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Algebra and coalgebra

Increasing generality:

I Vector space with bilinear (co)multiplication

I (Co)monoid in monoidal category

I (Co)monad: (co)monoid in functor category

I (Co)algebras for a (co)monad

Interaction between algebra and coalgebra?
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Cloak and dagger

I Situation involving secrecy or mystery

I Purpose of cloak is to obscure presence or movement of dagger

I Dagger, a concealable and silent weapon: dagger categories

I Cloak, worn to hide identity: Frobenius law
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Dagger
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Dagger

Method to turn algebra into coalgebra: self-duality Cop ' C

Dagger: functor Cop †→ C with A† = A on objects, f †† = f on maps

A
f−→ B B

f†−→ A

Dagger category: category equipped with dagger

I Invertible computing: groupoid, f † = f−1

I Possibilistic computing: sets and relations, R† = Rop

I Partial invertible computing: sets and partial injections

I Probabilistic computing: doubly stochastic maps, f † = fT

I Quantum computing: Hilbert spaces, f † = fT

I Second order: dagger functors F (f)† = F (f †)

I Unitary representations: [G,Hilb]†
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Never bring a knife to a gun fight

I Terminology after (physics) notation
(but beats identity-on-objects-involutive-contravariant-functor)

I Evil: demand equality A† = A of objects

I Dagger category theory different beast:
isomorphism is not the correct notion of ‘sameness’

“Homotopy type theory”
Univalent foundations program, 2013
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Way of the dagger

Motto: “everything in sight ought to cooperate with the dagger”

I dagger isomorphism (unitary): f−1 = f †

I dagger monic (isometry): f † ◦ f = id

I dagger equalizer / kernel / biproduct

I monoidal dagger category: (f ⊗ g)† = f † ⊗ g†, α−1 = α†

What about monoids??
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Cloaks are worn
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Frobenius algebra

Many definitions over a field k:

I algebra A with functional A→ k, kernel without left ideals

I algebra A with finitely many minimal right ideals

I algebra A with nondegenerate A⊗A→ k with [ab, c] = [a, bc]

I algebra A with comultiplication δ : A→ A⊗A satisfying

(id ⊗ µ) ◦ (δ ⊗ id) = (µ⊗ id) ◦ (id ⊗ δ)

I algebra A with equivalent left and right regular representations

“Theorie der hyperkomplexen Größen I”
Sitzungsberichte der Preussischen Akademie der Wissenschaften 504–537, 1903

“On Frobeniusean algebras II”
Annals of Mathematics 42(1):1–21, 1941
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Frobenius law in algebra

Any finite group G induces Frobenius group algebra A:

I A has orthonormal basis {g ∈ G}

I multiplication g ⊗ h 7→ gh

I unit e

I comultiplication g 7→
∑

h gh
−1 ⊗ h

I both sides of Frobenius law evaluate to
∑

k gk
−1 ⊗ kh on g ⊗ h

So Frobenius algebra incorporates finite group representation theory
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Frobenius law in algebra

Frobenius algebras are wonderful:

I left and right Artinian

I left and right self-injective

I Frobenius property is independent of base field k!

I Extension of scalars: if l extends k, then
A Frobenius over k iff l ⊗k A Frobenius over l

I Restriction of scalars: if l extends k, then
A Frobenius over l iff A Frobenius over k
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Frobenius law in mathematics

I Number theory: commutative Frobenius algebras are Gorenstein

I Coding theory:
I Hamming weight of linear code and dual code related
I code isomorphism that preserves Hamming weight is monomial

I Geometry: cohomology rings of compact oriented manifolds are
Frobenius

“Modular elliptic curves and Fermat’s last theorem”
Annals of Mathematics 142(3):443–551, 1995

“Combinatorial properties of elementary abelian groups”
Radcliffe College, Cambridge, 1962
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Frobenius law in physics
Quantum field theory: replace particles by fields;
state space varies over space-time

I Topological quantum field theory depends only on topology
2d TQFTs ' commutative Frobenius algebras

I RT construction turns modular tensor category into 3d TQFT

Computes manifold invariants via Pachner moves:

⇐⇒

“A geometric approach to two-dimensional conformal field theory”
University of Utrecht, 1989

“Invariants of 3-manifolds via link polynomials and quantum groups”
Inventiones Mathematicae 103(3):547–597, 1991

“P. L. homeomorphic manifolds are equivalent by elementary shellings”
European Journal of Combinatorics 12(2):129–145, 1991
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Cloak
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Dagger Frobenius structures: definition

In a dagger monoidal category: a dagger Frobenius structure consists
of an object A and maps µ : A⊗A→ A and η : I → A satisfying

(µ⊗ id) ◦ µ = (id ⊗ µ) ◦ µ
µ⊗ (id ⊗ η) = id = µ⊗ (η ⊗ id)

(µ⊗ id) ◦ (id ⊗ µ†) = (id ⊗ µ) ◦ (µ† ⊗ id)

Equivalently: a monoid (A,µ, η) such that µ† is a homomorphism of
(A,µ, η)-modules (in braided monoidal category)

It can be:

I commutative: µ ◦ β = µ (in braided monoidal category)

I symmetric: η† ◦ µ ◦ β = η† ◦ µ (in braided monoidal category)

I special / strongly separable: µ ◦ µ† = id

I normalizable: µ ◦ µ† invertible, positive, and central
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Frobenius algebra example: cobordisms
Category of cobordisms:

I objects are 1-dimensional compact manifolds

I arrows are 2-dimensional compact manifolds with boundary

=

is free symmetric monoidal category on a Frobenius algebra

(2d TQFT is just a monoidal functor (Cob,+)→ (FHilb,⊗))

“Frobenius algebras and 2D topological quantum field theories”
Cambridge University Press, 2003
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Frobenius algebra example: C*-algebras
In the category of finite-dimensional Hilbert spaces:

I Mn is a monoid under µ : eij ⊗ ekl 7→ δjkeil

I µ† : eij 7→
∑

k eik ⊗ ekj satisfies Frobenius law:

eij ⊗ ekl 7→ δjk
∑
m

eim ⊗ eml

I direct sums of Frobenius structures are Frobenius structures, so
all finite-dimensional C*-algebras

⊕
iMni are Frobenius

I conversely: all normalizable Frobenius structures are C*

I in particular: commutative Frobenius structures are
⊕

iM1

that is, choice of orthonormal basis

“Categorical formulation of finite-dimensional quantum algebras”
Communications in Mathematical Physics 304(3):765–796, 2011

“A new description of orthogonal bases”
Mathematical Structures in Computer Science 23(3):555–567, 2013
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Frobenius algebra example: groupoids

In the category of sets and relations:

I Morphism set of groupoid G is monoid under

µ = {((g, f), g ◦ f) | dom(g) = cod(f)}
η = {idx | x object of G}

I µ† = {(h, (h−1 ◦ f, f)) | cod(h) = cod(f)} satisfies Frobenius law

I conversely: all dagger Frobenius structures are groupoids

“Relative Frobenius algebras are groupoids”
Journal of Pure and Applied Algebra 217:114–124, 2013

“Quantum and classical structures in nondeterministic computation”
Quantum Interaction, LNAI 5494:143–157, 2009
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Cloak hides dagger
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Graphical calculus
“Notation which is useful in private must be given a public value
and that it should be provided with a firm theoretical foundation”

I Morphisms f : A→ B depicted as boxes f

B

A

I Composition: stack boxes vertically

I Tensor product: stack boxes horizontally

I Dagger: turn box upside-down

Coherence isomorphisms melt away

“The geometry of tensor calculus I”
Advances in Mathematics 88(1):55–112, 1991
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Graphical calculus

Sound: isotopic diagrams represent equal morphisms

f

g h

k

= (k ⊗ id) ◦ (g ⊗ h†) ◦ f =

f

g
h

k

Complete: diagrams isotopic iff equal in category of Hilbert spaces

“A survey of graphical languages for monoidal categories”
New Structures for Physics, LNP 813:289–355, 2011

“Finite-dimensional Hilbert spaces are complete for dagger compact categories”
Logical Methods in Computer Science 8(3:6):1–12, 2012
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Frobenius law graphically
Instead of box, will draw for multiplication A⊗A→ A of monoid.

= = =

Frobenius law becomes:

=

“Ordinal sums and equational doctrines”
Seminar on triples and categorical homology theory, LNCS 80:141–155, 1966

“Two-dimensional topological quantum field theories and Frobenius algebras”
Journal of Knot Theory and its Ramifications 5:569–587, 1996
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Spider theorem
Any connected diagram built from the components of a special

( = ) Frobenius algebra equals the following normal form:

In particular:

= =
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Dual objects

Note:

= =

Hence any Frobenius structure is self-dual

A

A∗

A

=

24 / 34



Dual objects

Note:

= =

Hence any Frobenius structure is self-dual

A

A∗

A

=

24 / 34



Dual objects: examples

In category of finite-dimensional Hilbert spaces:

I Canonical duals: : C→ H ⊗H∗ given by 1 7→
∑

i ei ⊗ e∗i

I Involution on Mn is precisely a 7→ a†

In category of sets and relations:

I Canonical duals: : 1→ X ×X given by {(∗, (x, x)) | x ∈ X}
I Involution on groupoid is precisely {(g, g−1) | g ∈ G}
I Decorated graphical calculus:

h ◦ g

h

g−1

f

g ◦ f

=
(h ◦ g) ◦ f

= h ◦ (g ◦ f)

h ◦ g f

h g ◦ f

f

f idx

idy f

=

f

idy

f−1

idx

f
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Pairs of pants

: one size fits all

If an object A has a dual, then A∗ ⊗A is a monoid
A∗ ⊗ A

A∗ ⊗ AA∗ ⊗ A

:=
A∗ ⊗ A

:=

Any monoid (A, ) embeds into A∗ ⊗A by e :=

I is embedding: = =

I preserves multiplication: = =

I preserves unit: = =

“On the theory of groups as depending on the equation θn = 1”
Philosophical Magazine 7(42):40–47, 1854
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Why the Frobenius law?
Maps I → A∗ ⊗A correspond to maps A→ A.
So in presence of dagger, A∗ ⊗A is involutive monoid!

i

A∗

A

:=

A

A∗

Theorem in a monoidal dagger category:
a monoid is Frobenius ⇔ its Cayley embedding is involutive

i

e

= = =
e

“Reversible monadic computing”
MFPS 2015

“Geometry of abstraction in quantum computation”
Dagstuhl Seminar Proceedings 09311, 2010
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Dagger likes cloak
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Frobenius monads

I Let C be a monoidal

dagger

category

I A

Frobenius

monad is a

Frobenius

monoid in [C,C]

†

I A

Frobenius

monad T on a C is strong when equipped with a

unitary

natural transformation A⊗ T (B)→ T (A⊗B)

I Theorem: There is an adjunction between

Frobenius

monoids
in C and strong

Frobenius

monads on C.

A 7→ − ⊗A
T (I)←[ T
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Frobenius monads

I Let C be a monoidal dagger category

I A Frobenius monad is a Frobenius monoid in [C,C]†

I A Frobenius monad T on a C is strong when equipped with a
unitary natural transformation A⊗ T (B)→ T (A⊗B)

I Theorem: There is an equivalence between Frobenius monoids
in C and strong Frobenius monads on C.

A 7→ − ⊗A
T (I)←[ T
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Algebras

Let C and D be

dagger

categories, F : C→ D and G : D→ C be

dagger

functors with F a G. Then GF is

Frobenius

monad with:

C

DKl(GF )

F

EM(GF )

a a
a

Conversely, if a monad on C is Frobenius then it is of this form.

“Frobenius monads and pseudomonoids”
Journal of Mathematical Physics 45:3930-3940, 2004

“Frobenius algebras and ambidextrous adjunctions”
Theory and Applications of Categories 16:84–122, 2006
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Frobenius-Eilenberg-Moore algebras
A Frobenius-Eilenberg-Moore algebra for a Frobenius monad T is an
Eilenberg-Moore algebra (A, a) with

T (A) T 2(A)

T 2(A) T (A)

T (a)†

µ†

T (a)

µ

For T = −⊗A, looks like:

=

They form the largest subcategory of EM(T ) that inherits dagger.
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Summary

What have we learnt?

I “Cloak and dagger”: Frobenius law and dagger categories
both relate algebra and coalgebra

I “Cloak is everywhere”: Frobenius is omnipotent
sweet spot between interesting and not general enough

I “Cloak hides dagger”: Frobenius law is coherence condition
between dagger and closure

I “Dagger likes cloak”: Frobenius monads are dagger adjunctions
(free) algebra categories again have dagger
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Quantum measurement

Fix orthonormal basis on Cn so T = −⊗ Cn is Frobenius monad on
category of Hilbert spaces. Measurement is map A→ T (A).

Any Kleisli morphism? No, only FEM-coalgebras A→ T (A)!
Consider exception monad T = −+ E

“Classical and quantum structuralism”
Semantic Techniques in Quantum Computation 29–69, 2009

“Handling algebraic effects”
Logical Methods in Computer Science 9(4):23, 2013
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category of Hilbert spaces. Measurement is map A→ T (A).
Any Kleisli morphism? No, only FEM-coalgebras A→ T (A)!
Consider exception monad T = −+ E

A

A+ E (A, a)

η f

I intercept exception e: execute fe, or f if no exception
I handler for T specifies EM-algebra (A, a) and f : A→ A
I vertical arrows are Kleisli maps, dashed one EM-map
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A

A⊗ Cn (A, a)

η f

I “handle outcome x: execute fx, or f if no measurement”
I handler for T specifies EM-algebra (A, a) and f : A→ A
I vertical arrows are Kleisli maps, dashed one EM-map

“Classical and quantum structuralism”
Semantic Techniques in Quantum Computation 29–69, 2009

“Handling algebraic effects”
Logical Methods in Computer Science 9(4):23, 2013

33 / 34



Quantum measurement

Fix orthonormal basis on Cn so T = −⊗ Cn is Frobenius monad on
category of Hilbert spaces. Measurement is map A→ T (A).
Any Kleisli morphism? No, only FEM-coalgebras A→ T (A)!

Consider exception monad T = −+ E

A

A⊗ Cn (A, a)

η f

I Kleisli maps A→ T (B) ‘build’ effectful computation
I FEM-algebras T (B)→ B are destructors ‘handling’ the effects
I Effectful computation for Frobenius monad happens in FEM(T )

“Classical and quantum structuralism”
Semantic Techniques in Quantum Computation 29–69, 2009

“Handling algebraic effects”
Logical Methods in Computer Science 9(4):23, 2013

33 / 34



34 / 34


	Dagger
	Cloaks are worn
	Cloak
	Cloak hides dagger
	Dagger likes cloak

