the
example above. Section 7 concludes and suggests directions for future work.

Related work Morrison and Penneys define a V-monoidal category [16] for
braided monoidal V as a V-category with parallel composition that interacts
well with the braid. In the case V is braided (and thus duoidal), our definition
of a V-Freyd category is similar. However, we also require bifunctorality of the
hom objects, an important difference for some of our constructions.

The abstract characterisation in Section 5 is inspired by Fujii’s characteri-
sation of PROs and PROPs [7] as monoids in MonCatlax

(
Nop ×N,Set

)
and

MonCatlax
(
Pop ×P,Set

)
respectively, where N and P have natural numbers

as objects and equalities respectively bijections as morphisms.
Garner and López Franco describe a general framework for commutativity

using categories enriched in the sequential product of a duoidal category [8].
Their framework requires the duoidal category to be normal, meaning that the
two units are isomorphic. Only with this requirement and others do they define
a monoidal structure on their category of enriched categories, and do not define
a monoidal enriched category. We do not require normality.

Finally, Forcey [6], and Batanin and Markl [4] enrich over duoidal categories,
but using the parallel product instead. We choose to enrich over the sequential
product in order to define examples in which this is the appropriate choice.

2 Duoidally enriched Freyd categories

This section introduces duoidally enriched Freyd categories (in Section 2.3),
but first we discuss Freyd categories (in Section 2.1) and duoidal categories (in
Section 2.2).
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2.1 Freyd categories

Freyd categories provide semantics for first-order call-by-value programming lan-
guages with effects [20]. We will generalise the definition of a Freyd category
slightly so that the effect free fragment need not have products, beginning with
the following preliminary definitions [14,18].

Definition 1. A category C is binoidal when it comes with endofunctors (−)⋉x
and x⋊ (−) for each object x such that x⋉ y = x⋊ y for all y; write x⊗ y for
this object. A morphism f : x → y is central if for any morphism g : x′ → y′ the
two maps (y⋊ g).(f ⋉ x′) and (f ⋉ y′).(x⋊ g) of type x⊗ x′ → y⊗ y′ are equal,
as are the two maps (y′ ⋊ f).(g⋉x) and (g⋉ y).(x′ ⋊ f) of type x′ ⊗x → y′ ⊗ y.
Central morphisms form a wide subcategory Z(C) called the centre.

Definition 2. A binoidal category C is premonoidal when equipped with an
object e and families of central isomorphisms α : (x ⊗ y) ⊗ z → x ⊗ (y ⊗ z),
λ : e⊗ x → x, and ρ : x⊗ e → x that are natural in each component and satisfy
triangle and pentagon equations.

Definition 3. A functor F : C → D between premonoidal categories is a pre-
monoidal functor when equipped with central morphisms η : eD → F (eC) and
µ : F (x) ⊗D F (y) → F (x⊗C y) such that µ is natural in each component, and
the following diagrams commute:

(F (x)⊗D F (y))⊗D F (z) F (x)⊗D (F (y)⊗D F (z))

F (x⊗C y)⊗D F (z) F (x)⊗D F (y ⊗C z)

F ((x⊗C y)⊗C z) F (x⊗C (y ⊗C z))

µ⊗id

µ

FαC

αD

id⊗µ

µ

eD ⊗D F (x) F (eC)⊗D F (x)

F (x) F (eC ⊗C x)

F (x)⊗D eD F (x)⊗D F (eC)

F (x) F (x⊗C eC)

λD

η⊗id

µ

FλC

ρD

id⊗η

µ

FρC

A premonoidal functor is strong (strict) when η and µ are isomorphisms (iden-
tities).

Note that a strict premonoidal functor F preserves associators and unitors
on the nose. Recall that a functor F : C → D between monoidal categories
is lax monoidal when it comes with a morphism η : I → F (I) and a natural
transformation µ : F (X) ⊗ F (Y ) → F (X ⊗ Y ) satisfying coherence conditions.
It is strong monoidal when η and µ are invertible. Lax/strong monoidal functors
are closed under composition. Here now is our definition of a Freyd category.

Definition 4. A Freyd category consists of a monoidal category M and a pre-
monoidal category C with the same objects, and an identity-on-objects strict
premonoidal functor J : M → C whose image lies in Z(C). A morphism J → J ′

of Freyd categories consists of a strong monoidal functor F0 : M → M′ and a
strong premonoidal functor F1 : C → C′ such that F1J = J ′F0. Freyd categories
and their morphisms form a category Freyd.
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2.2 Duoidal categories

A duoidal category carries two interacting monoidal structures, that one may
intuitively think of as sequential and parallel composition, but let us give the
definition [2, Definition 6.1] before examples.

Definition 5. A category V is duoidal when it comes with two monoidal struc-
tures (V, ∗, J) and (V, ◦, I), a natural transformation ζA,B,C,D : (A ◦ B) ∗ (C ◦
D) → (A ∗C) ◦ (B ∗D), and three morphisms ∆ : J → J ◦ J , ∇ : I ∗ I → I, and
ϵ : J → I such that (I,∇, ϵ) is a monoid in (V, ∗, J) and (J,∆, ϵ) is a comonoid
in (V, ◦, I), and the following diagrams commute:

((A ◦B) ∗ (C ◦D)) ∗ (E ◦ F ) (A ◦B) ∗ ((C ◦D) ∗ (E ◦ F ))

((A ∗ C) ◦ (B ∗D)) ∗ (E ◦ F ) (A ◦B) ∗ ((C ∗ E) ◦ (D ∗ F ))

((A ∗ C) ∗ E) ◦ ((B ∗D) ∗ F ) (A ∗ (C ∗ E)) ◦ (B ∗ (D ∗ F ))

ζ∗id

ζ

α

id∗ζ

ζ

α◦α

J ∗ (A ◦B) (J ◦ J) ∗ (A ◦B)

A ◦B (J ∗A) ◦ (J ∗B)

(A ◦B) ∗ J (A ◦B) ∗ (J ◦ J)

A ◦B (A ∗ J) ◦ (B ∗ J)

λ

∆∗id

ζ

λ◦λ

ρ

id∗∆

ζ

ρ◦ρ

((A ◦B) ◦ C) ∗ ((D ◦ E) ◦ F ) (A ◦ (B ◦ C)) ∗ (D ◦ (E ◦ F ))

((A ◦B) ∗ (D ◦ E)) ◦ (C ∗ F ) (A ∗D) ◦ ((B ◦ C) ∗ (E ◦ F ))

((A ∗D) ◦ (B ∗ E)) ◦ (C ∗ F ) (A ∗D) ◦ ((B ∗ E) ◦ (C ∗ F ))

ζ

ζ◦id

α

α∗α

ζ

id◦ζ

I ◦ (A ∗B) (I ∗ I) ◦ (A ∗B)

A ∗B (I ◦A) ∗ (I ◦B)

(A ∗B) ◦ I (A ∗B) ◦ (I ∗ I)

A ∗B (A ◦ I) ∗ (B ◦ I)

λ

∇◦id

ζ

λ∗λ

ρ

id◦∇

ζ

ρ∗ρ

We may write (V, ∗, J, ◦, I) or (V, ∗, ◦) to be explicit about the role of each
monoidal structure.

Example 1. Any braided monoidal category becomes duoidal by letting both
monoidal structures coincide and ζ be the middle-four interchange x⊗ y⊗ z⊗w
→ x ⊗ z ⊗ y ⊗ w up to associativity. In particular, any symmetric or cartesian
monoidal category is duoidal [2, Proposition 6.10, Example 6.19].

Example 2. If (V, ∗, J, ◦, I) is duoidal, so is (Vop, ◦, I, ∗, J), with opposite struc-
ture maps [2, Section 6.1.2].

Example 3. If (V,⊗, I) is a monoidal category with products, (V,⊗, I,×, 1) is
duoidal with ζ = ⟨π1 ⊗ π1, π2 ⊗ π2⟩, ∆ = ⟨id, id⟩, and ∇ and ϵ terminal maps.
Similarly, if a monoidal category V has coproducts, (V,+, 0,⊗, I) is duoidal [2,
Example 6.19].
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Example 4. If (V, ∗, J, ◦, I) is small and duoidal, straightforward calculation
shows Day convolution [5] of each monoidal structure makes the category of
presheaves ([Vop,Set], ∗Day,V(−, J), ◦Day,V(−, I)) again duoidal where

(F ∗Day G) (A) =

∫ B,C

V (A,B ∗ C)× F (B)×G (C)

and likewise for ◦Day. An analogous construction holds for [V,Set] by starting
with Vop.

Example 5. An endofunctor on Set is finitary when it preserves filtered colim-
its and is therefore determined on finite sets. Finitary endofunctors are closed
under functor composition, ◦, with unit Id; closed under Day convolution with
products, ×Day, with unit Set (1,−) ∼= Id; making

(
[Set,Set]f ,×Day, Id, ◦, Id

)
a duoidal category. [8]

Example 6. For a small monoidal category (M,⊕, e), the category of Set-valued
endoprofunctors Prof(M) := [Mop×M,Set] is duoidal (Prof(M),⊕Day,⋄) with
profunctor composition (P⋄Q)(a, c) :=

∫ b
P (a, b)×Q(b, c) (having unit M(−,−))

and Day convolution of ⊕ on both sides (P⊕DayQ)(a, b) :=
∫ a1,a2,b2,b2 M(a, a1⊕

a2)×M(b1 ⊕ b2, b)× P (a1, b1)×Q(a2, b2) (having unit M(−, e)×M(e,−)). [8]

Example 7. An important example for us is the category Subset of distinguished
subsets. Objects are pairs of sets (X,A) such that X ⊆ A and morphisms
f : (X,A) → (Y,B) are functions f : A → B with f(X) ⊆ Y . We call X the
distinguished subset. Composition and identities are as in Set. We may suppress
the distinguished subset X by writing a A A when a ∈ X. Next, we give two
monoidal structures on Subset.

The first is the cartesian product: (X,A) × (Y,B) := (X × Y,A × B) on
objects, and f × g as in Set on morphisms, with unit (1, 1). Associators and
unitors are as in Set. This is also a categorical product.

The second is the disjunctive product : on objects (X,A)⊗(Y,B) is defined as(
X×Y, (A×Y )∪ (X×B)

)
with unit (1, 1). We again have f × g on morphisms,

which is well-defined. Finally, the coherence maps are restricted versions of those
for the cartesian product.

Now
(
Subset,⊗, (1, 1),×, (1, 1)

)
is duoidal by Example 3: ∆ and ∇ are uni-

tors, ϵ is the identity, and ζ :
(
(X,A)× (Y,B)

)
⊗
(
(Z,C)× (W,D)

)
→

(
(X,A)⊗

(Z,C)
)
×
(
(Y,B)⊗ (W,D)

)
is the restricted middle-four interchange; all axioms

are inherited from (Set,×, 1) via Example 1.
The important difference between

(
Subset,⊗,×

)
and (Set,×,×) is that ζ

is not invertible in the former (as it is not surjective as a Set map). This allows
Freyd categories enriched in Subset a premonoidal-like structure.

2.3 Concrete definition

We are now ready for the titular notion of this paper. We first give a concrete
definition, leaving an abstract characterisation to Section 5.
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Definition 6. Let (V, ∗, J, ◦, I) be a duoidal category and (M,⊕, e) a monoidal
category. A V-Freyd category over M consists of

– a bifunctor C : Mop ×M → V
– an extranatural family idt : I → C(a, a), meaning C(id, f).idt = C(f, id).idt
– an extranatural family seq : C(a, b)◦C(b, c) → C(a, c), meaning seq is natural

in a and c, and seq.(id ◦C(f, id)) = seq.(C(id, f) ◦ id)
– a morphism zero : J → C(e, e)
– a natural family par : C(a1, b1) ∗C(a2, b2) → C(a1 ⊕ a2, b1 ⊕ b2)

satisfying the following axioms:

(i) idt is the identity for seq, that is, seq.(idt ◦ id) = λ and symmetrically;
(ii) seq is associative, that is, seq.(seq ◦ id) = seq.(id ◦ seq).α;
(iii) zero is the identity for par, that is, C(λ−1, λ).par.(zero ∗ id) = λ and sym-

metrically;
(iv) par is associative, that is, C(α−1, α).par.(par ∗ id) = par.(id ∗ par).α;
(v) idt respects zero via idt.ϵ = zero;
(vi) idt respects par via idt.∇ = par.(idt ∗ idt);
(vii) seq respects zero via seq.(zero ◦ zero).∆ = zero;
(viii) seq respects par via seq.(par ◦ par).ζ = par.(seq ∗ seq).

See Appendix A for diagrams expressing the axioms.

Definition 7. A morphism of V-Freyd categories consists of a strong monoidal
functor F0 : M → M′ and a natural transformation F1 : C(a, b) → C′ (F0a, F0b)
satisfying:

– F1.idt = idt′;
– F1.seq = seq′. (F1 ◦ F1);
– C′ (id, µ) .par′. (F1 ∗ F1) = C′ (µ, id) .F1.par.

V-Freyd categories and morphisms between them form a category V-Freyd.

Our definition differs from the duoidally enriched categories of Batanin and
Markl [4] in a few important ways. They use ∗ for sequencing and ◦ for par-
allel composition. Their analogues to axioms v to viii are idt = zero.ϵ, idt =
par.(idt ◦ idt).∆, seq.(zero ∗ zero) = zero.∇, and seq.(par ∗ par) = par.(seq ◦ seq).ζ.
Additionally, their monoidal structure is more enriched while we inherit ours
from a Set-category, namely M. Thus, we believe both notions are not inter-
expressible.

3 Examples

This section works out three applications of duoidally enriched Freyd categories:
resource management (in Section 3.1), indexed state (in Section 3.2), and Kleisli
categories of Lawvere theories (in Section 3.3).
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3.1 Stateful functions and separated monoids

To deal with resources abstractly, we first introduce the novel notion of a sepa-
rated monoid.

Definition 8. A monoid (M, •, e) is separated when it comes with a binary
relation ∥ such that: e∥m and m∥e; and mm′∥n iff m∥n and m′∥n; and m∥nn′

iff m∥n and m∥n′.

Examples include (N,+, 0) with x∥y iff x = 0 or y = 0; finite subsets
(Pf (R),∪, ∅) of a fixed set R, with P∥Q iff P ∩Q = ∅; and products of separated
monoids under pointwise separation. Separated monoids parametrise duoidal
categories of resources as follows.

Definition 9. Let (M, ∥) be a separated monoid. The category LabelM of M -
labelled sets has as objects functions ℓ : A → M and as morphisms functions
f : A → A′ with ℓ′f = ℓ. This category has a monoidal structure • as follows:
on objects, ℓ • ℓ′ : A × A′ → M sends (a, a′) to ℓ(a) • ℓ′(a′); on morphisms,
f•f ′ = f×f ′; the unit cste : 1 → M picks out e ∈ M . There is a second monoidal
structure ∥ as follows: on objects, ℓ∥ℓ′ is the restriction of ℓ • ℓ′ to {(a, a′) |
ℓ(a)∥ℓ′(a′)}; on morphisms, f∥f ′ = f×f ′. The category (LabelM , ∥, cste, •, cste)
is duoidal with ζ : (ℓ1 • ℓ′1) ∥ (ℓ2 • ℓ′2) → (ℓ1∥ℓ2)• (ℓ′1∥ℓ′2) the restricted version of
the ζ for (Set,×, 1,×, 1).

Think of objects in LabelM as sets of elements labelled with their resource
needs. The multiplication of M combines resources, and the separation ∥ relates
non-conflicting resources. We will now describe an enriched Freyd category where
morphisms are labelled by resources as in the introduction.

Fix a countable family R = {x, y, z, . . .} of sets which we think of as resources.
The set Pf (R) of finite subsets of R is a monoid under union, and becomes a
separated monoid under disjointness. For set of resources Q ∈ Pf (R), fix a
product of sets Πx∈Qx =: ΠQ which thus combines the resources in Q. Write
πQ′ : ΠQ → ΠQ′ for the projection if Q′ ⊆ Q, and given a map f : a ×ΠQ′ →
b×ΠQ′ for sets a and b, write fQ

Q′ for the map a×ΠQ → b×ΠQ induced by f
when Q′ ⊆ Q which leaves the extra resources Q \Q′ unchanged.

We will define a LabelPf (R)-Freyd category over Set of state-transforming
functions. Let C(a, b) be the function from the disjoint union of Set(a×ΠQ, b×
ΠQ) over Q ∈ Pf (R) to Pf (R), that sends f : a×ΠQ → b×ΠQ to Q. Thus, a map
f ∈ C(a, b) with label Q is an effectful computation from a to b which can effect
only resources in Q. This becomes a bifunctor under pre- and post-composition.
Writing ∪ for • and ∩ for ∥ for the sake of concreteness, the structure maps are:

idt : cst∅ → C(a, a) zero : cst∅ → C(1, 1)

⋆ 7→ (∅, ida×1) ⋆ 7→ (∅, id)

seq : C(a, b) ∪C(b, c) → C(a, c)

((P, f), (Q, g)) 7→
(
P ∪Q, gP∪Q

Q .fP∪Q
P

)
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par : C(a, b) ∩C(a′, b′) → C(a× a′, b× b′)

((Q, f), (Q′, f ′)) 7→(
Q ∪Q′,

(
id × ⟨πQ, πQ′⟩−1

)
m−1.(f × f ′).m. (id × ⟨πQ, πQ′⟩)

)
where ⟨πQ, πQ′⟩ : ΠQ∪Q′ → ΠQ×ΠQ′ is invertible because Q∩Q′ = ∅ and m is
middle-four interchange. So par places maps in parallel up to rearranging state.

3.2 Indexed state

An important computational effect is global state. However, it is often inflexible
as the type of storage remains constant over time. In this example the type can
vary. We use the duoidal category of finitary endofunctors on Set of Example 5 to
give a [Set,Set]f -Freyd category over Set based on the state monad (s× (−))s,
extending Atkey’s example [3]. Define C(a, b) = (b× (−))a, which is a bifunctor
via pre- and post-composition. The natural structure maps are:

idtX : X → (a×X)
a zeroX : X → (1×X)

1

x 7→ λa.(x, a) x 7→ λ ⋆ .(x, ⋆)

seqX :
(
b×

(
(c×X)

b
))a

→ (c×X)
a

f 7→ eval.f

parX :
∫ Y,Z

XY×Z × (b× Y )
a × (c× Z)

a′
→ ((b× c)×X)a×a′

(k, f, g) 7→ (id × k).m.(f × g)

where eval : b×(c×X)
b → c×X is the evaluation map and m is the middle-four

interchange. idt and seq are the unit and multiplication of a state monad but
with varying types of state.

3.3 Kleisli categories of Lawvere theories

Lawvere theories model effectful computations. Functional programmers might
be more familiar with Kleisli categories of monads, to which they are closely
related. Here we describe an indexed version, which models independent effects
in parallel. Let Law be the category of Lawvere theories. Its initial object is the
theory S of sets, the unit for the tensor product ⊗ of Lawvere theories [10]. This
makes Law a symmetric monoidal category, with the special property that there
exist inclusion maps ϕi : Li → L1 ⊗L2. Thus the functor category [Law,Set] is
monoidal under Day convolution with unit the constant functor Law(S,−) ≃ 1.
As this category also has products, Example 3 makes it duoidal.

Now, Law is equivalent to the category of finitary monads [1, Chapter 3]: any
Lawvere theory L induces a monad T (L), and any map θ of Lawvere theories
induces a monad morphism T (θ). Every monad T on Set is canonically bistrong:
there are maps stT : a× Tb → T (a× b) and st′T : Ta× b → T (a× b) making the
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two induced maps (a× Tb)× c → T ((a× b)× c) equal. Each monad morphism
T (θ) preserves strength: T (θ)a×b.stT (L) = stT (L′).(id × T (θ)b).

We now show a [Law,Set]-Freyd category over Set given by the Kleisli
construction on Lawvere theories. Define on objects C(a, b) = T (−)(b)a, and on
morphisms C(f, g) : C(a, b) ⇒ C(a′, b′) by C(f, g)L(k) = T (L)(g).k.f , finally:

idtL : 1 → T (L)(a)a zeroL : 1 → T (L)(1)1

⋆ 7→ η ⋆ 7→ η

seqL : T (L)(b)a × T (L)(c)b → T (L)(c)a

(f, g) 7→ µ.T (L)g.f

parL :
∫ L1,L2 Law(L1⊗L2,L)×T (L1)(b1)

a1×T (L2)(b2)
a2 → T (L)(b1×b2)

a1×a2

(θ, f1, f2) 7→ T (θ).µ.T (L1 ⊗ L2)(st
′).st. (T (ϕ1)× T (ϕ2)) . (f1 × f2)

Intuitively, par lets us put Kleisli maps in parallel as long as their effects are
forced to commute (by ⊗). So idtL and seqL are the identity and composition for
the Kleisli category of T (L). The definition of parL seems noncanonical because
of the use of T (L1⊗L2)(st

′).st, but it is not: µ.T (L1⊗L2)(st
′).st. (T (ϕ1)× T (ϕ2))

and µ.T (L1 ⊗ L2)(st).st
′. (T (ϕ1)× T (ϕ2)) are equal by definition of L1 ⊗ L2.

4 Adjunction between Subset-Freyd and Freyd

Now let us explain how V-Freyd categories generalise Freyd categories. Our
approach is similar to Power’s [19] in that we work with Subset-enriched cate-
gories. Take V = Subset and consider a Subset-Freyd category C : Mop×M →
Subset; it comes equipped with a premonoidal-like structure via par and idt. We
call a morphism f A C(a, b) which is a member of the distinguished subset a
distinguished morphism. We will show they are central in the premonoidal sense.

First observe that idt : (1, 1) → C(a, a) is a Subset morphism, so idt(⋆) A
C(a, a) is distinguished. Thus, for g ∈ C(a′, b′) we find

(
idt(⋆), g

)
∈ C (a, a) ⊗

C(a′, b′) by definition of ⊗. Hence the pair is in the domain of par, giving
par

(
idt(⋆), g

)
∈ C(a⊕ a′, a⊕ b′) which we denote by a⋊par g. Similarly, for any

f ∈ C(a, b) we have f⋉parb
′ ∈ C(a⊕b′, b⊕b′). We may also construct f⋉para

′ and
b⋊parg. Hence it makes sense to ask if seq(a⋊parg, f⋉parb

′) = seq(f⋉para
′, b⋊parg),

and if this equation (and its mirrored version by placing g on the left) holds for
all f , we call g central in analogy to the binoidal case from Definition 1.

Next we claim that distinguished morphisms g A C(a′, b′) are central. Note
that

(
idt(⋆), g

)
A C(a′, a′) × C(a′, b′) and

(
g, idt(⋆)

)
A C(a′, b′) × C(b′, b′)

are distinguished and in the domain of seq. For any f ∈ C(a, b), we have(
(idt(⋆), f), (g, idt(⋆))

)
∈
(
C(a, a)×C(a, b)

)
⊗
(
C(a′, b′)×C(b′, b′)

)
and similarly(

(f, idt(⋆)), (idt(⋆)), g
)
∈
(
C(a, b)×C(b, b)

)
⊗
(
C(a′, a′)×C(a′, b′)

)
by definition

of ⊗ and are thus in the domain of seq⊗seq. We now apply par.(seq⊗seq) to each
pair and find they equal par (f, g). Axiom viii states par.(seq⊗ seq) = seq.(par×
par).ζ and therefore seq(a ⋊par g, f ⋉par b

′) = par(f, g) = seq(f ⋉par a
′, b ⋊par g)

(and the mirrored equation analogously), so g is central.
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Distinguished morphisms have their centrality preserved by Subset-Freyd
maps as they are mapped to distinguished morphisms, but central morphisms
need not be distinguished. Thus, Definition 7 ensures that membership in the
distinguished subset is preserved by Subset-Freyd maps, so centrality of distin-
guished morphisms of C is preserved by all maps. Furthermore, bifunctorality of
C ensures that for all f ∈ M (a, b), C (id, f) (idt (⋆)) A C(a, b), and so the image
of M is central and this centrality is preserved. The same is true for a Freyd
category J : M → C, the image of M under J is central and this centrality is
preserved by all morphisms of Freyd categories. This preservation requirement
is the difference between Freyd categories and Subset-Freyd categories: the lat-
ter can require more central morphisms than the image of M to have centrality
preserved. The rest of this subsection proves that there is an adjunction between
Freyd and Subset-Freyd. The left adjoint F : Freyd → Subset-Freyd is a
free functor that only requires the image of M to be preserved. The right adjoint
U : Subset-Freyd → Freyd forgets the extra distinguished central morphisms.

Proposition 1. There is a functor F : Freyd → Subset-Freyd defined on ob-
jects as F(C)(a, b) =

(
J(M(a, b)),C(a, b)

)
and F(C)(f, g) = C(Jf, Jg).

Proof (Proof sketch). F(C) is well-defined on morphisms because J is identity-
on-objects, and it is bifunctorial by bifunctorality of hom and functorality of J .
The structure maps are:

– idt : (1, 1) → F(C)(a, a) is ∗ 7→ id;
– seq : F(C)(a, b)× F(C)(b, c) → F(C)(a, c) is (f, g) 7→ g.f ;
– zero : (1, 1) → F(C)(e, e) is ∗ 7→ id;
– par : F(C)(a1, b1)⊗F(C)(a2, b2) → F(C)(a1⊕a2, b1⊕b2) is (f1, f2) 7→ f1⊗f2;

this is well-defined whether (f1, f2) is in J(M(a1, b1)) × C(a2, b2) or is in
C(a1, b1)× J(M(a2, b2)) as J preserves centrality of M = Z(M).

The (extra)naturality of the structure maps comes from the extranaturality of
composition, functorality of M’s monoidal product, and J being a strict pre-
monoidal functor preserving centrality. Axioms i and ii are true by C’s com-
position, axioms iii and iv follow from the strict premonoidality of J and the
naturality of unitors and associators, and axioms v and vii are trivial. Finally,
axioms vi and viii follow from C’s premonoidal structure.

Finally, it is easy to check that F(F ) = F is well-defined and functorial.

Proposition 2. There is a functor U : Subset-Freyd → Freyd that sends an
object C : Mop ×M → Subset to the functor J : M → U(C) defined as follows:

– the category U(C) has the same objects as M but homsets U(C)(a, b) = A
where (X,A) := C(a, b), with composition g.f = seq(f, g), and identity ida =
idt(⋆);

– the functor J is the identity on objects and J(f) = C(ida, f)(idt(⋆)) on
morphisms;

– the binoidal structure on U(C) is a ⋊ b = a ⋉ b = a ⊕M b on objects and
a⋊ f = par(idt(⋆), f) and f ⋉ b = par(f, idt(⋆)) on morphisms.
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Proof (Proof sketch). It is mechanical to check that U(C) is a well-defined Freyd
category. Given a morphism F = (F0, F1) from C : Mop × M → Subset to
C′ : M′op ×M′ → Subset, we must define a morphism U (F ) : JU(C) → JU(C′).
We define U (F )0 to be the strong monoidal functor F0, and define U (F )1 as
F0 on objects and as F1 on homsets. This is a well-defined morphism of Freyd
categories. It is straightforward to verify that U is functorial.

Theorem 1. The functors of Propositions 1 and 2 form an adjunction F ⊣ U.

Proof (Proof sketch). For the unit η of the adjunction we may take the identity
as a short calculation shows that UF = IdFreyd. A second calculation shows that
for a Subset-Freyd category C : Mop ×M → Subset, we have FU (C) (a, b) =(
C(id,M(a, b))(idt(⋆)),C(a, b)

)
, and so each component ϵC : FU (C) → C of the

counit can be defined as ϵC0 = IdM and ϵC1 = idC(a,b) : FU (C) (a, b) → C (a, b).
Note that the underlying Set map for ϵC1 is the identity map, but this is not
an identity in Subset. This counit is natural, and this unit and counit satisfy
the zig-zag identities for an adjunction.

Recall that an adjunction F ⊣ G with unit η : Id → GF and counit ϵ : FG →
Id is idempotent if any of Fη, ϵF , ηG, or Gϵ are invertible [9, Section 3.8]. In
the case of the previous theorem, clearly Fη is invertible as η is the identity, so
this adjunction is idempotent. This leads to the following theorem detailing just
how Subset-Freyd generalises Freyd.

Theorem 2. The full coreflective subcategory of Subset-Freyd consisting of
objects C : Mop ×M → Subset for which C (a, b) has the distinguished subset
C (id,M (a, b)) (idt (⋆)) is equivalent to Freyd.

Proof (Proof sketch). The following is a general fact about idempotent adjunc-
tions [9, Section 3.8]: if F ⊣ G is an idempotent adjunction with associated
monad T = GF and comonad S = FG : A → A, then the category of algebras
of T is equivalent to the category of coalgebras of S, and the category of coal-
gebras of S is a full coreflective subcategory of A given by the objects of A for
which ϵ : SA → A is invertible.

The category of algebras for the monad UF = Id is equivalent to Freyd, which
is therefore a full coreflective subcategory of Subset-Freyd. Furthermore, we
can characterize the objects of this subcategory as Subset-Freyd categories C
for which to ϵ : FU (C) → C is invertible. Concretely, this means ϵC1 must be
invertible in Subset. But the underlying Set map is the identity, establishing
the claim.

5 Abstract characterisation

Definition 6 is a very concrete way to specify a V-Freyd category, involving a
nontrivial amount of data and axioms. Yet it fits together, as we show in this
subsection by giving a characterisation in the style of [12]. Recall that a natu-
ral transformation between lax monoidal functors is monoidal when it respects
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the coherence maps µ and η. Write MonCatlax
(
C,D

)
for the category of lax

monoidal functors from C to D and monoidal natural transformations between
them. If A and B are monoidal categories, so are Aop and A × B, with com-
ponentwise structure. Thus we may consider MonCatlax

(
Mop ×M,V

)
for the

monoidal category (V, ∗, J). We will lift the other monoidal structure (V, ◦, I)
to MonCatlax

(
Mop × M,V

)
and prove that a V-Freyd category is exactly a

monoid with respect to this monoidal structure, under additional assumptions
on V. Most proofs are deferred to Appendix B.

Definition 10. A duoidal category V is a cocomplete duoidal category if V
is cocomplete and ∗ and ◦ are cocontinuous in each argument. In a cocomplete
duoidal category, the following diagrams and their symmetric versions commute:

J ∗ colim(D) colim (J ∗D)

colim(D)
≃≃

≃
I ◦ colim(D) colim (I ◦D)

colim(D)
≃≃

≃

where the top isomorphism is colimit preservation and the others are induced by
unitors.

The rest of this subsection assumes that V is a cocomplete duoidal category;
importantly, this is satisfied for presheaf categories. This restriction will be mit-
igated in Section 6.2 for small V. We also assume that M is small. All laxness is
with respect to (V, ∗, J). We now lift (V, ◦, I); first the unit, then composition.

Proposition 3. There is a lax monoidal functor homM : Mop×M → V defined
on objects as homM(a, b) =

∐
σ∈homM(a,b) I.

Proposition 4. If S, T : Mop×M → V are lax monoidal functors, the functor
S ◦̂ T : Mop ×M → V defined using coends as (S ◦̂ T )(a, c) =

∫ b
T (a, b) ◦ S(b, c)

is lax monoidal.

Proposition 5.
(
MonCatlax(M

op×M,V), ◦̂,homM

)
is a monoidal category.

Proof. Lemmas 5 to 7 in Appendix B show that the ◦-composition is functorial,
associative, and has homM as left and right unit. That leaves only the trian-
gle and pentagon identities, which follow from cocontinuity and the equivalent
identities for ◦.

With these preparations we can characterise V-Freyd categories abstractly.

Theorem 3. Let V be a cocomplete duoidal category. Then a V-Freyd category
C : M×Mop → V is exactly a monoid in MonCatlax(M

op ×M,V).

Proof (Proof sketch). A monoid C in MonCatlax(M
op × M,V) consists of

two maps e : homM → C and m : C ◦̂ C → C, inducing idt and seq satisfying
unit and associativity conditions. The lax monoidal structure of C gives zero
and par respectively, so identity and associativity conditions follow. Finally, the
components of e and m are monoidal natural transformations, ensuring that idt
and seq respect zero and par.
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We note that by Fujii’s observations [7], PROs and PROPs are equivalent to Set-
Freyd categories over N and P respectively because (Set,×,×) is a cocomplete
duoidal category.

6 Change of enrichment

After defining enriched categories, a natural next step is to consider a change of
enrichment. Any monoidal functor V → W induces a functor V-Cat → W-Cat.
We will show that the same holds for the appropriate type of functors between
duoidal categories and enriched Freyd categories (in Section 6.1). We will then
use that to alleviate the restriction of duoidal cocompleteness on the abstract
characterisation of Section 5 (in Section 6.2) at the cost of losing a direction
of the correspondence. Finally, changing enrichment along a forgetful functor
gives an underlying (unenriched) Freyd category J : M → C with C monoidal,
which we show recovers the pure computations in the examples of Section 3 (in
Section 6.3).

6.1 Lifting duoidal functors

To talk about change of enrichment, we first need to define the appropriate type
of functor between the enriching categories along which to change.

Definition 11. [2, Definition 6.54] Take duoidal categories (V, ∗V, JV, ◦V, IV)
and (W, ∗W, JW, ◦W, IW). A functor F : V→W is a double lax monoidal func-
tor when equipped with η∗, µ∗, η◦, and µ◦ such that (F, η∗, µ∗) is lax monoidal
for ∗V and ∗W, (F, η◦, µ◦) is lax monoidal for ◦V and ◦W, and the following
diagrams commute:

(F (A) ◦W F (B)) ∗W (F (C) ◦W F (D)) (F (A) ∗W F (C)) ◦W (F (B) ∗W F (D))

F (A ◦V B) ∗W F (C ◦V D) F (A ∗V C) ◦W F (B ∗V D)

F ((A ◦V B) ∗V (C ◦V D)) F ((A ∗V C) ◦V (B ∗V D))

µ◦∗µ◦

µ∗

ζ

µ∗◦µ∗

µ◦

Fζ

F (JV) F (IV)

JW IW

Fϵ

η∗

ϵ

η◦

JW F (JV) F (JV ◦V JV)

JW ◦W JW F (JV) ◦W F (JV)

η∗ F∆

∆

η∗◦η∗

µ◦

IW F (IV) F (IV ∗V IV)

IW ∗W IW F (IV) ∗W F (IV)

η◦ F∇

∇

η◦∗η◦

µ∗

Here now is the change-of-enrichment theorem for duoidally enriched Freyd
categories.

Theorem 4. Let F : V → W be a double lax monoidal functor. For a V-Freyd
category C : Mop×M → V, define F (C)(a, b) := F (C(a, b)) with structure maps
idtF := F idt.η◦, seqF := F seq.µ◦, zeroF := F zero.η∗, and parF := Fpar.µ∗. For
a map G = (G0, G1) : C → C′, define F (G) := (G0, FG1). This F is a functor
V-Freyd → W-Freyd.
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Proof. See Appendix C.

Example 8. Let M and N be separated monoids and ϕ : M → N a homo-
morphism such that ϕ(m) ∥ϕ(m′) implies m ∥m′. Then ϕ induces a double
lax monoidal functor ϕ∗ : LabelM → LabelN given by ℓ 7→ ϕ.ℓ on objects
and f 7→ f on morphisms. The maps η∗, µ∗, and η◦ are all identities, while
µ◦ : {(a, a′) | ϕ.ℓ(a)∥ϕ.ℓ′(a′)} → {(a, a′) | ℓ(a)∥ℓ′(a′)} is the inclusion, and so
ϕ∗ is clearly double lax monoidal. Apply Theorem 4 to the example from Sec-
tion 3.1 along the map Pf (!) : Pf (R) → Pf (1), which is a homomorphism such
that Pf (!)(P ) ∩ Pf (!)(Q) = ∅ implies P ∩ Q = ∅. We get Pf (!)∗(C)(a, b) =∑

Q∈Pf (R) (Set(a×ΠQ, b×ΠQ)) → Pf (1), (Q, f) 7→ ∅ if Q = ∅, else 1. This
change of enrichment alters the example to only allowing maps to be put in
parallel if at least one of them requires no resources.

Example 9. We can use change of enrichment for the indexed state example of
Section 3.2. Consider Example 6 for (Set,×, 1) (using universes for this example
to avoid size issues). There, the definition of Day convolution ×Day simplifies to
(P×DayQ)(a, b) =

∫ b2,b2 Set(b1×b2, b)×P (a, b1)×Q(a, b2) and its unit becomes
k(a, b) = b. The Kleisli construction turns a finitary endofunctor on Set into a
profunctor as follows. Define Kl: [Set,Set]f → Prof(Set) by Kl(F )(a, b) =
Set(a, Fb), and coherence maps:

η∗ : k → Kl(Id) µ∗ : Kl(F1)×Day Kl(F2) → Kl(F1 ×Day F2)

b 7→ cstb (k, f1, f2) 7→ λa.(k, f1(a), f2(a))

η◦ : hom → Kl(Id) µ◦ : Kl(F ) ⋄Kl(G) → Kl(F ◦G)

f 7→ f (f, g) 7→ Fg.f

This makes Kl a double lax monoidal functor. Theorem 4 then gives a Prof(Set)-
Freyd category defined by Kl(C)(a, b)(x, y) := Set(x, (b× y)

a
).

6.2 Yoneda embedding

The Yoneda embedding of a small monoidal category is a strong monoidal functor
with respect to Day convolution. This extends to small duoidal categories.

Proposition 6. The Yoneda embedding V→ [Vop,Set] is a double lax monoidal
functor from small (V, ∗, J, ◦, I) to

(
[Vop,Set], ∗Day,V(−, J), ◦Day,V(−, I)

)
.

Proof. See [11] for the fact that it is lax monoidal for each monoidal structure
separately. The diagrams of Definition 11 are verified straightforwardly.

It follows from Theorem 4 that every V-Freyd category for small V induces a
[Vop,Set]-Freyd category. But [Vop,Set] is duoidally cocomplete, so the setting
in which the abstract characterisation of Theorem 3 applies. We conclude that
the characterisation extends beyond the duoidally cocomplete setting in the sense
that every V-Freyd category for small V induces a monoid in MonCatlax(M

op×
M, [Vop,Set]).
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6.3 Forgetful functors

Any category enriched in a monoidal category V has an underlying (unenriched)
category, got by changing the enrichment along the ‘forgetful’ monoidal functor
V(I,−) : V → Set. A similar process plays out for duoidal categories.

Proposition 7. Let (V, ∗, J, ◦, I) be a duoidal category and write ϕ : J → J ∗ J
for the inverse of the unitors. Then V(J,−) : V → Set is a double lax monoidal
functor with coherence maps:

η∗ : 1 → V(J, J) µ∗ : V(J,A1)×V(J,A2) → V(J,A1 ∗A2)

⋆ 7→ id (f1, f2) 7→ (f1 ∗ f2).ϕ

η◦ : 1 → V(J, I) µ◦ : V(J,A1)×V(J,A2) → V(J,A1 ◦A2)

⋆ 7→ ϵ (f1, f2) 7→ (f1 ◦ f2).∆

Applying Theorem 4 along the forgetful functor of the previous proposition in
the case of the examples of Section 3 will show that this recovers the underlying
pure computations. Note that a Set-Freyd category C has a trivial instance of
the exchange axiom, axiom viii, and so C is a monoidal category with identity-
on-objects monoidal functor J : M → C.

Example 10. Applying the forgetful functor to the stateful function example of
Section 3.1 results in the (unenriched) category with LabelPf (R)(cst∅,C(a, b))
as the homsets. Because labels are preserved, the morphisms in this (unenriched)
category are exactly the elements of C(a, b) which have label ∅, i.e. maps a×1 →
b× 1 which are pure functions.

Example 11. Changing the enrichment of the indexed state example from Sec-
tion 3.2 along the forgetful functor gives the (unenriched) category with homsets
[Set,Set]f (Id,C(a, b)). If ϕ : Id → (b× (−))a is such a natural transformation,
then the function ϕ1 : 1 → (b × 1)a, which is equivalent to choosing a function
f : a → b, completely determines ϕ, because for any set X and x ∈ X by nat-
urality 1

x−→ X
ϕX−−→ (b × X)a = 1

ϕ1−→ (b × 1)a
(id×x).−−−−−−−→ (b × X)a, whence

ϕX(x)(a) = (f(a), x). Therefore the morphisms in this (unenriched) category
are all functions a → b.

Example 12. Changing the enrichment of the Kleisli categories of Lawvere theo-
ries example from Section 3.3 along the forgetful functor gives the (unenriched)
category with homsets [Law,Set](1,C(a, b)). Consider such a natural transfor-
mation ϕ : 1 → T (−)(b)a. It is completely determined by its component at S. For
any L let ι : S → L be the unique map, then naturality implies ϕL = T (ι)ϕS .
Furthermore, ϕS(⋆) ∈ T (S)(b)a = ba. So the morphisms in this (unenriched)
category again are all functions a → b.
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7 Conclusion

We have defined a version of Freyd categories enriched over any duoidal category
V, and morphisms between them. We used various duoidal categories to give ex-
amples based on separation of resources, parameterised monads, and the Kleisli
construction for Lawvere theories. By enriching with Subset, we have proven
that the category of Freyd categories Freyd is a full coreflective subcategory
of Subset-Freyd, thus establishing that V-Freyd categories indeed generalise
Freyd categories. Additionally, we proved an abstract characterisation of V-
Freyd categories over small M for duoidally cocomplete V, they are monoids
in MonCatlax

(
Mop × M,V

)
. Finally, we provided change of enrichment and

examples thereof.

Future work There are several directions for further investigation:

– The abstract characterisation of Section 5 may be part of a larger structure,
namely a bicategory with proarrow equipment, whose objects are monoidal
categories, arrows are strong monoidal functors, proarrows are lax monoidal
profunctors, and cells are lax monoidal natural transformations. In this set-
ting, a V-Freyd category would be a monad and the vertical monad mor-
phisms would be a V-Freyd morphism. This would enable applying general
constructions for monads in a bicategory.

– Relatedly, an fc-multicategory structure on MonCatlax(M
op ×M,V) may

bypass cocompleteness in characterising V-Freyd categories as monoids.
– The abstract characterisation of Section 5 also uses the free V-category on

M. It may be fruitful to change the definition of a V-Freyd category to be
a V-functor J : M → C where we extend V-categories in a way similar to
Morrison and Penneys [16].

– Freyd categories can have the property of being closed. In this case they
induce a strong monad. A similar definition may be possible for V-Freyd
categories. This could determine a higher-order semantics for effectful pro-
grams based on duoidal categories. A nontrivial definition of closure may
require a V-category M that is not free.

– Our original motivation stemmed from the desire for semantics combining
differentiable and probabilistic programming, in particular, the possibility of
having a linear structure for the probabilistic fragment and a cartesian one
for differentiable terms. Prof -Freyd categories may provide a useful separa-
tion to aid the desired distinction between linear and cartesian properties.
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A Definition of V-Freyd category

This appendix spells out the type diagrams of Definition 6 of V-Freyd categories.

Extranaturality of idt:
I C(b, b)

C(a, a) C(a, b)

idt

C(f,id)idt

C(id,f)

Extranaturality of seq:

C(a, b) ◦C(b′, c) C(a, b′) ◦C(b′, c)

C(a, b) ◦C(b, c) C(a, c)

C(id,f)◦id

seqid◦C(f,id)

seq

idt is the identity for seq:

I ◦C(a, b) C(a, a) ◦C(a, b)

C(a, b)

λ
seq

idt◦id
C(a, b) ◦ I C(a, b) ◦C(b, b)

C(a, b)

ρ
seq

id◦idt

seq is associative:

(C(a, b) ◦C(b, c)) ◦C(c, d) C(a, b) ◦ (C(b, c) ◦C(c, d))

C(a, c) ◦C(c, d) C(a, b) ◦C(b, d)

C(a, d)

α

id◦seq

seq

seq◦id

seq

zero is the identity for par:

J ∗C(a, b) C(e, e) ∗C(a, b)

C(a, b) C(e⊕ a, e⊕ b)

λ

zero∗id

par

C(λ−1,λ)

C(a, b) ∗ J C(a, b) ∗C(e, e)

C(a, b) C(b⊕ e, b⊕ e)

ρ

id∗zero

par

C(ρ−1,ρ)

par is associative:

(C(a1, b1) ∗C(a2, b2)) ∗C(a3, b3) C(a1, b1) ∗ (C(a2, b2) ∗C(a3, b3))

C(a1 ⊕ a2, b1 ⊕ b2) ∗C(a3, b3) C(a1, b1) ∗C(a2 ⊕ a3, b2 ⊕ b3)

C((a1 ⊕ a2)⊕ a3, (b1 ⊕ b2)⊕ b3) C(a1 ⊕ (a2 ⊕ a3), b1 ⊕ (b2 ⊕ b3))

α

id∗par

par

par∗id

par

C(α−1,α)
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idt respects zero:
J I

C(e, e)

ϵ

idtzero

idt respects par:
I ∗ I C(a, a) ∗C(b, b)

I C(a⊕ b, a⊕ b)

par

idt∗idt

∇

idt

seq respects zero:
J J ◦ J

C(e, e) C(e, e) ◦C(e, e)

zero zero◦zero

∆

seq

seq respects par:

(C(a1, b1)◦C(b1, c1))∗(C(a2, b2)◦C(b2, c2)) (C(a1, b1)∗C(a2, b2))◦(C(b1, c1)∗C(b2, c2))

C(a1, c1) ∗C(a2, c2) C(a1 ⊕ a2, b1 ⊕ b2) ◦C(b1 ⊕ b2, c1 ⊕ c2)

C(a1 ⊕ a2, c1 ⊕ c2)

ζ

par◦par

seq

seq∗seq

par

B Proofs for abstract characterisation

This appendix contains proofs of the abstract characterisation of V-Freyd cate-
gories of Section 5. They rely on properties of V-Freyd categories listed in the
following four lemmas, that are mechanical to verify.

Lemma 1. The unitors of ◦ respect zero and par:

ρ.zero = (zero ◦ ϵ).∆ zero.λ = (ϵ ◦ zero).∆
ρ.par = (par ◦ ∇).ζ.(ρ ∗ ρ) par.λ = (par ◦ ∇).ζ.(λ ∗ λ)

Lemma 2. The associator of ◦ respects zero and par:

α.(zero ◦ (zero ◦ zero)).(id ◦∆).∆ = ((zero ◦ zero) ◦ zero).(∆ ◦ id).∆
α.(par ◦ (par ◦ par)).(id ◦ ζ).ζ = ((par ◦ par) ◦ par)).(ζ ◦ id).ζ.(α ∗ α)

Lemma 3. The unitors of ∗ respect zero and par:

id = (par ◦ par).ζ.(id ∗ ((zero ◦ zero).∆)).ρ

id = (par ◦ par).ζ.(((zero ◦ zero).∆) ∗ id).λ
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Lemma 4. The associator of ∗ respects par:

((par.(par ∗ id)) ◦ (par.(par ∗ id)).ζ.(ζ ∗ id) =
((par.(id ∗ par)) ◦ (par.(id ∗ par)).ζ.(id ∗ ζ).α

The previous lemmas require all the axioms of a duoidal category between
them, except for ◦ being a monoid in (V, ∗, J). This latter property is used in
the abstract characterisation.

Proof (Proof of Proposition 3). Bifunctorality is inherited from homM. The
coherence morphisms making it lax monoidal are η : J

ϵ−→ I
ιid0−−→

∐
σ I

∼=
homM(e, e) and

µ :
(∐

σ1
I
)
∗
(∐

σ2
I
) ∼= ∐

σ1,σ2
I ∗ I

∐
∇

−−−→
∐

σ1,σ2
I

[ισ1⊕σ2
]σ1,σ2−−−−−−−−−→

∐
σ .

The coherence diagrams commute by cocontinuity and the monoidal structure
(I,∇, ϵ).

Proof (Proof of Proposition 4). The coherence morphisms are:

ηS◦̂T : J
∆−→ J ◦ J ηS◦ηT−−−−→ T (e, e) ◦ S(e, e) →

∫ b
T (e, b) ◦ S(b, e) ∼= (S ◦̂ T )(e, e)

µS◦̂T : (S ◦̂ T )(a, c) ∗ (S ◦̂ T )(a′, c′)

≃
∫ b,b′

(T (a, b)◦S(b, c)) ∗ (T (a′, b′)◦S(b′, c′))∫
ζ

−−→
∫ b,b′

(T (a, b)∗T (a′, b′)) ◦ (S(b, c)∗S(b′, c′))∫
µT ◦µS−−−−−→

∫ b,b′
T (a⊕ a′, b⊕ b′) ◦ S(b⊕ b′, c⊕ c′)

→
∫ b

T (a⊕ a′, b) ◦ S(b, c′ ⊕ c′) ≃ (S ◦̂ T )(a⊕ a′, c⊕ c′)

Cocontinuity and Lemmas 3 and 4 finish the proof.

Lemma 5. The ◦-composition of Proposition 4 is functorial.

Proof. It is easy to see that ◦̂ is well-defined on objects. Bifunctorality for mor-
phisms then follows from bifunctorality of ◦ and functorality of coends.

Lemma 6. The functor homM of Proposition 3 is the left and right identity of
the ◦-composition of Proposition 4.

Proof. The isomorphism on objects involves cocontinuity, the unitors of ◦, left
Kan extending along the identity. Naturality is inherited from the naturality of
the constructions involved. The unitors must also be monoidal natural transfor-
mations, which is true via cocontinuity and Lemma 1.

Lemma 7. The ◦-composition of Proposition 4 is associative.

Proof. The isomorphism uses cocontinuity and the associator of ◦. Naturality is
inherited from the naturality of the constructions involved. The associator is a
monoidal natural transformation by cocontinuity and Lemma 2.
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C Proofs for change of enrichment

Proof (Proof of Theorem 4). Axioms i to iv hold by the axioms for lax monoidal
functors for the same reason lax monoidal functors preserve monoids. Axioms v
to viii each require the use of an axiom of double lax monoidal functors as shown
below.

idtF .ϵ = F idt.η◦.ϵ

= F idt.F ϵ.η∗

= F zero.η∗

= zeroF

idtF .∇ = F idt.η◦.∇
= F idt.F∇.µ∗.(η◦ ∗ η◦)
= Fpar.F (idt ∗ idt).µ∗.(η◦ ∗ η◦)
= Fpar.µ∗.(F idt ∗ F idt).(η◦ ∗ η◦)
= parF .(idtF ∗ idtF )

seqF .(zeroF ◦ zeroF ).∆ = F seq.µ◦.(F zero ◦ F zero).(η∗ ◦ η∗).∆
= F seq.F (zero ◦ zero).µ◦.(η∗ ◦ η∗).∆
= F seq.F (zero ◦ zero).F∆.η∗

= F zero.η∗

= zeroF

seqF .(parF ◦ parF ).ζ = F seq.µ◦.(Fpar ◦ Fpar).(µ∗ ◦ µ∗).ζ

= F seq.F (par ◦ par).µ◦.(µ∗ ◦ µ∗).ζ

= F seq.F (par ◦ par).F ζ.µ◦.(µ∗ ◦ µ∗)

= Fpar.F (seq ∗ seq).µ◦.(µ∗ ◦ µ∗)

= Fpar.µ◦.(F seq ∗ F seq).(µ∗ ◦ µ∗)

= parF .(seqF ∗ seqF )

Similar checks show that F (G) is a W-Freyd map. F is functorial by functorality
of F .
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