#### Chris Heunen



Study of compositional nature of (physical) systems
 Primitive notion: forming compound systems

- Study of compositional nature of (physical) systems
  Primitive notion: forming compound systems
- Operational yet algebraic
  - Why non-unit state vectors?
  - Why non-hermitean operators?
  - Why complex numbers?

- Study of compositional nature of (physical) systems
  Primitive notion: forming compound systems
- Operational yet algebraic
  - Why non-unit state vectors?
  - Why non-hermitean operators?
  - Why complex numbers?
- Powerful graphical calculus

- Study of compositional nature of (physical) systems
  Primitive notion: forming compound systems
- Operational yet algebraic
  - Why non-unit state vectors?
  - Why non-hermitean operators?
  - Why complex numbers?
- Powerful graphical calculus
- Allows different interpretation in many different fields
  - Physics: quantum theory, quantum information theory
  - Computer science: logic, topology
  - Mathematics: representation theory, quantum algebra



OXFORD MATHEMATICS

#### Categories for Quantum Theory: An Introduction

Chris Heunen Jamie Vicary

DXFORD GRADUATE TEXTS IN MATHEMATICS 17



# Outline

Lecture 1:

- monoidal categories: graphical calculus
- dual objects: entanglement
- (co)monoids: no-cloning

Lecture 2:

- Frobenius structures: observables
- bialgebras: complementarity
- complete positivity: mixed states

# Part I

# Monoidal categories

#### Category = systems and processes:

- physical systems, and physical processes governing them;
- data types, and algorithms manipulating them;
- algebraic structures, and structure-preserving functions;
- logical propositions, and implications between them.

#### Category = systems and processes:

- physical systems, and physical processes governing them;
- data types, and algorithms manipulating them;
- algebraic structures, and structure-preserving functions;
- logical propositions, and implications between them.

#### Monoidal category = category + parallelism:

- independent physical systems evolve simultaneously;
- running computer algorithms in parallel;
- products or sums of algebraic or geometric structures;
- ▶ using proofs of *P* and *Q* to prove conjunction (*P* and *Q*).

A category **C** is monoidal when equipped with:

► a *tensor product* functor

$$\otimes : \mathbf{C} \times \mathbf{C} \to \mathbf{C}$$

a unit object

 $I \in \operatorname{Ob}(\mathbf{C})$ 

an associator natural isomorphism

$$(A \otimes B) \otimes C \xrightarrow{\alpha_{A,B,C}} A \otimes (B \otimes C)$$

a *left unitor* natural isomorphism

$$I \otimes A \xrightarrow{\lambda_A} A$$

• a right unitor natural isomorphism

$$A \otimes I \xrightarrow{\rho_A} A$$

This data must satisfy the triangle and pentagon equations:





This data must satisfy the triangle and pentagon equations:



**Theorem (coherence for monoidal categories)**: If the pentagon and triangle equations hold, then so does any well-typed equation built from  $\alpha$ ,  $\lambda$ ,  $\rho$  and their inverses using  $\otimes$ ,  $\circ$ , and id.

# Example: Hilbert spaces

Hilbert spaces and bounded linear maps form a monoidal category:

- tensor product is the tensor product of Hilbert spaces
- unit object is one-dimensional Hilbert space  $\mathbb C$
- *left unitors*  $\mathbb{C} \otimes H \xrightarrow{\lambda_H} H$  are unique linear maps with  $1 \otimes u \mapsto u$
- right unitors  $H \otimes \mathbb{C} \xrightarrow{\rho_H} H$  are unique linear maps with  $u \otimes 1 \mapsto u$
- associators (H ⊗ J) ⊗ K → H⊗ (J ⊗ K) are unique linear maps with (u ⊗ ν) ⊗ w → u ⊗ (v ⊗ w)

### Example: sets and functions

Sets and functions form a monoidal category Set:

- tensor product is Cartesian product of sets
- unit object is a chosen singleton set {•}
- *left unitors*  $I \times A \xrightarrow{\lambda_A} A$  are  $(\bullet, a) \mapsto a$
- right unitors  $A \times I \xrightarrow{\rho_A} A$  are  $(a, \bullet) \mapsto a$
- ► associators (A × B) × C → A × (B × C) are functions ((a,b),c) → (a, (b,c))

(Other tensor products exist.)

A relation  $A \xrightarrow{R} B$  between sets is a subset  $R \subseteq A \times B$ 



A relation  $A \xrightarrow{R} B$  between sets is a subset  $R \subseteq A \times B$ 



Different notion of process: nondeterministic evolution of states

A relation  $A \xrightarrow{R} B$  between sets is a subset  $R \subseteq A \times B$ 



Composition is matrix multiplication, with OR and AND for + and  $\times$ .

Sets and relations form a monoidal category **Rel**:

- ► tensor product is Cartesian product of sets, acting on relations as: (a, c)(R × S)(b, d) iff aRb and cSd
- ▶ unit object is a chosen singleton set = {●}
- associators (A × B) × C → A×(B × C) are catRelations ((a,b),c) ~ (a,(b,c))
- ► *left unitors*  $I \times A \xrightarrow{\lambda_A} A$  are given by  $(\bullet, a) \sim a$
- ► right unitors  $A \times I \xrightarrow{\rho_A} A$  are given by  $(a, \bullet) \sim a$

Sets and relations form a monoidal category **Rel**:

- ► tensor product is Cartesian product of sets, acting on relations as: (a, c)(R × S)(b, d) iff aRb and cSd
- ► unit object is a chosen singleton set = {●}
- ► associators (A × B) × C → A × (B × C) are catRelations ((a, b), c) ~ (a, (b, c))
- ► *left unitors*  $I \times A \xrightarrow{\lambda_A} A$  are given by  $(\bullet, a) \sim a$
- ► right unitors  $A \times I \xrightarrow{\rho_A} A$  are given by  $(a, \bullet) \sim a$

Cartesian product is not a categorical product in **Rel**: If **Set** is classical, and **Hilb** is quantum, **Rel** is 'in the middle'

For  $A \xrightarrow{f} B$  and  $B \xrightarrow{g} C$ , draw their composition  $A \xrightarrow{g \circ f} B$  as



For  $A \xrightarrow{f} B$  and  $B \xrightarrow{g} C$ , draw their composition  $A \xrightarrow{g \circ f} B$  as



For  $A \xrightarrow{f} B$  and  $C \xrightarrow{g} D$ , draw their tensor product  $A \otimes C \xrightarrow{f \otimes g} B \otimes D$  as



"Time" runs upwards, "space" runs sideways

The tensor unit is drawn as the empty diagram:

The tensor unit is drawn as the empty diagram:

#### Unitors are also not drawn:

$$\begin{vmatrix} A \\ \lambda_A \end{vmatrix} \qquad \begin{vmatrix} A \\ P_A \end{vmatrix} \qquad \begin{vmatrix} A \\ B \\ \alpha_{A,B,C} \end{vmatrix}$$

Coherence is essential: as there can only be a single morphism built from associators and unitors of given type, it doesn't matter that their depiction encodes no information

For example, interchange law:

$$(g \circ f) \otimes (j \circ h) = (g \otimes j) \circ (f \otimes h)$$

For example, interchange law:

 $(g \circ f) \otimes (j \circ h) = (g \otimes j) \circ (f \otimes h)$ С F F С g g В Ε В Ε h h Α D D Α

# Graphical calculus: sound and complete

Think of diagram as within rectangular region of  $\mathbb{R}^n$ , with wires terminating at upper and lower boundaries only, morphisms as points. Two diagrams are isotopic when one can be deformed continuously into the other, keeping the boundaries fixed.

# Graphical calculus: sound and complete

Think of diagram as within rectangular region of  $\mathbb{R}^n$ , with wires terminating at upper and lower boundaries only, morphisms as points. Two diagrams are isotopic when one can be deformed continuously into the other, keeping the boundaries fixed.

**Theorem (correctness)**: A well-formed equation between morphisms in a monoidal category follows from the axioms iff it holds in the graphical calculus up to planar isotopy.

# Graphical calculus: sound and complete

Think of diagram as within rectangular region of  $\mathbb{R}^n$ , with wires terminating at upper and lower boundaries only, morphisms as points. Two diagrams are isotopic when one can be deformed continuously into the other, keeping the boundaries fixed.

**Theorem (correctness)**: A well-formed equation between morphisms in a monoidal category follows from the axioms iff it holds in the graphical calculus up to planar isotopy.

Soundness: algebraic equality  $\Rightarrow$  graphical isotopy Completeness: algebraic equality  $\Leftarrow$  graphical isotopy

#### States

A state of an object *A* in a monoidal category is a morphism  $I \rightarrow A$ .



Tensor unit is trivial system; state is way to bring A into existence

#### States

A state of an object A in a monoidal category is a morphism  $I \rightarrow A$ .



Tensor unit is trivial system; state is way to bring A into existence

- ▶ in **Hilb**: linear functions  $\mathbb{C} \rightarrow H$ , correspond to elements of *H*
- ▶ in **Set**: functions  $\{\bullet\} \rightarrow A$ , correspond to elements of *A*
- ▶ in **Rel**: relations  $\{\bullet\} \xrightarrow{R} A$ , correspond to subsets of *A*

A morphism  $I \xrightarrow{c} A \otimes B$  is a joint state.



A morphism  $I \xrightarrow{c} A \otimes B$  is a joint state. It is a product state when:



A morphism  $I \xrightarrow{c} A \otimes B$  is a joint state. It is a product state when:



It is entangled when it is not a product state

A morphism  $I \xrightarrow{c} A \otimes B$  is a joint state. It is a product state when:



It is entangled when it is not a product state

- entangled states in **Hilb**: vectors of  $H \otimes K$  with Schmidt rank > 1
- entangled states in Set: don't exist
- entangled states in **Rel**: non-square subsets of  $A \times B$
A monoidal category is braided when equipped with natural iso

 $A \otimes B \xrightarrow{\sigma_{A,B}} B \otimes A$ 

satisfying the hexagon equations



Draw  $\sigma$  as  $\,\,\swarrow\,\,$  and its inverse as  $\,\,\swarrow\,\,$ 





**Theorem (correctness)**: A well-formed equation between morphisms in a braided monoidal category follows from the axioms iff it holds in the graphical language up to 3-dimensional isotopy.

#### Symmetry

#### A braided monoidal category is symmetric when

$$\sigma_{B,A} \circ \sigma_{A,B} = \mathrm{id}_{A \otimes B}$$

Graphically: no knots



#### Symmetry

#### A braided monoidal category is symmetric when

$$\sigma_{B,A} \circ \sigma_{A,B} = \mathrm{id}_{A \otimes B}$$

Graphically: no knots

**Theorem (correctness)**: A well-formed equation between morphisms in a symmetric monoidal category follows from the axioms iff it holds in graphical language up to 4-dimensional isotopy.

- in **Hilb**: linear extension of  $a \otimes b \mapsto b \otimes a$
- in **Set**: function  $(a, b) \mapsto (b, a)$
- in **Rel**: relation  $(a, b) \sim (b, a)$

#### **Scalars**

#### A scalar in a monoidal category is a morphism $I \xrightarrow{a} I$

a

#### **Scalars**

#### A scalar in a monoidal category is a morphism $I \xrightarrow{a} I$

**Lemma**: in a monoidal category, scalar composition is commutative **Proof**: either algebraically:



#### Scalars

#### A scalar in a monoidal category is a morphism $I \xrightarrow{a} I$

**Lemma**: in a monoidal category, scalar composition is commutative **Proof**: or graphically:



# Scalar multiplication

Scalar multiplication  $A \xrightarrow{a \circ f} B$  of scalar  $I \xrightarrow{a} I$  and morphism  $A \xrightarrow{f} B$ (s)  $\begin{bmatrix} f \\ f \end{bmatrix}$ 

satisfies many familiar properties in any monoidal category:

id<sub>I</sub> • f = f
a • b = a ∘ b
a • (b • f) = (a • b) • f
(b • g) ∘ (a • f) = (b ∘ a) • (g ∘ f)

# Scalar multiplication

Scalar multiplication  $A \xrightarrow{a \bullet f} B$  of scalar  $I \xrightarrow{a} I$  and morphism  $A \xrightarrow{f} B$ (s) f

satisfies many familiar properties in any monoidal category:

id<sub>I</sub> • f = f
a • b = a ∘ b
a • (b • f) = (a • b) • f
(b • g) ∘ (a • f) = (b ∘ a) • (g ∘ f)

In our examples:

- in **Hilb**:  $a \bullet f$  is the morphism  $x \mapsto af(x)$
- in **Set**:  $id_1 \bullet f = f$  is trivial
- in **Rel**: true R = R and false  $R = \emptyset$

A dagger on a category **C** is a contravariant functor  $\dagger: \mathbf{C} \to \mathbf{C}$  satisfying  $A^{\dagger} = A$  on objects and  $f^{\dagger\dagger} = f$  on morphisms.

- Hilb is a dagger category using adjoints
- **Rel** is a dagger category using converse:  $bR^{\dagger}a$  iff aRb
- Set is not a dagger category

A dagger on a category **C** is a contravariant functor  $\dagger: \mathbf{C} \to \mathbf{C}$  satisfying  $A^{\dagger} = A$  on objects and  $f^{\dagger\dagger} = f$  on morphisms.

- Hilb is a dagger category using adjoints
- **Rel** is a dagger category using converse:  $bR^{\dagger}a$  iff aRb
- Set is not a dagger category

Graphically: flip about horizontal axis



A dagger on a category **C** is a contravariant functor  $\dagger: \mathbf{C} \to \mathbf{C}$  satisfying  $A^{\dagger} = A$  on objects and  $f^{\dagger\dagger} = f$  on morphisms.

- Hilb is a dagger category using adjoints
- **Rel** is a dagger category using converse:  $bR^{\dagger}a$  iff aRb
- Set is not a dagger category

Graphically: flip about horizontal axis



A morphism f in a dagger category is:

- self-adjoint when  $f = f^{\dagger}$
- unitary when  $f^{\dagger} \circ f = \text{id and } f \circ f^{\dagger} = \text{id}$
- positive when  $f = g^{\dagger} \circ g$  for some g

A morphism f in a dagger category is:

- self-adjoint when  $f = f^{\dagger}$
- unitary when  $f^{\dagger} \circ f = \text{id and } f \circ f^{\dagger} = \text{id}$
- positive when  $f = g^{\dagger} \circ g$  for some g

In a monoidal dagger category:

- $(f \otimes g)^{\dagger} = f^{\dagger} \otimes g^{\dagger}$
- the associators and unitors are unitary

A morphism f in a dagger category is:

- self-adjoint when  $f = f^{\dagger}$
- unitary when  $f^{\dagger} \circ f = \text{id and } f \circ f^{\dagger} = \text{id}$
- positive when  $f = g^{\dagger} \circ g$  for some g

In a monoidal dagger category:

- $(f \otimes g)^{\dagger} = f^{\dagger} \otimes g^{\dagger}$
- the associators and unitors are unitary

In a braided/symmetric monoidal dagger category, the braiding is additionally unitary

# Part II

Dual objects

### Dual objects

An object *L* is left-dual to an object *R*, and *R* is right-dual to *L*, written  $L \dashv R$ , when there are morphisms  $I \xrightarrow{\eta} R \otimes L$  and  $L \otimes R \xrightarrow{\varepsilon} I$  with:



### Dual objects

An object *L* is left-dual to an object *R*, and *R* is right-dual to *L*, written  $L \dashv R$ , when there are morphisms  $I \xrightarrow{\eta} R \otimes L$  and  $L \otimes R \xrightarrow{\varepsilon} I$  with:



where we draw  $\eta$  and  $\varepsilon$  as:



### Dual objects: examples

Every finite-dimensional Hilbert space H is both right dual and left dual to its dual Hilbert space  $H^*$ :

- cap  $H \otimes H^* \to \mathbb{C}$  is evaluation:  $|\phi\rangle \otimes \langle \psi| \mapsto \langle \psi|\phi\rangle$
- cup  $\mathbb{C} \to H^* \otimes H$  is maximally entangled state:  $1 \mapsto \sum_i \langle i | \otimes | i \rangle$  for any orthonormal basis  $\{|i\rangle\}$

Infinite-dimensional Hilbert spaces do not have duals

### Dual objects: examples

Every finite-dimensional Hilbert space H is both right dual and left dual to its dual Hilbert space  $H^*$ :

- cap  $H \otimes H^* \to \mathbb{C}$  is evaluation:  $|\phi\rangle \otimes \langle \psi| \mapsto \langle \psi|\phi\rangle$
- cup  $\mathbb{C} \to H^* \otimes H$  is maximally entangled state:  $1 \mapsto \sum_i \langle i | \otimes | i \rangle$  for any orthonormal basis  $\{|i\rangle\}$

Infinite-dimensional Hilbert spaces do not have duals

In **Rel**, every object is self-dual:

- cap  $A \times A \rightarrow 1$  is  $\sim (a, a)$  for all  $a \in A$
- cup  $1 \rightarrow A \times A$  is  $(a, a) \sim \bullet$

#### Map-state duality

The category **Set** only has duals for singletons.

The name  $I \xrightarrow{f} A^* \otimes B$  and coname  $A \otimes B^* \xrightarrow{f} I$  of a morphism  $A \xrightarrow{f} B$ , given dual objects  $A \dashv A^*$  and  $B \dashv B^*$ , are



#### Map-state duality

The category Set only has duals for singletons.

The name  $I \xrightarrow{f} A^* \otimes B$  and coname  $A \otimes B^* \xrightarrow{f} I$  of a morphism  $A \xrightarrow{f} B$ , given dual objects  $A \dashv A^*$  and  $B \dashv B^*$ , are



Conversely,



**Proof**: There is only one function  $A \rightarrow 1$ , so all conames  $A \otimes B^* \rightarrow 1$  are equal, so all functions  $A \rightarrow B$  are equal.

# Dual objects: properties

Robustly defined:

- Suppose  $L \dashv R$ . Then  $L \dashv R'$  iff  $R \simeq R'$ .
- ▶ If  $(L, R, \eta, \varepsilon)$  and  $(L, R, \eta, \varepsilon')$  are dualities, then  $\varepsilon = \varepsilon'$ .

# Dual objects: properties

Robustly defined:

Suppose  $L \dashv R$ . Then  $L \dashv R'$  iff  $R \simeq R'$ .

▶ If  $(L, R, \eta, \varepsilon)$  and  $(L, R, \eta, \varepsilon')$  are dualities, then  $\varepsilon = \varepsilon'$ . Monoidal:

- ► Always  $I \dashv I$ .
- If  $L \dashv R$  and  $L' \dashv R'$ , then  $L \otimes L' \dashv R' \otimes R$ .



# Dual objects: properties

Robustly defined:

- Suppose  $L \dashv R$ . Then  $L \dashv R'$  iff  $R \simeq R'$ .
- If  $(L, R, \eta, \varepsilon)$  and  $(L, R, \eta, \varepsilon')$  are dualities, then  $\varepsilon = \varepsilon'$ .

Monoidal:

- Always  $I \dashv I$ .
- If  $L \dashv R$  and  $L' \dashv R'$ , then  $L \otimes L' \dashv R' \otimes R$ .

Symmetric:

▶ If  $L \dashv R$  in a braided monoidal category, then also  $R \dashv L$ .



#### Duals functor

For  $A \xrightarrow{f} B$  and  $A \dashv A^*$ ,  $B \dashv B^*$ , the right dual  $B^* \xrightarrow{f^*} A^*$  is defined as:



#### Duals functor

For  $A \xrightarrow{f} B$  and  $A \dashv A^*$ ,  $B \dashv B^*$ , the right dual  $B^* \xrightarrow{f^*} A^*$  is defined as:



### Duals functor

For  $A \xrightarrow{f} B$  and  $A \dashv A^*$ ,  $B \dashv B^*$ , the right dual  $B^* \xrightarrow{f^*} A^*$  is defined as:



Examples:

- ▶ in **FHilb**: usual dual  $f^*$ :  $K^* \rightarrow H^*$  given by  $f^*(e) = e \circ f$
- in **Rel**:  $R^* = R^{\dagger}$

Duals functor: properties Lemma:  $(g \circ f)^* = f^* \circ g^*$ , and





Duals functor: properties Lemma:  $(g \circ f)^* = f^* \circ g^*$ , and





Lemma:  $A^{**} \otimes B^{**} \simeq (A \otimes B)^{**}$ 



A symmetric monoidal category is compact when every object has a (simultaneously left and right) dual.



A symmetric monoidal category is compact when every object has a (simultaneously left and right) dual.



A symmetric monoidal category is compact when every object has a (simultaneously left and right) dual.



A symmetric monoidal category is compact when every object has a (simultaneously left and right) dual.


**Lemma**: In a monoidal dagger category,  $L \dashv R \Leftrightarrow R \dashv L$ .

**Lemma**: In a monoidal dagger category,  $L \dashv R \Leftrightarrow R \dashv L$ .

In a symmetric monoidal dagger category, a dagger dual  $A \dashv A^*$  has:

$$\begin{array}{c} \uparrow \\ \eta \end{array} = \begin{array}{c} \\ \varepsilon \end{array}$$

**Lemma**: In a monoidal dagger category,  $L \dashv R \Leftrightarrow R \dashv L$ .

In a symmetric monoidal dagger category, a dagger dual  $A \dashv A^*$  has:



Lemma: Dagger dualities correspond to maximally entangled states



**Lemma**: In a monoidal dagger category,  $L \dashv R \Leftrightarrow R \dashv L$ .

In a symmetric monoidal dagger category, a dagger dual  $A \dashv A^*$  has:



Lemma: Dagger dualities correspond to maximally entangled states



Dagger duals, and hence maximally entangled states, are unique up to unique unitary

## Compact dagger categories

A compact dagger category is both compact and dagger, and duals are dagger duals.

$$\left(\begin{array}{c} \swarrow \\ \end{array}\right)^{\dagger} = \left(\begin{array}{c} \\ \end{array}\right)^{\dagger} = \left(\begin{array}{c} \\ \end{array}\right)^{\dagger} = \left(\begin{array}{c} \\ \end{array}\right)^{\dagger}$$

## Compact dagger categories

A compact dagger category is both compact and dagger, and duals are dagger duals.

$$\left(\begin{array}{c} \downarrow \\ \downarrow \end{array}\right)^{\dagger} = \left(\begin{array}{c} \downarrow \\ \downarrow \end{array}\right)^{\dagger} = \left(\begin{array}{c} \downarrow \\ \downarrow \end{array}\right)^{\dagger} = \left(\begin{array}{c} \downarrow \\ \downarrow \end{array}\right)^{\dagger}$$

Lemma: Duals and daggers commute

$$(f^*)^{\dagger} = \left( \underbrace{\uparrow}_{f} \underbrace{f}_{f} \underbrace{\uparrow}_{f} \right)^{\dagger} = \left( \underbrace{f}_{f} \underbrace{f}_{f} \underbrace{f}_{f} \right)^{\dagger} = (f^{\dagger})^*$$

Conjugation is the functor  $(-)_* := (-)^{*\dagger} = (-)^{\dagger*}$ 

## Conjugation



## Traces The trace of $A \xrightarrow{f} A$ is the scalar



## Traces The trace of $A \xrightarrow{f} A$ is the scalar



Examples:

- in **FHilb**, it is the ordinary trace
- ▶ in **Rel**, it detects fixed points

## Traces The trace of $A \xrightarrow{f} A$ is the scalar



Examples:

- ▶ in **FHilb**, it is the ordinary trace
- ▶ in **Rel**, it detects fixed points

**Lemma**: Trace is cyclic,  $\operatorname{Tr}(f \otimes g) = \operatorname{Tr}(f) \circ \operatorname{Tr}(g)$ , and  $\operatorname{Tr}(f^{\dagger}) = \operatorname{Tr}(f)^{\dagger}$ 



## Dimension

The dimension of *A* is the scalar  $dim(A) := Tr(id_A)$ 



#### Lemma:

• 
$$\dim(I) = \mathrm{id}_I$$

- $\dim(A \otimes B) = \dim(A) \circ \dim(B)$
- if  $A \simeq B$  then  $\dim(A) = \dim(B)$

## Dimension

The dimension of *A* is the scalar  $dim(A) := Tr(id_A)$ 



#### Lemma:

- $\dim(I) = \mathrm{id}_I$
- $\dim(A \otimes B) = \dim(A) \circ \dim(B)$
- if  $A \simeq B$  then  $\dim(A) = \dim(B)$
- infinite-dimensional Hilbert spaces do not have duals

- begin with a single system L
- prepare a joint system  $R \otimes L$  in a maximally entangled state
- perform a joint measurement on the first two systems
- perform a unitary operation on the remaining system



- begin with a single system L
- prepare a joint system  $R \otimes L$  in a maximally entangled state
- perform a joint measurement on the first two systems
- perform a unitary operation on the remaining system



- begin with a single system L
- prepare a joint system  $R \otimes L$  in a maximally entangled state
- perform a joint measurement on the first two systems
- perform a unitary operation on the remaining system



- begin with a single system L
- prepare a joint system  $R \otimes L$  in a maximally entangled state
- perform a joint measurement on the first two systems
- perform a unitary operation on the remaining system



### In **FHilb**:

- begin with a single system L
- prepare a joint system  $R \otimes L$  in a maximally entangled state
- perform a joint measurement on the first two systems
- perform a unitary operation on the remaining system



In Rel: encrypted communication using one-time pad

# Part III

(Co)monoids

## Comonoids

A comonoid in a monoidal category is an object *A* with *comultiplication*  $A \xrightarrow{d} A \otimes A$  and *counit*  $A \xrightarrow{e} I$  satisfying



## Comonoids

A comonoid in a monoidal category is an object *A* with *comultiplication*  $A \xrightarrow{\Phi} A \otimes A$  and *counit*  $A \xrightarrow{\Phi} I$  satisfying



Examples:

- in Set, any object has unique cocommutative comonoid with comultiplication *a* → (*a*, *a*) and counit *a* → •
- ▶ in **Rel**, any group forms a comonoid with comultiplication g ~ (h, h<sup>-1</sup>g) and counit 1 ~ ●
- ▶ in FHilb, any choice of basis {e<sub>i</sub>} gives cocommutative comonoid with comultiplication e<sub>i</sub> → e<sub>i</sub> ⊗ e<sub>i</sub> and counit e<sub>i</sub> → 1

## Monoids

A monoid in a monoidal category consists of maps  $I \xrightarrow{\diamond} A \xleftarrow{\diamond} A \otimes A$  satisfying associativity and unitality.

Lemma: In braided monoidal category, two (co)monoids combine



Lemma: In monoidal dagger category, monoid gives comonoid

## Pair of pants

Map-state duality: composition  $A \xrightarrow{g \circ f} A$  becomes  $I \xrightarrow{\lceil g \circ f \rceil} A^* \otimes A$ .



## Pair of pants

Map-state duality: composition  $A \xrightarrow{g \circ f} A$  becomes  $I \xrightarrow{\lceil g \circ f \rceil} A^* \otimes A$ . Lemma: If  $A \dashv A^*$ , then  $A^* \otimes A$  is pair of pants monoid





## Pair of pants

Map-state duality: composition  $A \xrightarrow{g \circ f} A$  becomes  $I \xrightarrow{\lceil g \circ f \rceil} A^* \otimes A$ . Lemma: If  $A \dashv A^*$ , then  $A^* \otimes A$  is pair of pants monoid



**Example:** Pair of pants on  $\mathbb{C}^n$  in **FHilb** is *n*-by-*n* matrices  $\mathbb{M}_n$ Proof: define  $(\mathbb{C}^n)^* \otimes \mathbb{C}^n \to \mathbb{M}_n$  by  $\langle j | \otimes | i \rangle \mapsto e_{ij}$ 

## Pair of pants: one size fits all

Map-state duality: composition  $A \xrightarrow{g \circ f} A$  becomes  $I \xrightarrow{\lceil g \circ f \rceil} A^* \otimes A$ . Lemma: If  $A \dashv A^*$ , then  $A^* \otimes A$  is pair of pants monoid



**Example:** Pair of pants on  $\mathbb{C}^n$  in **FHilb** is *n*-by-*n* matrices  $\mathbb{M}_n$ Proof: define  $(\mathbb{C}^n)^* \otimes \mathbb{C}^n \to \mathbb{M}_n$  by  $\langle j | \otimes | i \rangle \mapsto e_{ij}$ 

**Proposition**: Any monoid  $(A, \bigstar, \diamond)$  embeds into  $(A^* \otimes A, \checkmark, \smile)$ 



A braided monoidal category has cloning if there is natural  $A \xrightarrow{d_A} A \otimes A$  with cocommutativity, coassociativity,  $d_I = \rho_I$ , and



A braided monoidal category has cloning if there is natural  $A \xrightarrow{d_A} A \otimes A$  with cocommutativity, coassociativity,  $d_I = \rho_I$ , and



Set has cloning, but compact categories like Rel or FHilb cannot

Lemma: If compact category has cloning, then

$$A^* \qquad A \qquad A^* \qquad A \qquad = \qquad \underbrace{A^* \qquad A \qquad A^* \qquad A}_{I} \qquad = \qquad \underbrace{I}_{I} \qquad I$$

A braided monoidal category has cloning if there is natural  $A \xrightarrow{d_A} A \otimes A$  with cocommutativity, coassociativity,  $d_I = \rho_I$ , and



Set has cloning, but compact categories like Rel or FHilb cannot

**Lemma**: If compact category has cloning, then ... **Proof**: First, consider the following equality (\*).



A braided monoidal category has cloning if there is natural  $A \xrightarrow{d_A} A \otimes A$  with cocommutativity, coassociativity,  $d_I = \rho_I$ , and



Set has cloning, but compact categories like Rel or FHilb cannot

Lemma: If compact category has cloning, then



# **Theorem:** If braided monoidal category with duals has cloning, then $f = \text{Tr}(f) \bullet \text{id}_A$ for any $A \xrightarrow{f} A$

**Theorem:** If braided monoidal category with duals has cloning, then  $f = \text{Tr}(f) \bullet \text{id}_A$  for any  $A \xrightarrow{f} A$ 

**Proof:** First, consider equation (\*):



**Theorem:** If braided monoidal category with duals has cloning, then  $f = \text{Tr}(f) \bullet \text{id}_A$  for any  $A \xrightarrow{f} A$ 

**Proof**: First, consider equation (\*). Then:



**Theorem:** If braided monoidal category with duals has cloning, then  $f = \text{Tr}(f) \bullet \text{id}_A$  for any  $A \xrightarrow{f} A$ 

**Proof**: First, consider equation (\*). Then:





#### Monoidal categories

scalars, sound and complete graphical calculus

#### Dual objects

entanglement, teleportation, encrypted communication

#### Monoids

no cloning

# Part IV

# Frobenius structures

## Frobenius structure

A Frobenius structure in a monoidal category is pair of comonoid  $(A, \forall, \gamma)$  and monoid  $(A, \bigstar, \phi)$  satisfying *Frobenius law*:



If  $A_{1} = A_{2}$ , called *dagger Frobenius structure*.
A Frobenius structure in a monoidal category is pair of comonoid  $(A, \forall, \gamma)$  and monoid  $(A, \bigstar, \phi)$  satisfying *Frobenius law*:



If  $\triangleleft = \triangleleft$ , called *dagger Frobenius structure*.

Example in FHilb: copying an orthogonal basis



A Frobenius structure in a monoidal category is pair of comonoid  $(A, \forall, \gamma)$  and monoid  $(A, \bigstar, \phi)$  satisfying *Frobenius law*:



If  $\triangleleft = \triangleleft$ , called *dagger Frobenius structure*.

Example in FHilb: matrix algebra



A Frobenius structure in a monoidal category is pair of comonoid  $(A, \forall, \gamma)$  and monoid  $(A, \bigstar, \phi)$  satisfying *Frobenius law*:



If  $\triangleleft = \triangleleft$ , called *dagger Frobenius structure*.

Example in FHilb: group algebra of finite group



A Frobenius structure in a monoidal category is pair of comonoid  $(A, \forall, \gamma)$  and monoid  $(A, \bigstar, \phi)$  satisfying *Frobenius law*:



If  $\triangleleft = \triangleleft$ , called *dagger Frobenius structure*.

Example in Rel: set of morphisms of groupoid



A Frobenius structure in a monoidal category is pair of comonoid  $(A, \forall, \gamma)$  and monoid  $(A, \bigstar, \phi)$  satisfying *Frobenius law*:



If  $\triangleleft = \triangleleft$ , called *dagger Frobenius structure*.

Example in any compact dagger category: pair of pants



#### Frobenius law

Lemma: Any Frobenius structure satisfies:

Proof: Suffices to prove one of the equalities



#### **Classical structures**

A classical structure is a special and commutative Frobenius structure



#### **Classical structures**

A classical structure is a special and commutative Frobenius structure



Examples:

- ▶ in FHilb: copying orthonormal basis is classical structure
- ▶ in FHilb: matrix algebra only special when trivial
- ▶ in FHilb: group algebra only special when trivial
- ▶ in **Rel**: groupoid always special
- in general: pair of pants only special when trivial

#### Symmetry

Frobenius structure in monoidal category is symmetric when:

#### Symmetry

Frobenius structure in monoidal category is symmetric when:



In braided monoidal category, this is equivalent to:



#### Symmetry

Frobenius structure in monoidal category is symmetric when:



In braided monoidal category, this is equivalent to:



Examples:

- in FHilb: copying orthonormal basis is symmetric
- in **FHilb**: matrix algebra symmetric as Tr(ab) = Tr(ba)
- ▶ in FHilb: group algebra symmetric as inverses are two-sided
- ▶ in **Rel**: groupoid symmetric as inverses are two-sided
- ▶ in general: pair of pants symmetric

#### Self-duality

**Proposition:** If  $(A, \forall \gamma, \varphi, \bigstar, \bullet)$  Frobenius structure in monoidal category, then  $A \dashv A$  is self-dual



#### Self-duality

**Proposition:** If  $(A, \forall \gamma, \varphi, \bigstar, \bullet)$  Frobenius structure in monoidal category, then  $A \dashv A$  is self-dual



Proof: Snake equation:



#### Self-duality

**Proposition:** If  $(A, \forall \gamma, \varphi, \bigstar, \bullet)$  Frobenius structure in monoidal category, then  $A \dashv A$  is self-dual



Conversely, monoid  $(A, , \bullet, \bullet)$  forms Frobenius structure with some comonoid  $(A, , \diamond, \circ)$  iff allows nondegenerate form: map  $\varphi: A \to I$  with



part of self-duality  $A \dashv A$ .

Two ways to think about graphical calculus diagram:

- representing morphism; shorthand for e.g. linear map
- entity in its own right; can be manipulated by replacing parts

Two ways to think about graphical calculus diagram:

- representing morphism; shorthand for e.g. linear map
- entity in its own right; can be manipulated by replacing parts

**Theorem:** if  $(A, \blacktriangle, \flat, \heartsuit, \heartsuit, \heartsuit)$  is Frobenius structure, any connected morphism  $A^{\otimes m} \rightarrow A^{\otimes n}$  built out of finitely many pieces  $(\bigstar, \flat, \heartsuit, \heartsuit, \heartsuit, \heartsuit)$  and id, using  $\circ$  and  $\otimes$  equals normal form



Two ways to think about graphical calculus diagram:

- representing morphism; shorthand for e.g. linear map
- entity in its own right; can be manipulated by replacing parts

**Theorem:** if  $(A, \blacktriangle, \flat, \heartsuit, \heartsuit, \heartsuit)$  is *special* Frobenius structure, any connected morphism  $A^{\otimes m} \rightarrow A^{\otimes n}$  built out of finitely many pieces  $\bigstar, \flat, \heartsuit, \heartsuit, \heartsuit$  and id, using  $\circ$  and  $\otimes$  equals normal form



Two ways to think about graphical calculus diagram:

- representing morphism; shorthand for e.g. linear map
- entity in its own right; can be manipulated by replacing parts

**Theorem:** if  $(A, \bigstar, \flat, \heartsuit, \heartsuit)$  is *special commutative* Frobenius structure, any connected morphism  $A^{\otimes m} \rightarrow A^{\otimes n}$  built out of finitely many pieces  $\bigstar, \flat, \heartsuit, \heartsuit, \heartsuit$  and id *and*  $\succeq$ , using  $\circ$  and  $\otimes$  equals normal form



Map-state duality:  $f \mapsto f^{\dagger}$  is involution on pair of pants  $A = H^* \otimes H$ 

Map-state duality:  $f \mapsto f^{\dagger}$  is involution on pair of pants  $A = H^* \otimes H$ 

- *anti*-linear, so  $A \rightarrow A^*$ ; but  $A^* = (H^* \otimes H)^* \simeq H^* \otimes H^{**} \simeq A$
- morphism to opposite monoid:  $(g \circ f)^{\dagger} = f^{\dagger} \circ g^{\dagger}$

Map-state duality:  $f \mapsto f^{\dagger}$  is involution on pair of pants  $A = H^* \otimes H$ 

- anti-linear, so  $A \rightarrow A^*$ ; but  $A^* = (H^* \otimes H)^* \simeq H^* \otimes H^{**} \simeq A$
- morphism to opposite monoid:  $(g \circ f)^{\dagger} = f^{\dagger} \circ g^{\dagger}$

If (A, m, u) monoid,  $A \dashv A^*$  dagger dual, then  $(A^*, m_*, u_*)$  monoid too

Map-state duality:  $f \mapsto f^{\dagger}$  is involution on pair of pants  $A = H^* \otimes H$ 

- anti-linear, so  $A \rightarrow A^*$ ; but  $A^* = (H^* \otimes H)^* \simeq H^* \otimes H^{**} \simeq A$
- morphism to opposite monoid:  $(g \circ f)^{\dagger} = f^{\dagger} \circ g^{\dagger}$

If (A, m, u) monoid,  $A \dashv A^*$  dagger dual, then  $(A^*, m_*, u_*)$  monoid too

Monoid on object *A* with dagger dual is involutive monoid when equipped with monoid morphism  $A \xrightarrow{i} A^*$  satisfying  $i_* \circ i = id_A$ 

$$\begin{array}{c} A \\ \downarrow \\ i \\ \downarrow \\ i \\ A \end{array} = \begin{array}{c} A \\ \downarrow \\ A \\ A \end{array}$$

Map-state duality:  $f \mapsto f^{\dagger}$  is involution on pair of pants  $A = H^* \otimes H$ 

- anti-linear, so  $A \rightarrow A^*$ ; but  $A^* = (H^* \otimes H)^* \simeq H^* \otimes H^{**} \simeq A$
- morphism to opposite monoid:  $(g \circ f)^{\dagger} = f^{\dagger} \circ g^{\dagger}$

If (A, m, u) monoid,  $A \dashv A^*$  dagger dual, then  $(A^*, m_*, u_*)$  monoid too

Monoid on object *A* with dagger dual is involutive monoid when equipped with monoid morphism  $A \xrightarrow{i} A^*$  satisfying  $i_* \circ i = id_A$ 



*Morphisms*  $A \xrightarrow{f} B$  of involutive monoids satisfy  $i_B \circ f = f_* \circ i_A$ 

set of maps  $A \rightarrow A$  closed under composition = submonoid of pair of pants  $A^* \otimes A$ .

set of maps  $A \rightarrow A$  closed under composition *and dagger* = *involutive* submonoid of pair of pants  $A^* \otimes A$ .

set of maps  $A \rightarrow A$  closed under composition *and dagger* = *involutive* submonoid of pair of pants  $A^* \otimes A$ .

**Theorem:** Let  $A \dashv A^*$  be duals. Monoid  $(A, \measuredangle, \diamond)$  is dagger Frobenius structure iff Cayley embedding is involutive monoid morphism with



"Frobenius law = coherence law between dagger and closure"

set of maps  $A \rightarrow A$  closed under composition *and dagger* = *involutive* submonoid of pair of pants  $A^* \otimes A$ .

**Theorem:** Let  $A \dashv A^*$  be duals. Monoid  $(A, \measuredangle, \diamond)$  is dagger Frobenius structure iff Cayley embedding is involutive monoid morphism with



"Frobenius law = coherence law between dagger and closure"

- matrix algebra in **FHilb**: involution  $\mathbb{M}_n \to \mathbb{M}_n^*$  is  $f \mapsto f^{\dagger}$
- groupoid in **Rel**: involution  $G \rightarrow G^*$  is  $g \sim g^{-1}$
- pair of pants in general: involution invisible

#### Corollary: Dagger Frobenius structures in FHilb are C\*-algebras

**Proof:** Correspond to  $A \subseteq M_n$  closed under addition, scalar multiplication, matrix multiplication, adjoint, and contain identity

**Corollary:** Dagger Frobenius structures in FHilb are C\*-algebras **Proof**: Correspond to  $A \subseteq M_n$  closed under addition, scalar multiplication, matrix multiplication, adjoint, and contain identity

**Corollary:** Classical structures in FHilb are orthonormal bases **Proof:** If  $\mathbb{M}_{k_1} \oplus \cdots \oplus \mathbb{M}_{k_n}$  commutive must have  $k_1 = \cdots = k_n = 1$ 

**Corollary:** Dagger Frobenius structures in FHilb are C\*-algebras **Proof:** Correspond to  $A \subseteq M_n$  closed under addition, scalar multiplication, matrix multiplication, adjoint, and contain identity

**Corollary:** Classical structures in FHilb are orthonormal bases **Proof:** If  $\mathbb{M}_{k_1} \oplus \cdots \oplus \mathbb{M}_{k_n}$  commutive must have  $k_1 = \cdots = k_n = 1$ 

Theorem: Special dagger Frobenius structures in Rel are groupoids



**Corollary:** Dagger Frobenius structures in FHilb are C\*-algebras **Proof:** Correspond to  $A \subseteq M_n$  closed under addition, scalar multiplication, matrix multiplication, adjoint, and contain identity

**Corollary:** Classical structures in FHilb are orthonormal bases **Proof:** If  $\mathbb{M}_{k_1} \oplus \cdots \oplus \mathbb{M}_{k_n}$  commutive must have  $k_1 = \cdots = k_n = 1$ 

Theorem: Special dagger Frobenius structures in Rel are groupoids



Corollary: Classical structures in Rel are abelian groupoids

Phases

A state  $I \xrightarrow{a} A$  of a Frobenius structure is a phase when



#### Phases

A state  $I \xrightarrow{a} A$  of a Frobenius structure is a phase when



**Proposition**: phases of dagger Frobenius structure in (braided) monoidal dagger category form (abelian) phase group

Phases

A state  $I \xrightarrow{a} A$  of a Frobenius structure is a phase when



**Proposition**: phases of dagger Frobenius structure in (braided) monoidal dagger category form (abelian) phase group

- phase group of C\*-algebra is its unitary group
- phase group of orthonormal basis are powers of circle group
- phase group of a group is group itself
- phase group of pair or pants are unitary endomorphisms



## Part V

# Complementarity

### Complementarity

Symmetric dagger Frobenius structures ( and on the same object in a braided monoidal dagger category are complementary when


### Complementarity

Symmetric dagger Frobenius structures ( and on the same object in a braided monoidal dagger category are complementary when



Black and white not obviously interchangeable. But by symmetry



### Complementarity: examples

**Proposition**: classical structures in **FHilb** are complementary iff they copy mutually unbiased orthonormal bases

$$|\langle d_i | e_j \rangle|^2 = \frac{1}{\dim(H)}$$

### Complementarity: examples

**Proposition**: classical structures in **FHilb** are complementary iff they copy mutually unbiased orthonormal bases

$$|\langle d_i | e_j 
angle|^2 = rac{1}{\dim(H)}$$

**Lemma**: if *A* dagger self-dual in braided monoidal dagger category, then pair of pants and twisted knickers on  $A \otimes A$  are complementary



Symmetric Frobenius structure A gives complementary pair on  $A \otimes A$ 

### Complementarity in Rel

**Example**: Let *G* and *H* be nontrivial groups,  $A = G \times H$ ,

- ► **G** totally disconnected groupoid: objects *G* and **G**(*g*, *g*) = *H*;
- ▶ **H** totally disconnected groupoid: objects *H* and  $\mathbf{H}(h, h) = G$ . Then **G** and **H** give rise to complementary Frobenius structures.

### Complementarity in Rel

**Example**: Let *G* and *H* be nontrivial groups,  $A = G \times H$ ,

- ► **G** totally disconnected groupoid: objects *G* and **G**(*g*, *g*) = *H*;
- ► **H** totally disconnected groupoid: objects *H* and **H**(*h*, *h*) = *G*. Then **G** and **H** give rise to complementary Frobenius structures.

**Proposition**: equivalent for groupoids **G**, **H** on set *A* of morphisms:

- give complementary Frobenius structures
- ▶ map  $A \rightarrow Ob(\mathbf{G}) \times Ob(\mathbf{H}), a \mapsto (dom_{\mathbf{G}}(a), dom_{\mathbf{H}}(a))$  is bijective

### Complementarity and dagger

**Proposition**: symmetric dagger Frobenius structures in braided category complementary iff the following morphism is unitary



### Complementarity and dagger

**Proposition**: symmetric dagger Frobenius structures in braided category complementary iff the following morphism is unitary



#### Oracles

An oracle is a morphism  $A \xrightarrow{f} B$  together with Frobenius structures A on A and A on B such that the following morphism is unitary:



#### Oracles

An oracle is a morphism  $A \xrightarrow{f} B$  together with Frobenius structures A on A and A on B such that the following morphism is unitary:



Example: Extension of function between mutually unbiased bases

#### Oracles

An oracle is a morphism  $A \xrightarrow{f} B$  together with Frobenius structures A on A and A on B such that the following morphism is unitary:



Example: Extension of function between mutually unbiased bases

**Proposition:** Let  $(A, \measuredangle)$ ,  $(B, \bigstar)$  and  $(B, \bigstar)$  be symmetric dagger Frobenius structures. Self-conjugate comonoid morphism  $(A, \bigstar) \xrightarrow{f} (B, \bigstar)$  is oracle  $(A, \bigstar) \rightarrow (B, \bigstar)$  iff  $\bigstar$  complements  $\bigstar$ 

### Deutsch-Josza algorithm

Let function  $\{1, ..., n\} \xrightarrow{f} \{0, 1\}$  be promised balanced or constant. Extend to oracle  $\mathbb{C}^n \to \mathbb{C}^2$ ; latter with computational and *X* bases. Write  $b = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$ .



### Deutsch-Josza algorithm

Let function  $\{1, ..., n\} \xrightarrow{f} \{0, 1\}$  be promised balanced or constant. Extend to oracle  $\mathbb{C}^n \to \mathbb{C}^2$ ; latter with computational and *X* bases. Write  $b = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$ .



History is *certain* when *f* constant, *impossible* when *f* balanced.

### Bialgebras

Complementarity related to Hopf algebras



### Bialgebras

Complementarity related to Hopf algebras



Strong complementarity = complementarity + bialgebra

(in **FHilb** and **Rel**: complementary  $\stackrel{\text{only if commutative}}{\longleftarrow}$  bialgebra)

### Bialgebras

Complementarity related to Hopf algebras



Strong complementarity = complementarity + bialgebra (in FHilb and Rel: complementary

**Theorem:** the strongly complementary classical structures in **FHilb** are the group algebras

## Part VI

# Complete positivity

### Morphisms of Frobenius structures

**Lemma**: If a morphism between Frobenius structures preserves (co)multiplication and (co)unit, then it is an isomorphism. **Proof**:



#### Mixed states

State  $I \xrightarrow{m} A$  of dagger Frobenius structure is mixed when



#### Mixed states

State  $I \xrightarrow{m} A$  of dagger Frobenius structure is mixed when



- ▶ In **FHilb**: mixed state of C\*-algebra is positive element  $a = b^*b$
- ► In **Rel**: mixed state of groupoid is inverse-closed set of arrows
- ► In general: mixed state of pair of pants is name of positive map

If  $(A, \diamond, \diamond)$  and  $(B, \diamond, \diamond)$  are dagger Frobenius structures, a morphism  $A \xrightarrow{f} B$  is completely positive when  $I \xrightarrow{(f \otimes id) \circ m} B \otimes E$  is mixed state for mixed state  $I \xrightarrow{m} A \otimes E$  and any dagger Frobenius structure  $(E, \diamond, \diamond)$ .

Examples:

• Unitary evolution  $A^* \otimes A \xrightarrow{u_* \otimes u} A^* \otimes A$  for unitary  $A \xrightarrow{u} A$ 

If  $(A, \diamond, \diamond)$  and  $(B, \diamond, \diamond)$  are dagger Frobenius structures, a morphism  $A \xrightarrow{f} B$  is completely positive when  $I \xrightarrow{(f \otimes id) \circ m} B \otimes E$  is mixed state for mixed state  $I \xrightarrow{m} A \otimes E$  and any dagger Frobenius structure  $(E, \diamond, \diamond)$ .

- Unitary evolution  $A^* \otimes A \xrightarrow{u_* \otimes u} A^* \otimes A$  for unitary  $A \xrightarrow{u} A$
- ▶ Preparation of mixed state: completely positive map  $I \rightarrow A^* \otimes A$

If  $(A, \diamond, \diamond)$  and  $(B, \diamond, \diamond)$  are dagger Frobenius structures, a morphism  $A \xrightarrow{f} B$  is completely positive when  $I \xrightarrow{(f \otimes id) \circ m} B \otimes E$  is mixed state for mixed state  $I \xrightarrow{m} A \otimes E$  and any dagger Frobenius structure  $(E, \diamond, \diamond)$ .

- Unitary evolution  $A^* \otimes A \xrightarrow{u_* \otimes u} A^* \otimes A$  for unitary  $A \xrightarrow{u} A$
- Preparation of mixed state: completely positive map  $I \rightarrow A^* \otimes A$
- Measurement: completely positive map  $A^* \otimes A \to \mathbb{C}^n$  in FHilb is precisely *positive-operator valued measure*

If  $(A, \diamond, \diamond)$  and  $(B, \diamond, \diamond)$  are dagger Frobenius structures, a morphism  $A \xrightarrow{f} B$  is completely positive when  $I \xrightarrow{(f \otimes id) \circ m} B \otimes E$  is mixed state for mixed state  $I \xrightarrow{m} A \otimes E$  and any dagger Frobenius structure  $(E, \diamond, \diamond)$ .

- Unitary evolution  $A^* \otimes A \xrightarrow{u_* \otimes u} A^* \otimes A$  for unitary  $A \xrightarrow{u} A$
- Preparation of mixed state: completely positive map  $I \rightarrow A^* \otimes A$
- Measurement: completely positive map  $A^* \otimes A \to \mathbb{C}^n$  in FHilb is precisely *positive-operator valued measure*
- Completely positive maps G → H in Rel respect inverses: g ~ h implies g<sup>-1</sup> ~ h<sup>-1</sup> and id<sub>dom(g)</sub> ~ id<sub>dom(h)</sub>

**Lemma:** Assume  $f \otimes id_E \ge 0 \implies f \ge 0$ . If  $A \xrightarrow{f} B$  is completely positive, then CP condition holds



**Lemma:** Assume  $f \otimes id_E \ge 0 \implies f \ge 0$ . If  $A \xrightarrow{f} B$  is completely positive, then CP condition holds



**Proof:** Let  $E = A \otimes A^*$  be pair of pants, define  $I \xrightarrow{m} A \otimes E$  as:



**Lemma:** Assume  $f \otimes id_E \ge 0 \implies f \ge 0$ . If  $A \xrightarrow{f} B$  is completely positive, then CP condition holds



**Proof**: Let  $E = A \otimes A^*$  be pair of pants, define  $I \xrightarrow{m} A \otimes E$ Then *m* is a mixed state



**Lemma:** Assume  $f \otimes id_E \ge 0 \implies f \ge 0$ . If  $A \xrightarrow{f} B$  is completely positive, then CP condition holds



**Proof:** Let  $E = A \otimes A^*$  be pair of pants, define  $I \xrightarrow{m} A \otimes E$ Then *m* is a mixed state, as is  $(f \otimes id_E) \circ m$ .



**Lemma:** Assume  $f \otimes id_E \ge 0 \implies f \ge 0$ . If  $A \xrightarrow{f} B$  is completely positive, then CP condition holds



**Proof:** Let  $E = A \otimes A^*$  be pair of pants, define  $I \xrightarrow{m} A \otimes E$ Then *m* is a mixed state, as is  $(f \otimes id_E) \circ m$ . Hence:



**Lemma:** Assume  $f \otimes id_E \ge 0 \implies f \ge 0$ . If  $A \xrightarrow{f} B$  is completely positive, then CP condition holds



**Theorem (Stinespring):** If  $A \xrightarrow{f} B$  satisfies CP condition, then it is completely positive.

**Theorem:** If **C** is a monoidal dagger category, there is a new category CP[**C**]:

- ▶ objects in CP[C] are special dagger Frobenius structures in C
- ► morphisms in CP[C] are morphisms in C satisfying CP condition



**Theorem:** If **C** is a *braided* monoidal dagger category, there is a new *monoidal* category CP[**C**]:

- ▶ objects in CP[C] are special dagger Frobenius structures in C
- ▶ morphisms in CP[C] are morphisms in C satisfying CP condition
- ► tensor product in CP[C] is as in C



**Theorem**: If **C** is a *symmetric* monoidal dagger category, there is a new *symmetric* monoidal category CP[**C**]:

- ▶ objects in CP[C] are special dagger Frobenius structures in C
- ▶ morphisms in CP[C] are morphisms in C satisfying CP condition
- ► tensor product in CP[C] is as in C



**Theorem**: If **C** is a *symmetric* monoidal dagger category, there is a new *symmetric* monoidal dagger category CP[**C**]:

- ► objects in CP[C] are special dagger Frobenius structures in C
- ▶ morphisms in CP[C] are morphisms in C satisfying CP condition
- ► tensor product in CP[C] is as in C
- ► dagger in CP[**C**] is as in **C**



(duality between Schrödinger and Heisenberg pictures)

**Theorem:** If **C** is a *symmetric* monoidal dagger category, there is a new *compact dagger* category CP[**C**]:

- ► objects in CP[C] are special dagger Frobenius structures in C
- ▶ morphisms in CP[C] are morphisms in C satisfying CP condition
- ► tensor product in CP[C] is as in C
- ► dagger in CP[**C**] is as in **C**
- ► dual in  $CP[\mathbf{C}]$  is  $(A, \diamond, \diamond)^* := (A, \diamondsuit, \diamond)$  with  $\diamond : I \rightarrow A^* \otimes A$



**Theorem:** If **C** is a *symmetric* monoidal dagger category, there is a new *dagger* category CP[**C**]:

- ▶ objects in CP[C] are special dagger Frobenius structures in C
- ► morphisms in CP[C] are morphisms in C satisfying CP condition
- ► tensor product in CP[C] is as in C
- ► dagger in CP[**C**] is as in **C**
- ► dual in  $CP[\mathbf{C}]$  is  $(A, \diamond, \diamond)^* := (A, \diamondsuit, \diamond)$  with  $\checkmark : I \rightarrow A^* \otimes A$

- ► CP[FHilb] = fin-dim C\*-algebras and completely positive maps
- CP[Rel] = groupoids and inverse-respecting relations

### Classical and quantum structures

Consider full subcategory  $CP_c[C]$  of classical structures. Lemma:  $CP_c[FHilb] \simeq$  stochastic matrices (rows sum to 1)
Consider full subcategory  $CP_c[C]$  of classical structures. Lemma:  $CP_c[FHilb] \simeq$  stochastic matrices (rows sum to 1)

Consider full subcategory  $CP_q[C]$  of pairs of pants. (*Normalizable* Frobenius structures are isomorphic to special ones.)

Consider full subcategory  $CP_c[C]$  of classical structures. Lemma:  $CP_c[FHilb] \simeq$  stochastic matrices (rows sum to 1)

Consider full subcategory  $CP_q[C]$  of pairs of pants. (*Normalizable* Frobenius structures are isomorphic to special ones.) Example:  $CP_q[FHilb] \simeq$  Hilbert spaces and completely positive maps

Consider full subcategory  $CP_c[C]$  of classical structures. Lemma:  $CP_c[FHilb] \simeq$  stochastic matrices (rows sum to 1)

Consider full subcategory  $CP_q[C]$  of pairs of pants. (*Normalizable* Frobenius structures are isomorphic to special ones.) Example:  $CP_q[FHilb] \simeq$  Hilbert spaces and completely positive maps

**Proposition**: Assuming all objects have positive dimension There is functor  $P: \mathbb{C} \to \operatorname{CP}_q[\mathbb{C}]$  given by  $P(A) = (A^* \otimes A, / , \lor)$ and  $P(f) = f_* \otimes f$  that preserves tensor products and daggers

Consider full subcategory  $CP_c[C]$  of classical structures. Lemma:  $CP_c[FHilb] \simeq$  stochastic matrices (rows sum to 1)

 $\begin{array}{l} \mbox{Consider full subcategory $CP_q[C]$ of pairs of pants.} \\ (Normalizable \mbox{Frobenius structures are isomorphic to special ones.}) \\ \mbox{Example: $CP_q[FHilb]$ $\simeq$ Hilbert spaces and completely positive maps} \end{array}$ 

**Proposition**: Assuming all objects have positive dimension There is functor  $P: \mathbb{C} \to \operatorname{CP}_q[\mathbb{C}]$  given by  $P(A) = (A^* \otimes A, / , \lor)$ and  $P(f) = f_* \otimes f$  that preserves tensor products and daggers

**Lemma** ("*P* is faithful up to phase"):

An environment structure for compact dagger category  $\mathbf{C}^{\text{pure}}$  is

- ► a compact dagger category **C** of which **C**<sup>pure</sup> is subcategory
- ▶ for each object *A* in **C**<sup>pure</sup>, a discarding map  $\stackrel{=}{\top} : A \rightarrow I$  in **C**

An environment structure for compact dagger category  $\mathbf{C}^{\text{pure}}$  is

- ► a compact dagger category **C** of which **C**<sup>pure</sup> is subcategory
- ▶ for each object *A* in  $\mathbf{C}^{\text{pure}}$ , a discarding map  $\stackrel{=}{\neg} : A \rightarrow I$  in  $\mathbf{C}$  with:

$$\dot{\overline{T}} = \dot{\overline{T}} = \dot{\overline$$

An environment structure with purification for category  $\mathbf{C}^{\text{pure}}$  is

- ► a compact dagger category **C** of which **C**<sup>pure</sup> is subcategory
- ▶ for each object *A* in  $\mathbf{C}^{\text{pure}}$ , a discarding map  $\stackrel{=}{\neg} : A \rightarrow I$  in  $\mathbf{C}$  with:



(Hence C and C<sup>pure</sup> must have same objects)

An environment structure with purification for category  $\mathbf{C}^{\text{pure}}$  is

- ► a compact dagger category **C** of which **C**<sup>pure</sup> is subcategory
- ▶ for each object *A* in  $\mathbf{C}^{\text{pure}}$ , a discarding map  $\stackrel{=}{\neg} : A \rightarrow I$  in  $\mathbf{C}$  with...

**Example:**  $\mathbf{C}^{\text{pure}}$  has environment structure  $\bigcap$  in  $CP_q[\mathbf{C}^{\text{pure}}]$ .

An environment structure with purification for category  $\mathbf{C}^{\text{pure}}$  is

- ► a compact dagger category **C** of which **C**<sup>pure</sup> is subcategory
- ▶ for each object *A* in  $\mathbf{C}^{\text{pure}}$ , a discarding map  $\stackrel{=}{\neg} : A \rightarrow I$  in  $\mathbf{C}$  with...

**Example**:  $\mathbf{C}^{\text{pure}}$  has environment structure  $\bigcap$  in  $CP_q[\mathbf{C}^{\text{pure}}]$ .

**Theorem:** If  $\mathbf{C}^{\text{pure}}$  has environment structure with purification, there is isomorphism  $F: \operatorname{CP}_q[\mathbf{C}^{\text{pure}}] \to \mathbf{C}$  with F(A) = A on objects,  $F(f \otimes g) = F(f) \otimes F(g)$  on morphisms, that preserves daggers

A decoherence structure for C<sup>pure</sup> is

- ▶ an environment structure **C** with discarding maps  $= A \rightarrow I$  in **C**
- ▶ for each special dagger Frobenius structure  $(A, \diamond, \diamond)$  in  $\mathbb{C}^{\text{pure}}$ , an object  $A_{\circ}$  in  $\mathbb{C}$  and a measuring map  $\diamondsuit$ :  $A \rightarrow A_{\circ}$  in  $\mathbb{C}$ , with:

A decoherence structure for C<sup>pure</sup> is

- ▶ an environment structure **C** with discarding maps  $= A \rightarrow I$  in **C**
- ▶ for each special dagger Frobenius structure  $(A, \blacktriangle, \flat)$  in  $\mathbf{C}^{\text{pure}}$ , an object  $A_{\bullet}$  in  $\mathbf{C}$  and a measuring map  $\diamondsuit$ :  $A \rightarrow A_{\bullet}$  in  $\mathbf{C}$ , with:

$$\begin{array}{c} I_{\bullet} \\ I \\ I \end{array} = \begin{array}{c} (A \otimes B)_{\bullet \bullet} \\ A \otimes B \end{array} = \begin{array}{c} A_{\bullet} \\ A_{\bullet} \\ A \\ A \end{array}$$



#### A decoherence structure with purification for $\mathbf{C}^{\text{pure}}$ is

- ▶ an environment structure **C** with discarding maps  $= A \rightarrow I$  in **C**
- ▶ for each special dagger Frobenius structure  $(A, \diamond, \delta)$  in  $\mathbf{C}^{\text{pure}}$ , an object  $A_{\circ}$  in  $\mathbf{C}$  and a measuring map  $\diamondsuit: A \rightarrow A_{\circ}$  in  $\mathbf{C}$ , with:

$$\begin{array}{c} I_{\bullet} \\ I \\ I \end{array} = \begin{array}{c} (A \otimes B)_{\bullet \bullet} \\ A \otimes B \end{array} = \begin{array}{c} A_{\bullet} \\ A_{\bullet} \\ A \\ A \end{array}$$





(Hence each object in **C** is of form  $A_{\circ}$ )

#### A decoherence structure with purification for $\mathbf{C}^{\text{pure}}$ is

- ▶ an environment structure **C** with discarding maps  $\stackrel{=}{\neg}$ :  $A \rightarrow I$  in **C**
- ▶ for each special dagger Frobenius structure  $(A, \diamond, \diamond)$  in  $\mathbf{C}^{\text{pure}}$ , an object  $A_{\circ}$  in  $\mathbf{C}$  and a measuring map  $\diamondsuit$ :  $A \rightarrow A_{\circ}$  in  $\mathbf{C}$ , with ...

**Example:**  $C^{\text{pure}}$  has decoherence structure in  $CP[C^{\text{pure}}]$  with  $(A^* \otimes A, \land, \smile)_{\circ} = (A, \land, \diamond)$  and measuring map

#### A decoherence structure with purification for $\mathbf{C}^{\text{pure}}$ is

- ▶ an environment structure **C** with discarding maps  $\stackrel{=}{\neg}$ :  $A \rightarrow I$  in **C**
- ▶ for each special dagger Frobenius structure  $(A, \diamond, \diamond)$  in  $\mathbf{C}^{\text{pure}}$ , an object  $A_{\circ}$  in  $\mathbf{C}$  and a measuring map  $\diamondsuit$ :  $A \rightarrow A_{\circ}$  in  $\mathbf{C}$ , with ...

**Example:**  $\mathbf{C}^{\text{pure}}$  has decoherence structure in  $\text{CP}[\mathbf{C}^{\text{pure}}]$  with  $(A^* \otimes A, \nearrow, \smile)_{\mathbf{o}} = (A, \measuredangle, \diamond)$  and measuring map

**Theorem:** If  $\mathbf{C}^{\text{pure}}$  has decoherence structure with purification, there is isomorphism  $F: \operatorname{CP}[\mathbf{C}^{\text{pure}}] \to \mathbf{C}$  that preserves daggers and satisfies  $F(f \otimes g) = F(f) \otimes F(g)$ 

### Teleportation

**Theorem:** If  $(A, \measuredangle, \flat)$  and  $(A, \bigstar, \bullet)$  complementary dagger Frobenius in braided monoidal dagger category **C**, and  $\measuredangle$  commutative, then in CP[**C**]:



## Teleportation

**Theorem:** If  $(A, \measuredangle, \diamond)$  and  $(A, \bigstar, \bullet)$  complementary dagger Frobenius in braided monoidal dagger category **C**, and  $\bigstar$  commutative, then in CP[**C**]:

- mixed states
- arbitrary systems
- 'classical communication' only in sense of 'copied' by Frobenius structures, one of which noncommutative
- 'two bits' of classical communication: two channels used, maybe more than two copyable states
- tensor product and composition only

#### Summary

#### Monoidal categories

scalars, sound and complete graphical calculus

#### Dual objects

entanglement, teleportation, encrypted communication

 Monoids no cloning

#### Frobenius structures

normal form, classical structures, observables, classification

# Complementarity

Deutsch-Josza

#### Completely positive maps

mixed states, axiomatization, teleportation