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Boolean algebra: definition

A Boolean algebra is a set B with:
I a distinguished element 1 ∈ B;
I a unary operations ¬ : B → B;
I a binary operation ∧ : B ×B → B;

such that for all x, y, z ∈ B:
I x ∧ (y ∧ z) = (x ∧ y) ∧ z;
I x ∧ y = y ∧ x;
I x ∧ 1 = x;
I ¬x = ¬(x ∧ ¬y) ∧ ¬(x ∧ y)

I x ∧ x = x;
I x ∧ ¬x = ¬1 = ¬1 ∧ x; (¬x is a complement of x)
I x ∧ ¬y = ¬1⇔ x ∧ y = x (0 = ¬1 is the least element)

“Sets of independent postulates for the algebra of logic”
Transactions of the American Mathematical Society 5:288–309, 1904
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Boole’s algebra
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Boolean algebra 6= Boole’s algebra
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Boolean algebra = Jevon’s algebra
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Boole’s algebra isn’t Boolean algebra
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Piecewise Boolean algebra: definition

A piecewise Boolean algebra is a set B with:
I a reflexive symmetric binary relation � ⊆ B2;
I a (partial) binary operation ∧ : � → B;
I a (total) function ¬ : B → B;
I an element 1 ∈ B with {1} ×B ⊆ �;

such that every S ⊆ B with S2 ⊆ � is contained in a T ⊆ B with
T 2 ⊆ � where (T,∧,¬, 1) is a Boolean algebra.
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Piecewise Boolean algebra: example

•

•

• • • • •

• • • • •
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Piecewise Boolean algebra � quantum logic
((((((((hhhhhhhhSubsets of a set
Subspaces of a Hilbert space

However: fine when within orthogonal basis (Boolean subalgebra)

“The logic of quantum mechanics”
Annals of Mathematics 37:823–843, 1936
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Piecewise Boolean algebra � quantum logic

((((((((hhhhhhhhSubsets of a set
Subspaces of a Hilbert space
An orthomodular lattice is:

I A partial order set (B,≤) with min 0 and max 1
I that has greatest lower bounds x ∧ y;
I an operation ⊥ : B → B such that
I x⊥⊥ = x, and x ≤ y implies y⊥ ≤ x⊥;
I x ∨ x⊥ = 1;
I if x ≤ y then y = x ∨ (y ∧ x⊥)

However: fine when within orthogonal basis (Boolean subalgebra)

“The logic of quantum mechanics”
Annals of Mathematics 37:823–843, 1936

10 / 33



Piecewise Boolean algebra � quantum logic

((((((((hhhhhhhhSubsets of a set
Subspaces of a Hilbert space
An orthomodular lattice is not distributive:
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basis (Boolean subalgebra)
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“The logic of quantum mechanics”
Annals of Mathematics 37:823–843, 1936

10 / 33



Piecewise Boolean algebra � quantum logic

((((((((hhhhhhhhSubsets of a set
Subspaces of a Hilbert space

tea

coffee
biscuit

nothing

However: fine when within orthogonal basis (Boolean subalgebra)

“The logic of quantum mechanics”
Annals of Mathematics 37:823–843, 1936

10 / 33



Boole’s algebra 6= Boolean algebra

Quantum measurement is probabilistic
(state α|0〉+ β|1〉 gives outcome 0 with probability |α|2)

A hidden variable for a state is an assignment of a consistent
outcome to any possible measurement
(homomorphism of piecewise Boolean algebras to {0, 1})

Theorem: hidden variables cannot exist
(if dimension n ≥ 3, there is no homomorphism
Sub(Cn)→ {0, 1} of piecewise Boolean algebras.)

“The problem of hidden variables in quantum mechanics”
Journal of Mathematics and Mechanics 17:59–87, 1967
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Piecewise Boolean domains: definition

Given a piecewise Boolean algebra B,
its piecewise Boolean domain Sub(B)

is the collection of its Boolean subalgebras,
partially ordered by inclusion.
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Piecewise Boolean domains: example

Example: if B is

•

•

• • • • •

• • • • •

then Sub(B) is
• •

• • • • •

•
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Piecewise Boolean domains: theorems

Can reconstruct B from Sub(B)
(B ∼= colim Sub(B))
(the parts determine the whole)

Sub(B) determines B
(B ∼= B′ ⇐⇒ Sub(B) ∼= Sub(B′))
(shape of parts determines whole)

“Noncommutativity as a colimit”
Applied Categorical Structures 20(4):393–414, 2012

“Subalgebras of orthomodular lattices”
Order 28:549–563, 2011
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Piecewise Boolean domains: as complex as graphs
State space = Hilbert space
Sharp measurements = subspaces (projections)
Jointly measurable = overlapping or orthogonal (commute)

(In)compatibilities form graph:

p q

r s

t

Theorem: Any graph can be realised as sharp measurements on
some Hilbert space.

Corollary: Any piecewise Boolean algebra can be realised on some
Hilbert space.

“Quantum theory realises all joint measurability graphs”
Physical Review A 89(3):032121, 2014

“Quantum probability – quantum logic”
Springer Lecture Notes in Physics 321, 1989
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Piecewise Boolean domains: as complex as hypergraphs
State space = Hilbert space
Unsharp measurements = positive operator-valued measures
Jointly measurable = marginals of larger POVM

(In)compatibilities now form

abstract simplicial complex:

p q

r s

t

Theorem: Any abstract simplicial complex can be realised as
POVMs on a Hilbert space.

Corollary: Any interval effect algebra can be realised on some
Hilbert space.

“All joint measurability structures are quantum realizable”
Physical Review A 89(5):052126, 2014

“Hilbert space effect-representations of effect algebras”
Reports on Mathematical Physics 70(3):283–290, 2012
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Piecewise Boolean domains: partition lattices
What does Sub(B) look like when B is an honest Boolean algebra?

Boolean algebras are dually equivalent to Stone spaces
Sub(B) becomes a partition lattice

1
12

1/2

1/2/3

1/23 13/2 12/3

123

1/2/3/4

12/3/4 13/2/4 14/2/3 1/23/4 1/3/24 1/2/34

123/4 124/3 13/24 12/34 14/23 134/2 1/234

1234

Idea: every downset in Sub(B) is a partition lattice (upside-down)!
• •

• • • • •

•
“The theory of representations of Boolean algebras”
Transactions of the American Mathematical Society 40:37–111, 1936

“On the lattice of subalgebras of a Boolean algebra”
Proceedings of the American Mathematical Society 36: 87–92, 1972
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Piecewise Boolean domains: characterisation
Lemma: Piecewise Boolean domain D gives functor F : D → Bool
that preserves subobjects; “F is a piecewise Boolean diagram”.
(Sub(F (x)) ∼= ↓x, and B = colim F )

• •

• • • • •

•

F7−→

Theorem: A partial order is a piecewise Boolean domain iff:
I it has directed suprema;
I it has nonempty infima;
I each element is a supremum of compact ones;
I each downset is cogeometric with a modular atom;
I each element of height n ≤ 3 covers

(
n+1

2
)

elements.
I a set of atoms has a sup iff each finite subset does

“Piecewise Boolean algebras and their domains”
ICALP Proceedings, Lecture Notes in Computer Science 8573:208–219, 2014
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Orthoalgebras
This is almost a piecewise Boolean domain D:

0

a b c d e f a

¬a ¬b ¬c ¬d ¬e ¬f ¬a

1

That is of the form D = Sub(B) for this B:

0

a b c d e f a

abc cde efa

But B is not a piecewise Boolean algebra: {a, c, e} not in one block
19 / 33



Piecewise Boolean domains: higher order

Scott topology turns directed suprema into topological convergence
(closed sets = downsets closed under directed suprema)
Lawson topology refines it from dcpos to continuous lattices
(basic open sets = Scott open minus upset of finite set)

If B0 is piecewise Boolean algebra, Sub(B0) is algebraic dcpo and
complete semilattice, hence a Stone space under Lawson topology!

It then gives rise to a new Boolean algebra B1. Repeat: B2, B3, . . .
(Can handle domains of Boolean algebras with Boolean algebra!)

“Continuous lattices and domains”
Cambridge University Press, 2003

“Domains of commutative C*-subalgebras”
Logic in Computer Science, ACM/IEEE Proceedings 450–461, 2015
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Piecewise Boolean diagrams: topos
I Consider “contextual sets” over piecewise Boolean algebra B

assignment of set S(C) to each C ∈ Sub(B)
such that C ⊆ D implies S(C) ⊆ S(D)

I They form a topos T (B)!
category whose objects behave a lot like sets
in particular, it has a logic of its own!

I There is one canonical contextual set B
B(C) = C

I T (B) believes that B is an honest Boolean algebra!

“A topos for algebraic quantum theory”
Communications in Mathematical Physics 291:63–110, 2009
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Operator algebra
C*-algebras: main examples of piecewise Boolean algebras.

Example: C(X) = {f : X → C continuous}
Theorem: Every commutative -algebra is of this form.

Example: B(H) = {f : H → H continuous linear}
Theorem: Every -algebra embeds into one of this form.

piecewise Boolean algebras -algebras
projections

⊥

“Normierte Ringe”
Matematicheskii Sbornik 9(51):3–24, 1941

“On the imbedding of normed rings into operators on a Hilbert space”
Mathematicheskii Sbornik 12(2):197–217, 1943

“Active lattices determine AW*-algebras”
Journal of Mathematical Analysis and Applications 416:289–313, 2014
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Operator algebra: same trick
A (piecewise) -algebra A gives a dcpo Sub(A).

Can characterize partial orders Sub(A) arising this way.
Involves action of unitary group U(A).

If Sub(A) ∼= Sub(B), then A ∼= B as Jordan algebras.
Except C2 and M2.

If Sub(A) ∼= Sub(B) preserves U(A)× Sub(A)→ Sub(A),
then A ∼= B as -algebras.
Needs orientation!

“Characterizations of categories of commutative C*-subalgebras”
Communications in Mathematical Physics 331(1):215–238, 2014

“Isomorphisms of ordered structures of abelian C*-subalgebras of C*-algebras”
Journal of Mathematical Analysis and Applications, 383:391–399, 2011

“Active lattices determine AW*-algebras”
Journal of Mathematical Analysis and Applications 416:289–313, 2014
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Involves action of unitary group U(A).

If Sub(A) ∼= Sub(B), then A ∼= B as Jordan algebras.
Except C2 and M2.

If Sub(A) ∼= Sub(B) preserves U(A)× Sub(A)→ Sub(A),
then A ∼= B as -algebras.
Needs orientation!

“Characterizations of categories of commutative C*-subalgebras”
Communications in Mathematical Physics 331(1):215–238, 2014

“Isomorphisms of ordered structures of abelian C*-subalgebras of C*-algebras”
Journal of Mathematical Analysis and Applications, 383:391–399, 2011
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Scatteredness

A space is scattered if every nonempty subset has an isolated point.
Precisely when each continuous f : X → R has countable image.
Example: {0, 1, 1

2 ,
1
3 ,

1
4 ,

1
5 , . . .}.

A -algebra A is scattered if X is scattered for all C(X) ∈ Sub(A).
Precisely when each self-adjoint a = a∗ ∈ A has countable spectrum.
Example: K(H) + 1H

Nonexample: C(Cantor) is approximately finite-dimensional
Nonexample: C([0, 1]) is not even approximately finite-dimensional

“Inductive Limits of Finite Dimensional C*-algebras”
Transactions of the American Mathematical Society 171:195–235, 1972

“Scattered C*-algebras”
Mathematica Scandinavica 41:308–314, 1977
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Scatteredness
Theorem: the following are equivalent for a -algebra A:

I Sub(A) is algebraic

I Sub(A) is continuous

I Sub(A) is meet-continuous

I Sub(A) is quasi-algebraic

I Sub(A) is quasi-continuous

I Sub(A) is atomistic

I A is scattered

“A characterization of scattered C*-algebras and application to crossed products”
Journal of Operator Theory 63(2):417–424, 2010

“Domains of commutative C*-subalgebras”
Logic in Computer Science, ACM/IEEE Proceedings 450–461, 2015
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Back to quantum logic

For -algebra C(X), projections are clopen subsets of X.
Can characterize in order-theoretic terms: (if |X| ≥ 3)

closed subsets of X = ideals of C(X) = elements of Sub(C(X))
clopen subsets of X = ‘good’ pairs of elements of Sub(C(X))

Each projection of -algebra A is in some maximal C ∈ Sub(A).
Can recover poset of projections from Sub(A)! (if dim(Z(A)) ≥ 3)

“Compactifications and functions spaces”
Georgia Institute of Technology, 1996

“C(A)”
Radboud University Nijmegen, 2015
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Back to piecewise Boolean domains

Sub(B) determines B
(B ∼= B′ ⇐⇒ Sub(B) ∼= Sub(B′))
(shape of parts determines whole)
� Caveat: not 1-1 correspondence!

If B Boolean algebra, then Sub(B) partition lattice
� Caveat: not constructive, not categorical

“Subalgebras of orthomodular lattices”
Order 28:549–563, 2011

“On the lattice of subalgebras of a Boolean algebra”
Proceedings of the American Mathematical Society 36: 87–92, 1972
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Different kinds of atoms

If B =

∅

1 2 3 4

12 13 14 23 24 34

123 124 134 234

1234

, then Sub(B) = · · ·
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Different kinds of atoms

∅

1234

∅

B

1 234
∅

B

2 134
∅

B

3 124
∅

B

4 123
∅

B

12 34
∅

B

13 24
∅

B

14 23

∅

B

1 2 34

234 134 12

∅

B

1 3 24

234 124 13

∅

B

1 4 23

234 123 34

∅

B

2 3 14

134 124 23

∅

B

2 4 13

134 123 24

∅

B

3 4 12

124 123 34

B
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Principal pairs
Reconstruct pairs (x,¬x) of B:

I principal ideal subalgebra of B is of the form

0

1

x

¬x

I they are the elements p of Sub(B) that are
dual modular and (p ∨m) ∧ n = p ∨ (m ∧ n) for n ≥ p
atom or relative complement a ∧m = a, a ∨m = B for atom a

Reconstruct elements x of B:

I principal pairs of B are (p, q) with atomic meet
p

pq

q

0

1

x
¬x

Theorem: B ' Pp(Sub(B)) for Boolean algebra B of size ≥ 4
D ' Sub(Pp(D)) for Boolean domain D of size ≥ 2
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Directions

If B is

0

1

v w x y z

¬v ¬w ¬x ¬y ¬z

or

0

1

v w x

¬v ¬w ¬x

0

1

¬x y z

x ¬y ¬z

then Sub(B) is

• •

• • • • •

•

A direction for a

piecewise

Boolean domain is map d : D → D2 with
I

I

I if m,n cover a, d(m) = (a,m), d(n) = (n, a), then m ∨ n exists
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A direction for a

piecewise

Boolean domain is map d : D → D2 with
I d(1) = (p, q) is a principal pair
I d(m) = (p ∧m, q ∧m)
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0

1

¬x y z

x ¬y ¬z

then Sub(B) is

• •

• • • • •

•

A direction for a piecewise Boolean domain is map d : D → D2 with
I if a ≤ m then d(m) is a principal pair with meet a in m

I d(m) =
∨
{(m,m) ∧ f(n) | a ≤ n}

I if m,n cover a, d(m) = (a,m), d(n) = (n, a), then m ∨ n exists
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Orthoalgebras

Almost theorem:
I B ' Dir(Sub(B)) for orthoalgebra B of size ≥ 4
I D ' Sub(Dir(D)) for piecewise orthodomain D of size ≥ 2

Problems:
I subalgebras of a Boolean orthoalgebra need not be Boolean
I intersection of two Boolean subalgebras need not be Boolean
I two Boolean subalgebras might have no meet
I two Boolean subalgebras might have upper bound but no join

“Boolean subalgebras of orthoalgebras”
Ongoing work
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Conclusion

I Should consider piecewise Boolean algebras

I Give rise to domain of honest Boolean subalgebras

I Complicated structure, but can characterize

I Shape of parts enough to determine whole

I Same trick works for scattered operator algebras

I Direction needed for almost categorical equivalence
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Question

Theorem: any Boolean algebra is isomorphic to
the global sections of a sheaf on its Stone space

Question: is any piecewise Boolean algebra isomorphic to
the global sections of a sheaf on its Stone space?

Would give logic of contextuality

“The theory of representations of Boolean algebras”
Transactions of the American Mathematical Society 40:37–111, 1936

“Representations of algebras by continuous sections”
Bulletin of the American Mathematical Society 78(3):291–373, 1972

“The sheaf-theoretic structure of nonlocality and contextuality”
New Journal of Physics 13:113036, 2011

“?”
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