
Domains of commutative C*-subalgebras

Chris Heunen

1 / 26



Domains of commutative C*-subalgebras

Chris Heunen and Bert Lindenhovius

Logic in Computer Science 2015

1 / 26



Measurement

State: unit vector x in Cn

Measurement: in basis e1, . . . , en
gives outcome i with probability 〈ei | x〉
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Measurement

State: unit vector x in Cn

Measurement: function e : Cn →Mn such that
• e linear
• e(1, . . . , 1) = 1
• e(x1y1, . . . , xnyn) = e(x)e(y)
• e(x1, . . . , xn) = e(x)∗

gives outcome i with probability tr(e|i〉x)
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“projection-valued measure” (PVM)
“sharp measurement”

2 / 26



Compatible measurements

PVMs e, f : Cm → B(H) are jointly measurable
when each e|i〉 and f |j〉 commute.

(In)compatibilities form graph:

p q

r s

t

Theorem: Any graph can be realised as PVMs on a Hilbert space.

“Quantum theory realises all joint measurability graphs”
Physical Review A 89(3):032121, 2014
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Probabilistic measurement

State: unit vector x in Hilbert space H

Measurement: function e : Cm → B(H) such that
• e linear
• e(1, . . . , 1) = 1
• e(x) ≥ 0 if all xi ≥ 0
gives outcome i with probability tr(e|i〉x)
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∗
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Probabilistic measurement

State: unit vector x in Hilbert space H

Measurement: unital (completely) positive linear e : Cm → B(H)
gives outcome i with probability tr(e|i〉x)
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Compatible probabilistic measurements

POVMs e, f : Cm → B(H) are jointly measurable
when there exists POVM g : Cm2 → B(H)
such that e|i〉 =

∑
j g|ij〉 and f |j〉 =

∑
i g|ij〉

(e, f are marginals of g)

(In)compatibilities form

p q

r s

tp q

r s

t

Theorem: Any abstract simplicial complex can be realised as
POVMs on a Hilbert space.

“All joint measurability structures are quantum realizable”
Physical Review A 89(5):052126, 2014
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States

State: unit vector x in Hilbert space H

Measurement: unital (completely) positive linear e : Cm → B(H)
gives outcome i with probability tr(e|i〉x)
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States

State: ensemble of
unit vectors x in Hilbert space H

Measurement: unital (completely) positive linear e : Cm → B(H)
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States

State: ensemble of
projections |x〉〈x| onto vectors in Hilbert space H

Measurement: unital (completely) positive linear e : Cm → B(H)
gives outcome i with probability tr(e|i〉 |x〉〈x|)
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States

State: ensemble of
rank one projections p2 = p = p∗ in B(H)

Measurement: unital (completely) positive linear e : Cm → B(H)
gives outcome i with probability tr(e|i〉 |x〉〈x|)
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States

State: positive operator ρ in B(H) of norm 1

Measurement: unital (completely) positive linear e : Cm → B(H)
gives outcome i with probability tr(e|i〉 ρ)
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States

State: linear function ρ : B(H)→ C such that
ρ(a) ≥ 0 if a ≥ 0, and ρ(1) = 1

Measurement: unital (completely) positive linear e : Cm → B(H)
gives outcome i with probability tr(e|i〉 ρ)
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Continuous measurement

State: unital (completely) positive linear ρ : A→ C

Measurement: with m discrete outcomes
unital (completely) positive linear e : Cm → A

Here, C(X) = {f : X → C continuous} is a commutative C*-algebra.

Theorem: Every commutative C*-algebra is of the form C(X).

“On normed rings”
Doklady Akademii Nauk SSSR 23:430–432, 1939
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Classical data

Unsharp measurement: unital positive linear e : C(X)→ A
Sharp measurement: unital ∗-homomorphism e : C(X)→ A

Measurement: only way to get (classical) data from quantum system

Theorem: ‘unsharp measurements can be dilated to sharp ones’:
any POVM e : C(X)→ B(H) allows a PVM f : C(X)→ B(K) and
isometry v : H → K such that e(−) = v∗ ◦ f(−) ◦ v.

Sharp measurements give all (accessible) data about quantum system

Lemma: the image of a unital ∗-homomorphism e : C(X)→ A is a
(unital) commutative C*-subalgebra of A.

Commutative C*-subalgebras record all data of quantum system

“Positive functions on C*-algebras”
Proceedings of the American Mathematical Society, 6(2):211–216, 1955
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Coarse graining

Can collapse measurement with 3 outcomes into measurement with
2 outcomes by pretending two states are the same.

continuous function X → Y  ∗-homomorphism C(Y )→ C(X)
surjection X � Y  injection C(Y )� C(X)
quotient of state space X  C*-subalgebra of C(X)

Larger C*-subalgebras give more information
going up in order = better classical approximations (tomography)

Definition: If A is a C*-algebra, C(A) is the set of commutative
C*-subalgebras, partially ordered by inclusion ⊆.

9 / 26



Coarse graining

Can collapse measurement with 3 outcomes into measurement with
2 outcomes by pretending two states are the same.

continuous function X → Y  ∗-homomorphism C(Y )→ C(X)
surjection X � Y  injection C(Y )� C(X)
quotient of state space X  C*-subalgebra of C(X)

Larger C*-subalgebras give more information
going up in order = better classical approximations (tomography)

Definition: If A is a C*-algebra, C(A) is the set of commutative
C*-subalgebras, partially ordered by inclusion ⊆.

9 / 26



Coarse graining

Can collapse measurement with 3 outcomes into measurement with
2 outcomes by pretending two states are the same.

continuous function X → Y  ∗-homomorphism C(Y )→ C(X)
surjection X � Y  injection C(Y )� C(X)
quotient of state space X  C*-subalgebra of C(X)

Larger C*-subalgebras give more information
going up in order = better classical approximations (tomography)

Definition: If A is a C*-algebra, C(A) is the set of commutative
C*-subalgebras, partially ordered by inclusion ⊆.

9 / 26



Results about C(A): topos
I Consider “contextual sets” over C*-algebra A

assignment of set S(C) to each C ∈ C(A)
such that C ⊆ D implies S(C)� S(D)

I They form a topos T (A)!
category whose objects behave a lot like sets
in particular, it has a logic of its own!

I There is one canonical contextual set A
A(C) = C

I T (A) believes that A is a commutative C*-algebra!

“A Topos for Algebraic Quantum Theory”
Communications in Mathematical Physics 291:63–110, 2009
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Results about C(A): reconstruction
To what extent does C(A) determine A?

Can characterize partial orders of the form C(A).
Involves action of unitary group U(A).

If C(A) ∼= C(B), then A ∼= B as Jordan algebras.
(Except C2 and M2.)

If C(A) ∼= C(B) and A finite-dimensional, then A ∼= B.

“Characterizations of Categories of Commutative C*-subalgebras”
Communications in Mathematical Physics 331(1):215–238, 2014

“Abelian Subalgebras and Jordan Structure of Von Neumann Algebras”
Houston Journal of Mathematics, 2015

“Isomorphisms of Ordered Structures of Abelian C*-subalgebras”
Journal of Mathematical Analysis and Applications 383:391–399, 2011

“Classifying fininite-dim’l C*-algebras by posets of commutative C*-subalgebras”
International Journal of Theoretical Physics, 2015
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Non-results about C(A): reconstruction
Extra ingredient necessary to reconstruct A:

commutative
algebras

state spaces

all algebras ?X

Trace almost suffices as extra ingredient.
(If associative ∗ : Mn ⊗Mn →Mn satisfies xy = yx =⇒ x ∗ y = xy and

Tr(x ∗ y) = Tr(xy), then it must be matrix multiplication (or opposite). )

Orientation suffices as extra ingredient.
(If C(A) ∼= C(B) preserves U(A)× C(A)→ C(A) then A ∼= B. )

“Extending Obstructions to Noncommutative Functorial Spectra”
Theory and Applications of Categories 29(17):457–474, 2014

“Matrix Multiplication is determined by Orthogonality and Trace”
Linear Algebra and its Applications 439(12):4130–4134, 2013

“Active Lattices determine AW*-algebras”
Journal of Mathematical Analysis and Applications 416:289-313, 2014
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What kind of partial order is C(A)?

Lemma: Chains Ci in C(A) have least upper bound
∨
Ci :=

⋃
Ci.

May regard A as ‘ideal’ system approximated by Ci.

Common refinement:

Lemma: Nonempty {Ci} have greatest lower bound
∧
Ci :=

⋂
Ci.

“The space of measurement outcomes as a spectral invariant”
Foundations of Physics 42:896–908, 2012
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Domains
Desirable properties:

I Continuous: can take approximants way below
C =

∨
{B | C ≤

∨
Bi =⇒ ∃i : B ≤ Bi}

I Algebraic: can take approximants compact
C =

∨
{B ≤ C | B ≤

∨
Bi =⇒ ∃i : B ≤ Bi}

I Quasi-continuous: finitely many observations per approximant

I Quasi-algebraic: finitely many observations per approximant

I Atomistic: approximation proceeds in indivisible steps
C =

∨
{B > 0 | 0 < B′ ≤ B =⇒ B′ = B}

I Meet-continuous: approximation respects restriction
C ∧

∨
Ci =

∨
C ∧ Ci

“Domain Theory”
Handbook of Logic in Computer Science 3, 1994

“Continuous Lattices and Domains”
Cambridge University Press, 2003
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Robust approximation

Theorem: For a C*-algebra A, the following are equivalent:

I C(A) is continuous;

I C(A) is algebraic;

I C(A) is quasi-continuous;

I C(A) is quasi-algebraic;

I C(A) is atomistic;

I C(A) is meet-continuous;

I A is scattered

“Domains of commutative C*-subalgebras”
Logic in Computer Science, 2015
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Degeneration

Could play same game with von Neumann algebras A,
with commutative von Neumann subalgebras V(A) = {C ⊆ A}.

Proposition: For W*-algebras A there is a Galois correspondence:

V(M) C(M)⊥

However, von Neumann algebras are rarely scattered.

Theorem: The following are equivalent for W*-algebras A:
I C(A) is continuous
I C(A) is algebraic
I V(A) is continuous
I V(A) is algebraic
I A is finite-dimensional

“Unsharp values, domains and topoi”
Quantum field theory and gravity 65–96, 2012
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Algebraic approximation

Can only access finite-dimensional subalgebras in finite time.

Definition: A C*-algebra A is approximately finite-dimensional
when A =

⋃
Ai for a chain Ai of finite-dimensional C*-algebras.

I If X = [0, 1], then C(X) is not approximately finite-dimensional
I If X is Cantor set, C(X) is approximately finite-dimensional

“Inductive Limits of Finite Dimensional C*-algebras”
Transactions of the American Mathematical Society 171:195–235, 1972
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Scatteredness

Definition: A topological space is scattered if every nonempty
closed subset has an isolated point.

I any discrete space

I one-point compactification { 1
n | n ∈ N} ∪ {0} of the naturals

I any ordinal number under the order topology

Definition: A C*-algebra A is scattered when, equivalently:

I each C ∈ C(A) is approximately finite-dimensional

I X is scattered for each maximal C(X) ∈ C(A)

I each state is a countable sum of pure ones

Example: the unitization of compact operators K(H) + C1H

“Scattered C*-algebras”
Mathematica Scandinavica 41:308–314, 1977
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Higher order approximation

Topologies on C(A) whose notion of limit is that of approximation:

I Scott topology: if f : A→ B is a ∗-homomorphism,
then C(f) : C(A)→ C(B) is Scott continuous.

I Lawson topology refines Scott topology and lower topology

Proposition: If A is scattered, then C(A) is a totally disconnected
compact Hausdorff space in the Lawson topology, whence C(C(A)) is
a commutative C*-algebra.

Can speak about approximation within language of C*-algebras!
What is the relationship between A and C(X)?

I A 7→ X is not functorial

I No iteration: if A is scattered, then C(A) is scattered only if A
is finite-dimensional
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Labelled Transition Systems: deterministic

Model computational behaviour of discrete systems
e.g. traffic light, computer programs

1 2

3 4

a

b

a

b

c

d d

states: one at a time

transitions: move token

initial: place token

final: accept token

transition matrices
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0


entries in {0, 1}
1 at (i, j) iff i

a→ j
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Labelled Transition Systems: invertible

Model computational behaviour of reversible systems
e.g. logic gates, electronic circuits, processor architectures

1 2

3 4

a, c

a

a

a, c

c c

b

b b

b

states: one at a time

transitions: can ‘undo’

initial: place token

final: accept token

permutation matrices
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


entries in {0, 1}
one 1 per row/column
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Labelled Transition Systems: probabilistic

Model computational behaviour of continuous systems
e.g. control systems, verification, optimisation, artificial intelligence

1 2

3

m[ 1
4

], r

l

m[ 1
4

], lr

r,m

l,m

m[ 1
2

] states: convex weights

transitions: stochastic

initial: distribution

final: threshold

stochastic matrices1
2

1
4

1
4

0 1 0
0 0 1


entries in [0, 1]
rows sum to 1

22 / 26



Labelled Transition Systems: probabilistic

Model computational behaviour of continuous systems
e.g. control systems, verification, optimisation, artificial intelligence

1 2

3

m[ 1
4

], r

l

m[ 1
4

], lr

r,m

l,m

m[ 1
2

]

states: convex weights

transitions: stochastic

initial: distribution

final: threshold

stochastic matrices1
2

1
4

1
4

0 1 0
0 0 1


entries in [0, 1]
rows sum to 1

22 / 26



Labelled Transition Systems: probabilistic

Model computational behaviour of continuous systems
e.g. control systems, verification, optimisation, artificial intelligence

1 2

3

m[ 1
4

], r

l

m[ 1
4

], lr

r,m

l,m

m[ 1
2

] states: convex weights

transitions: stochastic

initial: distribution

final: threshold

stochastic matrices1
2

1
4

1
4

0 1 0
0 0 1


entries in [0, 1]
rows sum to 1

22 / 26



Labelled Transition Systems: probabilistic

Model computational behaviour of continuous systems
e.g. control systems, verification, optimisation, artificial intelligence

1 2

3

m[ 1
4

], r

l

m[ 1
4

], lr

r,m

l,m

m[ 1
2

] states: convex weights

transitions: stochastic

initial: distribution

final: threshold

stochastic matrices1
2

1
4

1
4

0 1 0
0 0 1


entries in [0, 1]
rows sum to 1

22 / 26



Labelled Transition Systems: quantum

Model computational behaviour of quantum-mechanical systems
e.g. quantum computation, quantum communication

1 2
a[i]

a[−i]

bb
states: complex weights

transitions: stochastic

initial: distribution

final: threshold

hermitian matrices(
0 −i
i 0

)
entries in C
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Approximating Labelled Transition Systems

Identify (bisimilar) states:

1 2

3

m[ 1
4

], r

l

m[ 1
4

], lr

r,m

l,m

m[ 1
2

]

 1 23

m[ 1
4
, r]

l

r,mm[ 1
2

]

Invertible ( Deterministic ( Probabilistic ( Quantum
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Algebraic dualisation

Linking transitions  multiplying transition matrices
Reversing transitions  transposing transition matrices

All possible runs  

C*-

algebra generated by transition matrices

(subset B(H) closed under addition, multiplication, adjoint, limits)

Transitions  observable properties
State space X  C*-algebra C(X) = {f : X → C}
Quotient  subalgebra

Warning: different terminology states
Warning: duality up to trace semantics
Nevertheless: approximate transition system

commutative sublanguage?

“Minimization via duality”
LNCS 7456:191–205, WoLLIC 2012
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Conclusion

Questions:

I Approximate transition systems

I Universal construction C(C(A))

I Solve domain equations

I Recognize structure of A from C(A) (e.g. postliminal, AW*)
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