Dagger Category Theory

Chris Heunen and Martti Karvonen

informatics

Outline

- What are dagger categories?
- What are dagger monads?
- What are dagger limits?
- What are evils about daggers?

Dagger

A dagger is contravariant involutive identity-on-objects endofunctor

Dagger

A dagger is contravariant involutive identity-on-objects endofunctor

Terminology: adjoints in Hilbert spaces $\langle f(x) \mid y\rangle_{Y}=\left\langle x \mid f^{\dagger}(y)\right\rangle_{X}$
If $S(X)$ is poset of closed subspaces, get $S(f): S(X)^{\text {op }} \rightarrow S(Y)$
Theorem [Palmquist 74]: $S(f)$ and $S\left(f^{\dagger}\right)$ adjoint, and up to scalar any adjunction of this form

Examples

- Any groupoid

Examples

- Any groupoid
- Hilbert spaces and continuous linear maps
- Sets and relations
- Finite sets and doubly stochastic matrices

Examples

- Any groupoid
- Hilbert spaces and continuous linear maps
- Sets and relations
- Finite sets and doubly stochastic matrices
- Dagger categories and contravariant adjunctions

Examples

- Any groupoid
- Hilbert spaces and continuous linear maps
- Sets and relations
- Finite sets and doubly stochastic matrices
- Dagger categories and contravariant adjunctions
- Inverse category: any f has unique g with $f=g f g$ and $g=f g f$
- Sets and partial injections

Examples

- Any groupoid
- Hilbert spaces and continuous linear maps
- Sets and relations
- Finite sets and doubly stochastic matrices
- Dagger categories and contravariant adjunctions
- Inverse category: any f has unique g with $f=g f g$ and $g=f g f$
- Sets and partial injections
- Free dagger category: same objects, $[X \leftarrow \cdot \rightarrow \cdots \leftarrow \cdot \rightarrow Y]_{\sim}$

Examples

- Any groupoid
- Hilbert spaces and continuous linear maps
- Sets and relations
- Finite sets and doubly stochastic matrices
- Dagger categories and contravariant adjunctions
- Inverse category: any f has unique g with $f=g f g$ and $g=f g f$
- Sets and partial injections
- Free dagger category: same objects, $[X \leftarrow \cdot \rightarrow \cdots \leftarrow \cdot \rightarrow Y]_{\sim}$
- Cofree dagger category: same objects, pairs $X \leftrightarrows Y$

Examples

- Any groupoid
- Hilbert spaces and continuous linear maps
- Sets and relations
- Finite sets and doubly stochastic matrices
- Dagger categories and contravariant adjunctions
- Inverse category: any f has unique g with $f=g f g$ and $g=f g f$
- Sets and partial injections
- Free dagger category: same objects, $[X \leftarrow \cdot \rightarrow \cdots \leftarrow \cdot \rightarrow Y]_{\sim}$
- Cofree dagger category: same objects, pairs $X \leftrightarrows Y$
- Dagger functors and natural transformations
- Unitary representations and intertwiners

Way of the dagger

Category theory

isomorphism
idempotent
functor
natural transform
monoidal structure

Dagger category theory
unitary $f^{-1}=f^{\dagger}$
projection $f=f^{\dagger} \circ f$
dagger functor $F\left(f^{\dagger}\right)=F(f)^{\dagger}$
natural transformation $\left(\alpha^{\dagger}\right)_{X}=\left(\alpha_{X}\right)^{\dagger}$
monoidal dagger structure $(f \otimes g)^{\dagger}=f^{\dagger} \otimes g^{\dagger}$

Way of the dagger

Category theory

isomorphism
idempotent
functor
natural transform monoidal structure monad
limit

Dagger category theory
unitary $f^{-1}=f^{\dagger}$
projection $f=f^{\dagger} \circ f$
dagger functor $F\left(f^{\dagger}\right)=F(f)^{\dagger}$
natural transformation $\left(\alpha^{\dagger}\right)_{X}=\left(\alpha_{X}\right)^{\dagger}$
monoidal dagger structure $(f \otimes g)^{\dagger}=f^{\dagger} \otimes g^{\dagger}$
?
?

Way of the dagger

Category theory

isomorphism
idempotent
functor
natural transform monoidal structure monad
limit
isomorphism
idempotent
functor
natural transform
monoidal structure

Dagger category theory
unitary $f^{-1}=f^{\dagger}$
projection $f=f^{\dagger} \circ f$
dagger functor $F\left(f^{\dagger}\right)=F(f)^{\dagger}$
natural transformation $\left(\alpha^{\dagger}\right)_{X}=\left(\alpha_{X}\right)^{\dagger}$
monoidal dagger structure $(f \otimes g)^{\dagger}=f^{\dagger} \otimes g^{\dagger}$
?
?
isn't this trivially trivial?

Formal dagger category theory

- Daggers not preserved under equivalence

Formal dagger category theory

- Daggers not preserved under equivalence
- Dagger categories, dagger functors, and natural transformations: not just 2-category, but dagger 2-category 2-cells have dagger, so should have unitary coherence laws

Formal dagger category theory

- Daggers not preserved under equivalence
- Dagger categories, dagger functors, and natural transformations: not just 2-category, but dagger 2-category 2-cells have dagger, so should have unitary coherence laws
- Principle: if $P \Longrightarrow Q$ for categories, then $P^{\dagger}+$ laws $\Longrightarrow Q^{\dagger}+$ laws for dagger categories

Dagger monads

- Want $\frac{\text { dagger monads }}{\text { dagger adjunctions }}=\frac{\text { monads }}{\text { adjunctions }}$

Dagger monads

- Want $\frac{\text { dagger monads }}{\text { dagger adjunctions }}=\frac{\text { monads }}{\text { adjunctions }}$

- Dagger adjunction is adjunction in DagCat: no left/right

Dagger monads

- Want $\frac{\text { dagger monads }}{\text { dagger adjunctions }}=\frac{\text { monads }}{\text { adjunctions }}$

- Dagger adjunction is adjunction in DagCat: no left/right
- Dagger monad should at least be dagger functor: so comonad
- What interaction between monad and comonad?

Dagger monads

- A dagger monad is a monad that is a dagger functor satisfying

$$
\mu T \circ T \mu^{\dagger}=T \mu \circ \mu^{\dagger} T
$$

Dagger monads

- A dagger monad is a monad that is a dagger functor satisfying

$$
\mu T \circ T \mu^{\dagger}=T \mu \circ \mu^{\dagger} T
$$

- If M is dagger Frobenius monoid, then $-\otimes M$ is dagger monad

Dagger monads

- A dagger monad is a monad that is a dagger functor satisfying

$$
\mu T \circ T \mu^{\dagger}=T \mu \circ \mu^{\dagger} T
$$

- If M is dagger Frobenius monoid, then $-\otimes M$ is dagger monad
- Dagger adjunctions induce dagger monads

Kleisli algebras

- If T is dagger monad on \mathbf{C}, then $\mathrm{Kl}(T)$ has dagger

$$
(A \xrightarrow{f} T(B)) \mapsto\left(B \xrightarrow{\eta} T(B) \xrightarrow{\mu^{\dagger}} T^{2}(B) \xrightarrow{T\left(f^{\dagger}\right)} T(A)\right)
$$

that commutes with $\mathbf{C} \rightarrow \mathrm{Kl}(T)$ and $\mathrm{Kl}(T) \rightarrow \mathbf{C}$

Kleisli algebras

- If T is dagger monad on \mathbf{C}, then $\mathrm{Kl}(T)$ has dagger

$$
(A \xrightarrow{f} T(B)) \mapsto\left(B \xrightarrow{\eta} T(B) \xrightarrow{\mu^{\dagger}} T^{2}(B) \xrightarrow{T\left(f^{\dagger}\right)} T(A)\right)
$$

that commutes with $\mathbf{C} \rightarrow \mathrm{Kl}(T)$ and $\mathrm{Kl}(T) \rightarrow \mathbf{C}$

- Frobenius law for monoid M is Frobenius law for monad $-\otimes M$

Eilenberg-Moore algebras

- Frobenius-Eilenberg-Moore algebra is algebra $T(A) \xrightarrow{a} A$ with

$$
\begin{aligned}
& T(A) \xrightarrow{T(a)^{\dagger}} T^{2}(A) \\
& \mu^{\dagger} \downarrow \\
& T^{2}(A) \xrightarrow[T(a)]{ }{ }^{\downarrow} \xrightarrow{\downarrow}(A)
\end{aligned}
$$

Gives full subcategory $\operatorname{FEM}(T)$

Eilenberg-Moore algebras

- Frobenius-Eilenberg-Moore algebra is algebra $T(A) \xrightarrow{a} A$ with

$$
\begin{aligned}
& T(A) \xrightarrow{T(a)^{\dagger}} T^{2}(A) \\
& \mu^{\dagger} \downarrow \\
& T^{2}(A) \xrightarrow[T(a)]{ }
\end{aligned}
$$

Gives full subcategory $\operatorname{FEM}(T)$

- Largest full subcategory with $\mathrm{Kl}(T)$ and $\operatorname{EM}(T) \rightarrow \mathbf{C}$ dagger

Eilenberg-Moore algebras

- Frobenius-Eilenberg-Moore algebra is algebra $T(A) \xrightarrow{a} A$ with

$$
\begin{aligned}
& T(A) \xrightarrow{T(a)^{\dagger}} T^{2}(A) \\
& \mu^{\dagger} \downarrow \\
& T^{2}(A) \xrightarrow[T(a)]{ } \underset{\downarrow}{\downarrow} T(A)
\end{aligned}
$$

Gives full subcategory $\operatorname{FEM}(T)$

- Largest full subcategory with $\mathrm{Kl}(T)$ and $\operatorname{EM}(T) \rightarrow \mathbf{C}$ dagger
- There are EM-algebras that are not FEM

Dagger monads

Theorem
If F, G are dagger adjoint, there are unique dagger functors with

J is full, K is full and faithful, and $J K$ is the canonical inclusion

Dagger monads

Theorem
If F, G are dagger adjoint, there are unique dagger functors with

J is full, K is full and faithful, and $J K$ is the canonical inclusion Proof.

- EM-algebra (A, a) is FEM iff a^{\dagger} is morphism $(A, a) \rightarrow\left(T A, \mu_{A}\right)$

Dagger monads

Theorem
If F, G are dagger adjoint, there are unique dagger functors with

J is full, K is full and faithful, and $J K$ is the canonical inclusion Proof.

- EM-algebra (A, a) is FEM iff a^{\dagger} is morphism $(A, a) \rightarrow\left(T A, \mu_{A}\right)$
- $(A, a) \in \operatorname{Im}(J)$ associative $\left.\Longrightarrow\left(T A, \mu_{A}\right) \xrightarrow{a}(A, a)\right) \in \operatorname{Im}(J)$ $\Longrightarrow a^{\dagger} \in \operatorname{Im}(J)$
$\Longrightarrow(A, a) \in \operatorname{FEM}(G F)$

Strength

- Monad T is strong when coherent natural $A \otimes T(B) \rightarrow T(A \otimes B)$
- monoids in $\mathbf{C} \simeq$ monads on \mathbf{C}

$$
\begin{array}{rll}
M & \mapsto & -\otimes M \\
T(I) & \hookrightarrow & T
\end{array}
$$

Strength

- Monad T is strong when coherent natural $A \otimes T(B) \rightarrow T(A \otimes B)$
- monoids in $\mathbf{C} \simeq$ monads on \mathbf{C}

$$
\begin{array}{rll}
M & \mapsto & -\otimes M \\
T(I) & \hookrightarrow & T
\end{array}
$$

- Dagger monad is strong when strength is unitary
- Frobenius monoids in $\mathbf{C} \simeq$ strong dagger monads on \mathbf{C}

$$
\begin{array}{rll}
M & \mapsto & -\otimes M \\
T(I) & \hookrightarrow & T
\end{array}
$$

Strength

- Monad T is strong when coherent natural $A \otimes T(B) \rightarrow T(A \otimes B)$
- monoids in $\mathbf{C} \simeq$ monads on \mathbf{C}

$$
\begin{array}{rll}
M & \mapsto & -\otimes M \\
T(I) & \hookrightarrow & T
\end{array}
$$

- Dagger monad is strong when strength is unitary
- Frobenius monoids in $\mathbf{C} \simeq$ strong dagger monads on \mathbf{C}

$$
\begin{array}{rll}
M & \mapsto & -\otimes M \\
T(I) & \hookrightarrow & T
\end{array}
$$

- $[\mathbb{Z}, \mathbf{F H i l b}] \rightarrow[\mathbb{N}$, FHilb $]$ has dagger adjoint $f \mapsto \operatorname{Im}(f)$ but induced monad decreases dimension so not strong

Strength

- Monad T is strong when coherent natural $A \otimes T(B) \rightarrow T(A \otimes B)$
- monoids in $\mathbf{C} \simeq$ monads on \mathbf{C}

$$
\begin{array}{rll}
M & \mapsto & -\otimes M \\
T(I) & \hookrightarrow & T
\end{array}
$$

- Dagger monad is strong when strength is unitary
- Frobenius monoids in $\mathbf{C} \simeq$ strong dagger monads on \mathbf{C}

$$
\begin{array}{rll}
M & \mapsto & -\otimes M \\
T(I) & \hookrightarrow & T
\end{array}
$$

- $[\mathbb{Z}$, FHilb $] \rightarrow[\mathbb{N}$, FHilb $]$ has dagger adjoint $f \mapsto \operatorname{Im}(f)$ but induced monad decreases dimension so not strong
- If T commutative, then $\mathrm{Kl}(T)$ dagger symmetric monoidal

Dagger limits

Should:

- be unique up to unique unitary
- be defined canonically (without e.g. enrichment)
- generalize dagger biproducts and dagger equalisers
- connect to dagger adjunctions and dagger Kan extensions

Unique up to unitary

- Two limits $\left(L, l_{A}\right),\left(M, m_{A}\right)$ of same diagram are iso $L \xrightarrow{f} M$. Now f^{-1} is iso of limits $M \rightarrow L$. But f^{\dagger} is iso of colimits.

Unique up to unitary

- Two limits $\left(L, l_{A}\right),\left(M, m_{A}\right)$ of same diagram are iso $L \xrightarrow{f} M$. Now f^{-1} is iso of limits $M \rightarrow L$. But f^{\dagger} is iso of colimits.
- Two limits are unitarily iso iff

commutes for all A, B

Unique up to unitary

- Two limits $\left(L, l_{A}\right),\left(M, m_{A}\right)$ of same diagram are iso $L \xrightarrow{f} M$. Now f^{-1} is iso of limits $M \rightarrow L$. But f^{\dagger} is iso of colimits.
- Two limits are unitarily iso iff

commutes for all A, B
- Right notion of dagger limit means fixing maps $A \rightarrow L \rightarrow B$.

Dagger-shaped limits

Definition
The dagger limit of dagger functor $D: \mathbf{J} \rightarrow \mathbf{C}$ is a limit $\left(L, l_{J}\right)$ with

- each $l_{J} \circ l_{J}^{\dagger}$ is projection;
- $l_{K} \circ l_{J}=0$ when $\mathbf{J}(J, K)=\emptyset$.

Dagger-shaped limits

Definition
The dagger limit of dagger functor $D: \mathbf{J} \rightarrow \mathbf{C}$ is a limit $\left(L, l_{J}\right)$ with

- each $l_{J} \circ l_{J}^{\dagger}$ is projection;
- $l_{K} \circ l_{J}=0$ when $\mathbf{J}(J, K)=\emptyset$.

Theorem
\mathbf{C} has all \mathbf{J}-shaped limits $\Longleftrightarrow \Delta: \mathbf{C} \rightarrow[\mathbf{J}, \mathbf{C}]$ has dagger adjoint and $\varepsilon \circ \varepsilon^{\dagger}$ idempotent

Dagger-shaped limits

Definition
The dagger limit of dagger functor $D: \mathbf{J} \rightarrow \mathbf{C}$ is a limit $\left(L, l_{J}\right)$ with

- each $l_{J} \circ l_{J}^{\dagger}$ is projection;
- $l_{K} \circ l_{J}=0$ when $\mathbf{J}(J, K)=\emptyset$.

Theorem
\mathbf{C} has all \mathbf{J}-shaped limits $\Longleftrightarrow \Delta: \mathbf{C} \rightarrow[\mathbf{J}, \mathbf{C}]$ has dagger adjoint and $\varepsilon \circ \varepsilon^{\dagger}$ idempotent

Proof.
$l_{J} \circ l_{J}^{\dagger}$ is largest projection compatible with D

Dagger-shaped limits

Definition

The dagger limit of dagger functor $D: \mathbf{J} \rightarrow \mathbf{C}$ is a limit $\left(L, l_{J}\right)$ with

- each $l_{J} \circ l_{J}^{\dagger}$ is projection;
- $l_{K} \circ l_{J}=0$ when $\mathbf{J}(J, K)=\emptyset$.

Theorem
\mathbf{C} has all \mathbf{J}-shaped limits $\Longleftrightarrow \Delta: \mathbf{C} \rightarrow[\mathbf{J}, \mathbf{C}]$ has dagger adjoint and $\varepsilon \circ \varepsilon^{\dagger}$ idempotent
\Longleftrightarrow dagger $D: \mathbf{J} \rightarrow \mathbf{C}$ have compatible dagger Kan extension along $\mathbf{J} \rightarrow \mathbf{1}$ with $\varepsilon \circ \varepsilon^{\dagger}$ idempotent

Proof.
$l_{J} \circ l_{J}^{\dagger}$ is largest projection compatible with D

Constructing dagger-shaped limits

- Dagger product: product $J \stackrel{p_{J}}{\longleftrightarrow} J \times K \xrightarrow{p_{K}} K$ with $p_{K}^{\dagger} p_{J}=\delta_{J K}$
- Dagger equaliser: equaliser $E \xrightarrow{e} J \rightrightarrows K$ with $e^{\dagger} e=\mathrm{id}$

Constructing dagger-shaped limits

- Dagger product: product $J \stackrel{p_{J}}{\longleftrightarrow} J \times K \xrightarrow{p_{K}} K$ with $p_{K}^{\dagger} p_{J}=\delta_{J K}$
- Dagger equaliser: equaliser $E \xrightarrow{e} J \rightrightarrows K$ with $e^{\dagger} e=\mathrm{id}$
- Dagger stabiliser: $\mathbf{J}=\operatorname{Free}(\cdot \longrightarrow \cdot)$

Constructing dagger-shaped limits

- Dagger product: product $J \stackrel{p_{J}}{\longleftrightarrow} J \times K \xrightarrow{p_{K}} K$ with $p_{K}^{\dagger} p_{J}=\delta_{J K}$
- Dagger equaliser: equaliser $E \xrightarrow{e} J \rightrightarrows K$ with $e^{\dagger} e=\mathrm{id}$
- Dagger stabiliser: $\mathbf{J}=$ Free $(\cdot \longrightarrow \cdot)$
- Dagger projection: infimum of projections $p_{j}: J \rightarrow J$ splits

Constructing dagger-shaped limits

- Dagger product: product $J \stackrel{p_{J}}{\longleftrightarrow} J \times K \xrightarrow{p_{K}} K$ with $p_{K}^{\dagger} p_{J}=\delta_{J K}$
- Dagger equaliser: equaliser $E \xrightarrow{e} J \rightrightarrows K$ with $e^{\dagger} e=\mathrm{id}$
- Dagger stabiliser: $\mathbf{J}=$ Free $(\cdot \longrightarrow \cdot)$
- Dagger projection: infimum of projections $p_{j}: J \rightarrow J$ splits
- C has dagger limits of dagger shapes with κ components
 \mathbf{C} has dagger limits of
- dagger products of size κ
- dagger stabilisers
- dagger projections

Non-dagger shapes?

What to do with loops?

Non-dagger shapes?

What to do with loops?

$\ldots \xrightarrow{2} \mathbb{C} \xrightarrow{2} \mathbb{C} \xrightarrow{2} \mathbb{C} \xrightarrow{2} \cdots$

Daggers are evil

- No dagger on FVect respects forgetful FHilb \rightarrow FVect. Proof: equip vector space with two inner products; then $v \mapsto v$ not unitary but maps to identity

Daggers are evil

- No dagger on FVect respects forgetful FHilb \rightarrow FVect. Proof: equip vector space with two inner products; then $v \mapsto v$ not unitary but maps to identity
- Dagger equivalence is equivalence in DagCat unitary (co)unit
- If $\mathbf{C} \in \mathbf{D a g C a t}$, when does equivalence $\mathbf{C} \underset{G}{\stackrel{F}{\longleftrightarrow}} \mathbf{D}$ in $\mathbf{C a t}$ lift to dagger equivalence? Clearly need η and $G \varepsilon$ unitary.

Daggers are evil ... but they ain't all that bad

- No dagger on FVect respects forgetful FHilb \rightarrow FVect. Proof: equip vector space with two inner products; then $v \mapsto v$ not unitary but maps to identity
- Dagger equivalence is equivalence in DagCat unitary (co)unit
- If $\mathbf{C} \in \mathbf{D a g C a t}$, when does equivalence $\mathbf{C} \underset{G}{\stackrel{F}{\rightleftarrows}} \mathbf{D}$ in $\mathbf{C a t}$ lift to dagger equivalence? Clearly need η and $G \varepsilon$ unitary.

Theorem: this is sufficient.

Daggers are evil ... but they ain't all that bad

- No dagger on FVect respects forgetful FHilb \rightarrow FVect. Proof: equip vector space with two inner products; then $v \mapsto v$ not unitary but maps to identity
- Dagger equivalence is equivalence in DagCat unitary (co)unit
- If $\mathbf{C} \in \mathbf{D a g C a t}$, when does equivalence $\mathbf{C} \underset{G}{\stackrel{F}{\rightleftarrows}} \mathbf{D}$ in $\mathbf{C a t}$ lift to dagger equivalence? Clearly need η and $G \varepsilon$ unitary.

Theorem: this is sufficient.

- Theorem: If there is unitary $G F A \rightarrow A$ for each A, can replace F, G with isomorphic functors that lift to dagger equivalence.

Conclusion

- DagCat is not just a 2-category so dagger category theory nontrivial
- Dagger monads $=$ monad + dagger functor + Frobenius law
- Dagger-shaped limits $=$ limit + dagger + idempotent Dagger limits = ?
- Dagger categories can't be that evil

