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Categorical Quantum Mechanics?

I Study of compositional nature of (physical) systems
Primitive notion: forming compound systems

I Operational yet algebraic
I Why non-unit state vectors?
I Why non-hermitean operators?
I Why complex numbers?

I Powerful graphical calculus

I Allows different interpretation in many different fields
I Physics: quantum theory, quantum information theory
I Computer science: logic, topology
I Mathematics: representation theory, quantum algebra

2 / 76



Categorical Quantum Mechanics?

I Study of compositional nature of (physical) systems
Primitive notion: forming compound systems

I Operational yet algebraic
I Why non-unit state vectors?
I Why non-hermitean operators?
I Why complex numbers?

I Powerful graphical calculus

I Allows different interpretation in many different fields
I Physics: quantum theory, quantum information theory
I Computer science: logic, topology
I Mathematics: representation theory, quantum algebra

2 / 76



Categorical Quantum Mechanics?

I Study of compositional nature of (physical) systems
Primitive notion: forming compound systems

I Operational yet algebraic
I Why non-unit state vectors?
I Why non-hermitean operators?
I Why complex numbers?

I Powerful graphical calculus

I Allows different interpretation in many different fields
I Physics: quantum theory, quantum information theory
I Computer science: logic, topology
I Mathematics: representation theory, quantum algebra

2 / 76



Categorical Quantum Mechanics?

I Study of compositional nature of (physical) systems
Primitive notion: forming compound systems

I Operational yet algebraic
I Why non-unit state vectors?
I Why non-hermitean operators?
I Why complex numbers?

I Powerful graphical calculus

I Allows different interpretation in many different fields
I Physics: quantum theory, quantum information theory
I Computer science: logic, topology
I Mathematics: representation theory, quantum algebra

2 / 76



3 / 76



4 / 76



Outline

Lecture 1:
I monoidal categories: graphical calculus
I dual objects: entanglement
I (co)monoids: no-cloning

Lecture 2:
I Frobenius structures: observables
I bialgebras: complementarity
I complete positivity: mixed states

5 / 76



Part I

Monoidal categories
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Category = systems and processes:
I physical systems, and physical processes governing them;
I data types, and algorithms manipulating them;
I algebraic structures, and structure-preserving functions;
I logical propositions, and implications between them.

Monoidal category = category + parallelism:
I independent physical systems evolve simultaneously;
I running computer algorithms in parallel;
I products or sums of algebraic or geometric structures;
I using proofs of P and Q to prove conjunction (P and Q).
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A category C is monoidal when equipped with:

I a tensor product functor

⊗ : C×C C

I a unit object

I ∈Ob(C)

I an associator natural isomorphism

(A⊗ B)⊗ C
αA,B,C A⊗ (B⊗ C)

I a left unitor natural isomorphism

I ⊗ A λA A

I a right unitor natural isomorphism

A⊗ I ρA A
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This data must satisfy the triangle and pentagon equations:

(A⊗ I)⊗ B A⊗ (I ⊗ B)

A⊗ B
ρA ⊗ idB idA ⊗ λB

αA,I,B

(
(A⊗ B)⊗ C

)
⊗ D

(
A⊗ (B⊗ C)

)
⊗ D A⊗

(
(B⊗ C)⊗ D

)
A⊗

(
B⊗ (C ⊗ D)

)
(A⊗ B)⊗ (C ⊗ D)

αA,B,C ⊗ idD

αA,B⊗C,D

idA ⊗ αB,C,D

αA⊗B,C,D αA,B,C⊗D

Theorem (coherence for monoidal categories): If the pentagon
and triangle equations hold, then so does any well-typed equation
built from α, λ, ρ and their inverses using ⊗, ◦, and id.
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Example: Hilbert spaces

Hilbert spaces and bounded linear maps form a monoidal category:

I tensor product is the tensor product of Hilbert spaces

I unit object is one-dimensional Hilbert space C
I left unitors C⊗ H λH H are unique linear maps with 1⊗ u 7→ u

I right unitors H ⊗ C ρH H are unique linear maps with u⊗ 1 7→ u

I associators (H ⊗ J)⊗ K
αH,J,K H ⊗ (J ⊗ K) are

unique linear maps with (u⊗ v)⊗ w 7→ u⊗ (v⊗ w)
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Example: sets and functions

Sets and functions form a monoidal category Set:

I tensor product is Cartesian product of sets

I unit object is a chosen singleton set {•}
I left unitors I × A λA A are (•, a) 7→ a

I right unitors A× I ρA A are (a, •) 7→ a

I associators (A× B)× C
αA,B,C A× (B× C) are

functions
(
(a, b), c

)
7→
(
a, (b, c)

)
(Other tensor products exist.)
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Example: sets and relations

A relation A R B between sets is a subset R ⊆ A× B

A B
R

!

0 0 0 0
0 1 1 1
0 0 0 1
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Example: sets and relations

A relation A R B between sets is a subset R ⊆ A× B

A B
R

; =

B C
S

A C
S ◦ R

!

0 0 0 0
0 1 1 1
0 0 0 1



Different notion of process: nondeterministic evolution of states
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Example: sets and relations

A relation A R B between sets is a subset R ⊆ A× B

A B
R

!

0 0 0 0
0 1 1 1
0 0 0 1



Composition is matrix multiplication, with OR and AND for + and ×.
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Example: sets and relations

Sets and relations form a monoidal category Rel:

I tensor product is Cartesian product of sets,
acting on relations as: (a, c)(R× S)(b, d) iff aRb and cSd

I unit object is a chosen singleton set = {•}
I associators (A× B)× C

αA,B,C A× (B× C) are
catRelations

(
(a, b), c

)
∼
(
a, (b, c)

)
I left unitors I × A λA A are given by (•, a) ∼ a

I right unitors A× I ρA A are given by (a, •) ∼ a

Cartesian product is not a categorical product in Rel:
If Set is classical, and Hilb is quantum, Rel is ‘in the middle’
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Graphical calculus

For A f B and B g C, draw their composition A g◦f B as

A

B

C

f

g

For A f B and C g D, draw their tensor product A⊗ C f⊗g B⊗ D as

f g

B

A

D

C

“Time” runs upwards, “space” runs sideways
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Graphical calculus

The tensor unit is drawn as the empty diagram:

Unitors are also not drawn:

A A A B C

λA ρA αA,B,C

Coherence is essential: as there can only be a single morphism built
from associators and unitors of given type, it doesn’t matter that
their depiction encodes no information
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Graphical calculus

For example, interchange law:

(g ◦ f)⊗ (j ◦ h) = (g⊗ j) ◦ (f ⊗ h)

f

g

h

j

C

B

A

F

E

D








=        



       


f

g

h

j

C

B

A

F

E

D
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Graphical calculus: sound and complete

Think of diagram as within rectangular region of Rn, with wires
terminating at upper and lower boundaries only, morphisms as
points. Two diagrams are isotopic when one can be deformed
continuously into the other, keeping the boundaries fixed.

Theorem (correctness): A well-formed equation between
morphisms in a monoidal category follows from the axioms iff it
holds in the graphical calculus up to planar isotopy.

Soundness: algebraic equality⇒ graphical isotopy
Completeness: algebraic equality⇐ graphical isotopy
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States

A state of an object A in a monoidal category is a morphism I A.

a

A

Tensor unit is trivial system; state is way to bring A into existence

I in Hilb: linear functions C H, correspond to elements of H

I in Set: functions {•} A, correspond to elements of A

I in Rel: relations {•} R A, correspond to subsets of A
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Joint states

A morphism I c A⊗ B is a joint state.

It is a product state when:

c

BA

=
a b

BA

It is entangled when it is not a product state

I entangled states in Hilb: vectors of H⊗K with Schmidt rank > 1
I entangled states in Set: don’t exist
I entangled states in Rel: non-square subsets of A× B
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Braiding

A monoidal category is braided when equipped with natural iso

A⊗ B
σA,B B⊗ A

satisfying the hexagon equations

(A ⊗ B)⊗ C

A ⊗ (B ⊗ C) (B ⊗ C)⊗ A

B ⊗ (C ⊗ A)

(B ⊗ A)⊗ C B ⊗ (A ⊗ C)

α−1
A,B,C

σA,B⊗C

α−1
B,C,A

σA,B ⊗ idC

αB,A,C

idB ⊗ σA,C

A ⊗ (B ⊗ C)

(A ⊗ B)⊗ C C ⊗ (A ⊗ B)

(C ⊗ A)⊗ B

A ⊗ (C ⊗ B) (A ⊗ C)⊗ B

αA,B,C

σA⊗B,C

αC,A,B

idA ⊗ σB,C

α−1
A,C,B

σA,C ⊗ idB
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Braiding
Draw σ as and its inverse as

Invertibility: = =

Naturality: f g =
g f

f g =
g f

Hexagon: = =

Theorem (correctness): A well-formed equation between
morphisms in a braided monoidal category follows from the axioms
iff it holds in the graphical language up to 3-dimensional isotopy.

21 / 76



Braiding

Draw σ as and its inverse as

Invertibility: = =

Naturality: f g =
g f

f g =
g f

Hexagon: = =

Theorem (correctness): A well-formed equation between
morphisms in a braided monoidal category follows from the axioms
iff it holds in the graphical language up to 3-dimensional isotopy.

21 / 76



Braiding

Draw σ as and its inverse as

Invertibility: = =

Naturality: f g =
g f

f g =
g f

Hexagon: = =

Theorem (correctness): A well-formed equation between
morphisms in a braided monoidal category follows from the axioms
iff it holds in the graphical language up to 3-dimensional isotopy.

21 / 76



Symmetry
A braided monoidal category is symmetric when

σB,A ◦ σA,B = idA⊗B

Graphically: no knots

=

Theorem (correctness): A well-formed equation between
morphisms in a symmetric monoidal category follows from the
axioms iff it holds in graphical language up to 4-dimensional isotopy.

I in Hilb: linear extension of a⊗ b 7→ b⊗ a
I in Set: function (a, b) 7→ (b, a)
I in Rel: relation (a, b) ∼ (b, a)
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Scalars
A scalar in a monoidal category is a morphism I a I

a

Lemma: in a monoidal category, scalar composition is commutative
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Scalars
A scalar in a monoidal category is a morphism I a I

a

Lemma: in a monoidal category, scalar composition is commutative
Proof: either algebraically:

I I

I ⊗ I I ⊗ I

I I

I ⊗ I I ⊗ I

a

bb

a⊗ idI

λI ρI

ρ−1
Iλ−1

I

idI ⊗ b
a⊗ idI

idI ⊗ b

λ−1
I ρ−1

I

a

λI ρI
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Scalars
A scalar in a monoidal category is a morphism I a I

a

Lemma: in a monoidal category, scalar composition is commutative
Proof: or graphically:

a

b

=
b

a
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Scalar multiplication

Scalar multiplication A a•f B of scalar I a I and morphism A f B

s f

satisfies many familiar properties in any monoidal category:
I idI • f = f
I a • b = a ◦ b
I a • (b • f) = (a • b) • f
I (b • g) ◦ (a • f) = (b ◦ a) • (g ◦ f)

In our examples:
I in Hilb: a • f is the morphism x 7→ af(x)
I in Set: id1 • f = f is trivial
I in Rel: true • R = R and false • R = ∅
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Dagger
A dagger on a category C is a contravariant functor † : C C
satisfying A† = A on objects and f †† = f on morphisms.

I Hilb is a dagger category using adjoints
I Rel is a dagger category using converse: bR†a iff aRb
I Set is not a dagger category

Graphically: flip about horizontal axis
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Dagger

A morphism f in a dagger category is:
I self-adjoint when f = f †

I unitary when f † ◦ f = id and f ◦ f † = id
I positive when f = g† ◦ g for some g

In a monoidal dagger category:
I (f ⊗ g)† = f † ⊗ g†

I the associators and unitors are unitary

In a braided/symmetric monoidal dagger category,
the braiding is additionally unitary
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Part II

Dual objects
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Dual objects
An object L is left-dual to an object R, and R is right-dual to L, written
L a R, when there are morphisms I η R⊗ L and L⊗ R ε I with:

L L⊗ I L⊗ (R⊗ L)

L I ⊗ L (L⊗ R)⊗ L

ρ−1
L

idL

idL ⊗ η

α−1
L,R,L

ε⊗ idLλL

R I ⊗ R (R⊗ L)⊗ R

R R⊗ I R⊗ (L⊗ R)

λ−1
R

idR

η ⊗ idR

αR,L,R

idR ⊗ ερR
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Dual objects
An object L is left-dual to an object R, and R is right-dual to L, written
L a R, when there are morphisms I η R⊗ L and L⊗ R ε I with:

= =

where we draw η and ε as:

R L

L R
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Dual objects: examples

Every finite-dimensional Hilbert space H is both right dual and left
dual to its dual Hilbert space H∗:

I cap H ⊗ H∗ C is evaluation: |φ〉 ⊗ 〈ψ| 7→ 〈ψ|φ〉
I cup C H∗ ⊗ H is maximally entangled state:

1 7→
∑

i〈i| ⊗ |i〉 for any orthonormal basis {|i〉}
Infinite-dimensional Hilbert spaces do not have duals

In Rel, every object is self-dual:
I cap A× A 1 is • ∼ (a, a) for all a ∈ A
I cup 1 A× A is (a, a) ∼ •
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Map-state duality
The category Set only has duals for singletons.

The name I pfq A∗⊗B and coname A⊗B∗ xfy I of a morphism A f B,
given dual objects A a A∗ and B a B∗, are

BA∗

f

A B∗

f

Conversely,

A

B

f =

B

A

f

Proof: There is only one function A 1, so all conames A⊗ B∗ 1
are equal, so all functions A B are equal.
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Dual objects: properties
Robustly defined:

I Suppose L a R. Then L a R′ iff R ' R′.
I If (L,R, η, ε) and (L,R, η, ε′) are dualities, then ε = ε′.

Monoidal:
I Always I a I.
I If L a R and L′ a R′, then L⊗ L′ a R′ ⊗ R.

Symmetric:
I If L a R in a braided monoidal category, then also R a L.

= =
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Duals functor

For A f B and A a A∗, B a B∗, the right dual B∗ f∗ A∗ is defined as:

A∗

B∗

f∗ :=

A∗

B∗

f

=:

A∗

B∗

f

Examples:
I in FHilb: usual dual f∗ : K∗ H∗ given by f∗(e) = e ◦ f
I in Rel: R∗ = R†

32 / 76



Duals functor

For A f B and A a A∗, B a B∗, the right dual B∗ f∗ A∗ is defined as:

A∗

B∗

f∗ :=

A∗

B∗

f =:

A∗

B∗

f

Examples:
I in FHilb: usual dual f∗ : K∗ H∗ given by f∗(e) = e ◦ f
I in Rel: R∗ = R†

32 / 76



Duals functor

For A f B and A a A∗, B a B∗, the right dual B∗ f∗ A∗ is defined as:

A∗

B∗

f∗ :=

A∗

B∗

f =:

A∗

B∗

f

Examples:
I in FHilb: usual dual f∗ : K∗ H∗ given by f∗(e) = e ◦ f
I in Rel: R∗ = R†
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Duals functor: properties
Lemma: (g ◦ f)∗ = f∗ ◦ g∗, and

f = f
f

=
f

Lemma: A∗∗ ⊗ B∗∗ ' (A⊗ B)∗∗

A∗∗ B∗∗

(A⊗ B)∗∗

εA⊗B

η(A⊗B)∗
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Compact categories

A symmetric monoidal category is compact when every object has a
(simultaneously left and right) dual.

Theorem (correctness): A well-formed equation between
morphisms in a compact category follows from the axioms if and only
if it holds in the graphical language up to spatial oriented isotopy.

f

= f = f = f
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Dagger dual objects

Lemma: In a monoidal dagger category, L a R ⇔ R a L.

In a symmetric monoidal dagger category, a dagger dual A a A∗ has:

η
=

ε

Lemma: Dagger dualities correspond to maximally entangled states

η

η =
ε

η

=
ε

η

=

Dagger duals, and hence maximally entangled states,
are unique up to unique unitary

35 / 76



Dagger dual objects

Lemma: In a monoidal dagger category, L a R ⇔ R a L.

In a symmetric monoidal dagger category, a dagger dual A a A∗ has:

η
=

ε

Lemma: Dagger dualities correspond to maximally entangled states

η

η =
ε

η

=
ε

η

=

Dagger duals, and hence maximally entangled states,
are unique up to unique unitary

35 / 76



Dagger dual objects

Lemma: In a monoidal dagger category, L a R ⇔ R a L.

In a symmetric monoidal dagger category, a dagger dual A a A∗ has:

η
=

ε

Lemma: Dagger dualities correspond to maximally entangled states

η

η =
ε

η

=
ε

η

=

Dagger duals, and hence maximally entangled states,
are unique up to unique unitary

35 / 76



Dagger dual objects

Lemma: In a monoidal dagger category, L a R ⇔ R a L.

In a symmetric monoidal dagger category, a dagger dual A a A∗ has:

η
=

ε

Lemma: Dagger dualities correspond to maximally entangled states

η

η =
ε

η

=
ε

η

=

Dagger duals, and hence maximally entangled states,
are unique up to unique unitary

35 / 76



Compact dagger categories

A compact dagger category is both compact and dagger,
and duals are dagger duals.( )

†
=

( )
†

=

Lemma: Duals and daggers commute

(f∗)† =

 f


†

= f = f = (f †)∗

Conjugation is the functor (−)∗ := (−)∗† = (−)†∗
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Conjugation

f f

f∗ : A∗ B∗ f : A B
conjugation

f f

f∗ : B∗ A∗ f † : B A
dual dagger

37 / 76



Traces
The trace of A f A is the scalar

f

Examples:
I in FHilb, it is the ordinary trace
I in Rel, it detects fixed points

Lemma: Trace is cyclic, Tr(f ⊗ g) = Tr(f) ◦ Tr(g), and Tr(f †) = Tr(f)†

f

g

= f g =
g

f
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Dimension

The dimension of A is the scalar dim(A) := Tr(idA)

A

Lemma:
I dim(I) = idI

I dim(A⊗ B) = dim(A) ◦ dim(B)
I if A ' B then dim(A) = dim(B)

I infinite-dimensional Hilbert spaces do not have duals
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Teleportation

In FHilb:
I begin with a single system L
I prepare a joint system R⊗ L in a maximally entangled state
I perform a joint measurement on the first two systems
I perform a unitary operation on the remaining system

L

L

Ui

Ui

=

L

L

Ui

Ui

=

L

L

=

L

L

In Rel: encrypted communication using one-time pad
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Part III

(Co)monoids
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Comonoids
A comonoid in a monoidal category is an object A with
comultiplication A d A⊗ A and counit A e I satisfying

d

d

=
d

d e

d
= =

e

d

= = =

Examples:
I in Set, any object has unique cocommutative comonoid

with comultiplication a 7→ (a, a) and counit a 7→ •
I in Rel, any group forms a comonoid

with comultiplication g ∼ (h, h−1g) and counit 1 ∼ •
I in FHilb, any choice of basis {ei} gives cocommutative comonoid

with comultiplication ei 7→ ei ⊗ ei and counit ei 7→ 1
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Monoids

A monoid in a monoidal category consists of maps I A A⊗ A
satisfying associativity and unitality.

Lemma: In braided monoidal category, two (co)monoids combine

Lemma: In monoidal dagger category, monoid gives comonoid

43 / 76



Pair of pants

: one size fits all

Map-state duality: composition A g◦f A becomes I pg◦fq A∗ ⊗ A.

pgq pfq
=

pg ◦ fq

Lemma: If A a A∗, then A∗ ⊗ A is pair of pants monoid

A

A

A A A

A

A A

Example: Pair of pants on Cn in FHilb is n-by-n matrices Mn
Proof: define (Cn)∗ ⊗ Cn →Mn by 〈j| ⊗ |i〉 7→ eij

Proposition: Any monoid (A, , ) embeds into (A∗ ⊗ A, , )

R =
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Cloning
A braided monoidal category has cloning if there is natural
A dA A⊗ A with cocommutativity, coassociativity, dI = ρI, and

A B

A BB A

dA dB =

A B BA

BA

dA⊗B

Set has cloning, but compact categories like Rel or FHilb cannot

Lemma: If compact category has cloning, then

...

A∗ A A∗ A
=

A∗ AA A∗

dA∗ dA
=

A A∗AA∗

dA∗ dA

=

A∗ A A∗ A
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BA
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Set has cloning, but compact categories like Rel or FHilb cannot

Lemma: If compact category has cloning, then ...
Proof: First, consider the following equality (∗).

A∗ A A∗ A
=
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dI

=

A∗ A AA∗
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No-cloning
Theorem: If braided monoidal category with duals has cloning,
then f = Tr(f) • idA for any A f A

Proof: First, consider equation (∗)

Then:
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Theorem: If braided monoidal category with duals has cloning,
then f = Tr(f) • idA for any A f A

Proof: First, consider equation (∗). Then:

A

A

f =

A

A

f =

A

A

f =

A

A
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No-cloning
Theorem: If braided monoidal category with duals has cloning,
then f = Tr(f) • idA for any A f A

Proof: First, consider equation (∗). Then:

f
=

f

=

f

=
f
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Summary

I Monoidal categories
scalars, sound and complete graphical calculus

I Dual objects
entanglement, teleportation, encrypted communication

I Monoids
no cloning
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Part IV

Frobenius structures
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Frobenius structure
A Frobenius structure in a monoidal category is pair of comonoid
(A, , ) and monoid (A, , ) satisfying Frobenius law:

=

If = , called dagger Frobenius structure.
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Frobenius structure
A Frobenius structure in a monoidal category is pair of comonoid
(A, , ) and monoid (A, , ) satisfying Frobenius law:

=

If = , called dagger Frobenius structure.

Example in FHilb: copying an orthogonal basis

ei ej

ejδijei

ej
=

ejei

ei

ei

δijej
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Frobenius structure
A Frobenius structure in a monoidal category is pair of comonoid
(A, , ) and monoid (A, , ) satisfying Frobenius law:

=

If = , called dagger Frobenius structure.

Example in FHilb: matrix algebra

eij ekl

emlδjk
∑

m eim

ekm
=

ekleij

∑
m eim

emj

δjkeml
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Frobenius structure
A Frobenius structure in a monoidal category is pair of comonoid
(A, , ) and monoid (A, , ) satisfying Frobenius law:

=

If = , called dagger Frobenius structure.

Example in FHilb: group algebra of finite group

g h

kh
∑

k gk−1

k−1
=

hg

∑
k gk

k

k−1h
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Frobenius structure
A Frobenius structure in a monoidal category is pair of comonoid
(A, , ) and monoid (A, , ) satisfying Frobenius law:

=

If = , called dagger Frobenius structure.

Example in Rel: set of morphisms of groupoid

g h

lk

x
⇐⇒ h ◦ l−1 = g−1 ◦ k ⇐⇒

hg

k

x

l
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Frobenius structure
A Frobenius structure in a monoidal category is pair of comonoid
(A, , ) and monoid (A, , ) satisfying Frobenius law:

=

If = , called dagger Frobenius structure.

Example in any compact dagger category: pair of pants

=
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Frobenius law
Lemma: Any Frobenius structure satisfies:

= =

Proof: Suffices to prove one of the equalities

= = =

= =
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Classical structures

A classical structure is a special and commutative Frobenius structure

= =

Examples:
I in FHilb: copying orthonormal basis is classical structure
I in FHilb: matrix algebra only special when trivial
I in FHilb: group algebra only special when trivial
I in Rel: groupoid always special
I in general: pair of pants only special when trivial
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Symmetry
Frobenius structure in monoidal category is symmetric when:

=

In braided monoidal category, this is equivalent to:

=

Examples:
I in FHilb: copying orthonormal basis is symmetric
I in FHilb: matrix algebra symmetric as Tr(ab) = Tr(ba)
I in FHilb: group algebra symmetric as inverses are two-sided
I in Rel: groupoid symmetric as inverses are two-sided
I in general: pair of pants symmetric
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Self-duality
Proposition: If (A, , , , ) Frobenius structure in monoidal
category, then A a A is self-dual

A A

=

A A

A A

=
A A
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Self-duality
Proposition: If (A, , , , ) Frobenius structure in monoidal
category, then A a A is self-dual

A A

=

A A

A A

=
A A

Proof: Snake equation:

= = =
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Self-duality
Proposition: If (A, , , , ) Frobenius structure in monoidal
category, then A a A is self-dual

A A

=

A A

A A

=
A A

Conversely, monoid (A, , ) forms Frobenius structure with some
comonoid (A, , ) iff allows nondegenerate form: map : A I with

part of self-duality A a A.
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Normal forms
Two ways to think about graphical calculus diagram:

I representing morphism; shorthand for e.g. linear map
I entity in its own right; can be manipulated by replacing parts

Theorem: if (A, , , , ) is Frobenius structure,
any connected morphism A⊗m A⊗n built out of finitely many pieces
, , , and id, using ◦ and ⊗ equals normal form
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Normal forms
Two ways to think about graphical calculus diagram:

I representing morphism; shorthand for e.g. linear map
I entity in its own right; can be manipulated by replacing parts

Theorem: if (A, , , , ) is special commutative Frobenius structure,
any connected morphism A⊗m A⊗n built out of finitely many pieces
, , , and id and , using ◦ and ⊗ equals normal form
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Involutive monoids
Map-state duality: f 7→ f † is involution on pair of pants A = H∗ ⊗ H

I anti-linear, so A A∗; but A∗ = (H∗ ⊗ H)∗ ' H∗ ⊗ H∗∗ ' A
I morphism to opposite monoid: (g ◦ f)† = f † ◦ g†

If (A,m, u) monoid, A a A∗ dagger dual, then (A∗,m∗, u∗) monoid too

Monoid on object A with dagger dual is involutive monoid when
equipped with monoid morphism A i A∗ satisfying i∗ ◦ i = idA

A

A

i

i

=

A

A

B

A

f

iB

=

A

B

iA

f

Morphisms A f B of involutive monoids satisfy iB ◦ f = f∗ ◦ iA
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Frobenius law and dagger
set of maps A A closed under composition

and dagger

=

involutive

submonoid of pair of pants A∗ ⊗ A.

Theorem: Let A a A∗ be duals. Monoid (A, , ) is dagger Frobenius
structure iff Cayley embedding is involutive monoid morphism with

i =

“Frobenius law = coherence law between dagger and closure”

I matrix algebra in FHilb: involution Mn M∗n is f 7→ f †

I groupoid in Rel: involution G G∗ is g ∼ g−1

I pair of pants in general: involution invisible( )
∗
=



†

=
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Classification

Corollary: Dagger Frobenius structures in FHilb are C*-algebras
Proof: Correspond to A ⊆Mn closed under addition, scalar
multiplication, matrix multiplication, adjoint, and contain identity

Corollary: Classical structures in FHilb are orthonormal bases
Proof: If Mk1 ⊕ · · · ⊕Mkn commutive must have k1 = · · · = kn = 1

Theorem: Special dagger Frobenius structures in Rel are groupoids

f

g

f

idcod(f)

iddom(f)

=

f idcod(f)

f

iddom(f) f

Corollary: Classical structures in Rel are abelian groupoids
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Phases
A state I a A of a Frobenius structure is a phase when

a

a

= =

a

a

Proposition: phases of dagger Frobenius structure in (braided)
monoidal dagger category form (abelian) phase group

I phase group of C*-algebra is its unitary group
I phase group of orthonormal basis are powers of circle group
I phase group of a group is group itself
I phase group of pair or pants are unitary endomorphisms

=

f

f

=
f

f
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Phases
A state I a A of a Frobenius structure is a phase when

a

a

= =

a

a

Proposition: phases of dagger Frobenius structure in (braided)
monoidal dagger category form (abelian) phase group

I phase group of C*-algebra is its unitary group
I phase group of orthonormal basis are powers of circle group
I phase group of a group is group itself
I phase group of pair or pants are unitary endomorphisms
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f
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=
f

f
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Part V

Complementarity
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Complementarity

Symmetric dagger Frobenius structures and on the same object
in a braided monoidal dagger category are complementary when

= =

Black and white not obviously interchangeable. But by symmetry

= =
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Complementarity: examples

Proposition: classical structures in FHilb are complementary iff they
copy mutually unbiased orthonormal bases

|〈di |ej〉|2 =
1

dim(H)

Lemma: if A dagger self-dual in braided monoidal dagger category,
then pair of pants and twisted knickers on A⊗ A are complementary

A

A

A A A

A

A A

A

AA A

A

A

A A

Symmetric Frobenius structure A gives complementary pair on A⊗ A
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Complementarity in Rel

Example: Let G and H be nontrivial groups, A = G× H,
I G totally disconnected groupoid: objects G and G(g, g) = H;
I H totally disconnected groupoid: objects H and H(h, h) = G.

Then G and H give rise to complementary Frobenius structures.

Proposition: equivalent for groupoids G,H on set A of morphisms:
I give complementary Frobenius structures
I map A Ob(G)× Ob(H), a 7→

(
domG(a),domH(a)

)
is bijective
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Complementarity and dagger
Proposition: symmetric dagger Frobenius structures in braided
category complementary iff the following morphism is unitary

Proof:

= =
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Complementarity and dagger
Proposition: symmetric dagger Frobenius structures in braided
category complementary iff the following morphism is unitary

Proof:

= =
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Oracles

An oracle is a morphism A f B together with Frobenius structures
on A and on B such that the following morphism is unitary:

A

A

B

B

f

Example: Extension of function between mutually unbiased bases

Proposition: Let (A, ), (B, ) and (B, ) be symmetric dagger
Frobenius structures. Self-conjugate comonoid morphism
(A, )

f
(B, ) is oracle (A, ) (B, ) iff complements
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Deutsch–Josza algorithm

Let function {1, . . . ,n} f {0,1} be promised balanced or constant.
Extend to oracle Cn C2; latter with computational and X bases.

Write b =
(

1/
√

2
−1/
√

2

)
.

b

C2

Prepare initial states

Apply a unitary map

Measure the first system

1/
√

n

1/
√

n

f

History is certain when f constant, impossible when f balanced.
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Bialgebras

Complementarity related to Hopf algebras

= = = =

Strong complementarity = complementarity + bialgebra

(in FHilb and Rel: complementary 6

only if commutative
bialgebra)

Theorem: the strongly complementary classical structures in FHilb
are the group algebras
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Part VI

Complete positivity
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Morphisms of Frobenius structures

Lemma: If a morphism between Frobenius structures preserves
(co)multiplication and (co)unit, then it is an isomorphism.

Proof:

B

B

f

f

=

B

B

f

=

B

B

=

B

B
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Mixed states

State I m A of dagger Frobenius structure is mixed when

A

A

m
=

A

A

X

√
m

√
m

Examples:
I In FHilb: mixed state of C*-algebra is positive element a = b∗b
I In Rel: mixed state of groupoid is inverse-closed set of arrows
I In general: mixed state of pair of pants is name of positive map
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Completely positive maps

If (A, , ) and (B, , ) are dagger Frobenius structures, a morphism
A f B is completely positive when I (f⊗id)◦m B⊗ E is mixed state for
mixed state I m A⊗ E and any dagger Frobenius structure (E, , ).

Examples:
I Unitary evolution A∗ ⊗ A u∗⊗u A∗ ⊗ A for unitary A u A

I Preparation of mixed state: completely positive map I A∗ ⊗ A
I Measurement: completely positive map A∗ ⊗ A Cn in FHilb is

precisely positive-operator valued measure
I Completely positive maps G H in Rel respect inverses:

g ∼ h implies g−1 ∼ h−1 and iddom(g) ∼ iddom(h)
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The CP condition
Lemma: Assume f ⊗ idE ≥ 0 =⇒ f ≥ 0.
If A f B is completely positive, then CP condition holds

B

A B

A

f = X

A B

A B

√
f

√
f

Proof: Let E = A⊗ A∗ be pair of pants, define I m A⊗ E , as is
(f ⊗ idE) ◦m.
Theorem (Stinespring): If A f B satisfies CP condition,
then it is completely positive.
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B

A B

A

f = X

A B
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√
f

√
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√
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A A

A A

A

A

=

A A

A A

A

A
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AA A
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Then m is a mixed state, as is (f ⊗ idE) ◦m. Hence:

B

A B

A

A

A

f =

B

B A
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B A

B

A
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The CP construction
Theorem: If C is a monoidal dagger category,
there is a new category CP[C]:

I objects in CP[C] are special dagger Frobenius structures in C
I morphisms in CP[C] are morphisms in C satisfying CP condition

I tensor product in CP[C] is as in C
I dagger in CP[C] is as in C
I dual in CP[C] is (A, , )∗ := (A, , ) with : I A∗ ⊗ A

C

A C

A

g ◦ f =

A

CA

C

f

g

= X Y

A

A

C

C

√
f

√
f

√
g

√
g
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The CP construction
Theorem: If C is a braided monoidal dagger category,
there is a new monoidal category CP[C]:

I objects in CP[C] are special dagger Frobenius structures in C
I morphisms in CP[C] are morphisms in C satisfying CP condition
I tensor product in CP[C] is as in C

I dagger in CP[C] is as in C
I dual in CP[C] is (A, , )∗ := (A, , ) with : I A∗ ⊗ A

A

A

B

B C D

DC

f g =

DA

A D

B

B C

C

√
f

√
f

√
g

√
g
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The CP construction
Theorem: If C is a symmetric monoidal dagger category,
there is a new symmetric monoidal category CP[C]:

I objects in CP[C] are special dagger Frobenius structures in C
I morphisms in CP[C] are morphisms in C satisfying CP condition
I tensor product in CP[C] is as in C

I dagger in CP[C] is as in C
I dual in CP[C] is (A, , )∗ := (A, , ) with : I A∗ ⊗ A

A B

B AA B

B A

=

A B B A

A B B A
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Theorem: If C is a symmetric monoidal dagger category,
there is a new symmetric monoidal dagger category CP[C]:

I objects in CP[C] are special dagger Frobenius structures in C
I morphisms in CP[C] are morphisms in C satisfying CP condition
I tensor product in CP[C] is as in C
I dagger in CP[C] is as in C

I dual in CP[C] is (A, , )∗ := (A, , ) with : I A∗ ⊗ A

B

AB

A

f =

A

A

B

B

f =

A

A

B

B

f =

B

AB

A

f =

B A

B A

√
f

√
f

(duality between Schrödinger and Heisenberg pictures)
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The CP construction
Theorem: If C is a symmetric monoidal dagger category,
there is a new compact dagger category CP[C]:

I objects in CP[C] are special dagger Frobenius structures in C
I morphisms in CP[C] are morphisms in C satisfying CP condition
I tensor product in CP[C] is as in C
I dagger in CP[C] is as in C
I dual in CP[C] is (A, , )∗ := (A, , ) with : I A∗ ⊗ A

= = =
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The CP construction
Theorem: If C is a symmetric monoidal dagger category,
there is a new dagger category CP[C]:

I objects in CP[C] are special dagger Frobenius structures in C
I morphisms in CP[C] are morphisms in C satisfying CP condition
I tensor product in CP[C] is as in C
I dagger in CP[C] is as in C
I dual in CP[C] is (A, , )∗ := (A, , ) with : I A∗ ⊗ A

Examples:
I CP[FHilb] = fin-dim C*-algebras and completely positive maps
I CP[Rel] = groupoids and inverse-respecting relations
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Classical and quantum structures

Consider full subcategory CPc[C] of classical structures.
Lemma: CPc[FHilb] ' stochastic matrices (rows sum to 1)

Consider full subcategory CPq[C] of pairs of pants.
(Normalizable Frobenius structures are isomorphic to special ones.)
Example: CPq[FHilb] ' Hilbert spaces and completely positive maps

Proposition: Assuming all objects have positive dimension
There is functor P : C CPq[C] given by P(A) = (A∗ ⊗ A, , )
and P(f) = f∗ ⊗ f that preserves tensor products and daggers

Lemma (“P is faithful up to phase”):
I if P(f) = P(g), then s • f = t • g and s† • s = t† • t for some I s,t I
I if s • f = t • g and s† • s = idI = t† • t, then P(f) = P(g)
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Environment
An environment structure for compact dagger category Cpure is

I a compact dagger category C of which Cpure is subcategory

I for each object A in Cpure, a discarding map : A I in C

Example: Cpure has environment structure in CPq[Cpure].
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Environment
An environment structure for compact dagger category Cpure is

I a compact dagger category C of which Cpure is subcategory
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Environment
An environment structure with purification for category Cpure is

I a compact dagger category C of which Cpure is subcategory

I for each object A in Cpure, a discarding map : A I in C with...

Example: Cpure has environment structure in CPq[Cpure].

Theorem: If Cpure has environment structure with purification,
there is isomorphism F : CPq[Cpure] C with F(A) = A on objects,
F(f ⊗ g) = F(f)⊗ F(g) on morphisms, that preserves daggers
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Decoherence
A decoherence structure for Cpure is

I an environment structure C with discarding maps : A I in C

I for each special dagger Frobenius structure (A, , ) in Cpure,
an object A in C and a measuring map : A A in C, with:
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Decoherence
A decoherence structure with purification for Cpure is

I an environment structure C with discarding maps : A I in C

I for each special dagger Frobenius structure (A, , ) in Cpure,
an object A in C and a measuring map : A A in C, with ...

Example: Cpure has decoherence structure in CP[Cpure] with

(A∗ ⊗ A, , ) = (A, , ) and measuring map

Theorem: If Cpure has decoherence structure with purification,
there is isomorphism F : CP[Cpure] C that preserves daggers
and satisfies F(f ⊗ g) = F(f)⊗ F(g)
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Teleportation
Theorem: If (A, , ) and (A, , ) complementary dagger Frobenius
in braided monoidal dagger category C, and commutative,
then in CP[C]:

A

input

output

preparation

measurement

correction

classical communication

A

=

A

A

Alice

Bob

I mixed states
I arbitrary systems
I ‘classical communication’ only in sense of ‘copied’ by Frobenius

structures, one of which noncommutative
I ‘two bits’ of classical communication: two channels used, maybe

more than two copyable states
I tensor product and composition only
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Summary

I Monoidal categories
scalars, sound and complete graphical calculus

I Dual objects
entanglement, teleportation, encrypted communication

I Monoids
no cloning

I Frobenius structures
normal form, classical structures, observables, classification

I Complementarity
Deutsch-Josza

I Completely positive maps
mixed states, axiomatization, teleportation
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