## Dagger Category Theory

#### Chris Heunen and Martti Karvonen



## Outline

▶ What are dagger categories?

▶ What are dagger monads?

▶ What are dagger limits?

▶ What are evils about daggers?

### Dagger

A dagger is contravariant involutive identity-on-objects endofunctor

$$X \xrightarrow{f = f^{\dagger \dagger}} Y$$

#### Dagger

A dagger is contravariant involutive identity-on-objects endofunctor

$$X \xleftarrow{f = f^{\dagger \dagger}}{f^{\dagger}} Y$$

Terminology: adjoints in Hilbert spaces  $\langle f(x) | y \rangle_Y = \langle x | f^{\dagger}(y) \rangle_X$ If S(X) is poset of closed subspaces, get  $S(f) \colon S(X)^{\text{op}} \to S(Y)$ **Theorem** [Palmquist 74]: S(f) and  $S(f^{\dagger})$  adjoint, and up to scalar any adjunction of this form

#### Any groupoid

- Any groupoid
- ▶ Hilbert spaces and continuous linear maps
- Sets and relations
- ▶ Finite sets and doubly stochastic matrices

- Any groupoid
- ▶ Hilbert spaces and continuous linear maps
- Sets and relations
- ▶ Finite sets and doubly stochastic matrices
- ▶ Dagger categories and contravariant adjunctions

- Any groupoid
- ▶ Hilbert spaces and continuous linear maps
- Sets and relations
- ▶ Finite sets and doubly stochastic matrices
- ▶ Dagger categories and contravariant adjunctions
- Inverse category: any f has unique g with f = gfg and g = fgf
- Sets and partial injections

- Any groupoid
- ▶ Hilbert spaces and continuous linear maps
- Sets and relations
- ▶ Finite sets and doubly stochastic matrices
- ▶ Dagger categories and contravariant adjunctions
- Inverse category: any f has unique g with f = gfg and g = fgf
- Sets and partial injections
- ▶ Free dagger category: same objects,  $[X \leftarrow \cdot \rightarrow \cdots \leftarrow \cdot \rightarrow Y]_{\sim}$

- Any groupoid
- ▶ Hilbert spaces and continuous linear maps
- Sets and relations
- ▶ Finite sets and doubly stochastic matrices
- ▶ Dagger categories and contravariant adjunctions
- Inverse category: any f has unique g with f = gfg and g = fgf
- Sets and partial injections
- ▶ Free dagger category: same objects,  $[X \leftarrow \cdot \rightarrow \cdots \leftarrow \cdot \rightarrow Y]_{\sim}$
- Cofree dagger category: same objects, pairs  $X \leftrightarrows Y$

- Any groupoid
- ▶ Hilbert spaces and continuous linear maps
- Sets and relations
- ▶ Finite sets and doubly stochastic matrices
- ▶ Dagger categories and contravariant adjunctions
- Inverse category: any f has unique g with f = gfg and g = fgf
- Sets and partial injections
- ▶ Free dagger category: same objects,  $[X \leftarrow \cdot \rightarrow \cdots \leftarrow \cdot \rightarrow Y]_{\sim}$
- Cofree dagger category: same objects, pairs  $X \leftrightarrows Y$
- ▶ Dagger functors and natural transformations
- Unitary representations and intertwiners

# Way of the dagger

| Category theory    | Dagger category theory                                                                |
|--------------------|---------------------------------------------------------------------------------------|
| isomorphism        | unitary $f^{-1} = f^{\dagger}$                                                        |
| idempotent         | projection $f = f^{\dagger} \circ f$                                                  |
| functor            | dagger functor $F(f^{\dagger}) = F(f)^{\dagger}$                                      |
| natural transform  | natural transformation $(\alpha^{\dagger})_X = (\alpha_X)^{\dagger}$                  |
| monoidal structure | monoidal dagger structure $(f \otimes g)^{\dagger} = f^{\dagger} \otimes g^{\dagger}$ |

# Way of the dagger

| Category theory    | Dagger category theory                                                                |
|--------------------|---------------------------------------------------------------------------------------|
| isomorphism        | unitary $f^{-1} = f^{\dagger}$                                                        |
| idempotent         | projection $f = f^{\dagger} \circ f$                                                  |
| functor            | dagger functor $F(f^{\dagger}) = F(f)^{\dagger}$                                      |
| natural transform  | natural transformation $(\alpha^{\dagger})_X = (\alpha_X)^{\dagger}$                  |
| monoidal structure | monoidal dagger structure $(f \otimes g)^{\dagger} = f^{\dagger} \otimes g^{\dagger}$ |
| monad              | ?                                                                                     |
| limit              | ?                                                                                     |

## Way of the dagger

-

| Category theory    | Dagger category theory                                                            |
|--------------------|-----------------------------------------------------------------------------------|
| isomorphism        | unitary $f^{-1} = f^{\dagger}$                                                    |
| idempotent         | projection $f = f^{\dagger} \circ f$                                              |
| functor            | dagger functor $F(f^{\dagger}) = F(f)^{\dagger}$                                  |
| natural transform  | natural transformation $(\alpha^{\dagger})_X = (\alpha_X)^{\dagger}$              |
| monoidal structure | monoidal dagger structure $(f\otimes g)^{\dagger}=f^{\dagger}\otimes g^{\dagger}$ |
| monad              | ?                                                                                 |
| limit              | ?                                                                                 |
|                    |                                                                                   |

isn't this trivially trivial?

Formal dagger category theory

▶ Daggers not preserved under equivalence

## Formal dagger category theory

- ▶ Daggers not preserved under equivalence
- Dagger categories, dagger functors, and natural transformations: not just 2-category, but dagger 2-category
  - 2-cells have dagger, so should have unitary coherence laws

## Formal dagger category theory

- ▶ Daggers not preserved under equivalence
- Dagger categories, dagger functors, and natural transformations: not just 2-category, but *dagger 2-category*
  - 2-cells have dagger, so should have unitary coherence laws
- ▶ Principle: if P ⇒ Q for categories, then P<sup>†</sup> + laws ⇒ Q<sup>†</sup> + laws for dagger categories

• Want  $\frac{\text{dagger monads}}{\text{dagger adjunctions}} = \frac{\text{monads}}{\text{adjunctions}}$ 



► Dagger adjunction is adjunction in **DagCat**: no left/right



- ► Dagger adjunction is adjunction in **DagCat**: no left/right
- ▶ Dagger monad should at least be dagger functor: so comonad
- ▶ What interaction between monad and comonad?

▶ A *dagger monad* is a monad that is a dagger functor satisfying



▶ A *dagger monad* is a monad that is a dagger functor satisfying

$$\mu T \circ T \mu^{\dagger} = T \mu \circ \mu^{\dagger} T$$

▶ If M is dagger Frobenius monoid, then  $- \otimes M$  is dagger monad

▶ A *dagger monad* is a monad that is a dagger functor satisfying

$$\mu T \circ T \mu^{\dagger} = T \mu \circ \mu^{\dagger} T$$

▶ If M is dagger Frobenius monoid, then  $- \otimes M$  is dagger monad

▶ Dagger adjunctions induce dagger monads

### Kleisli algebras

▶ If T is dagger monad on **C**, then Kl(T) has dagger

$$\left(A \xrightarrow{f} T(B)\right) \ \mapsto \ \left(B \xrightarrow{\eta} T(B) \xrightarrow{\mu^{\dagger}} T^2(B) \xrightarrow{T(f^{\dagger})} T(A)\right)$$

that commutes with  $\mathbf{C} \to \mathrm{Kl}(T)$  and  $\mathrm{Kl}(T) \to \mathbf{C}$ 

## Kleisli algebras

▶ If T is dagger monad on **C**, then Kl(T) has dagger

$$\left(A \xrightarrow{f} T(B)\right) \ \mapsto \ \left(B \xrightarrow{\eta} T(B) \xrightarrow{\mu^{\dagger}} T^{2}(B) \xrightarrow{T(f^{\dagger})} T(A)\right)$$

that commutes with  $\mathbf{C} \to \mathrm{Kl}(T)$  and  $\mathrm{Kl}(T) \to \mathbf{C}$ 

▶ Frobenius law for monoid M is Frobenius law for monad  $- \otimes M$ 



## Eilenberg-Moore algebras

▶ Frobenius-Eilenberg-Moore algebra is algebra  $T(A) \xrightarrow{a} A$  with

$$\begin{array}{c} T(A) \xrightarrow{T(a)^{\dagger}} T^{2}(A) \\ \mu^{\dagger} \downarrow & \downarrow \mu \\ T^{2}(A) \xrightarrow{T(a)} T(A) \end{array}$$

Gives full subcategory FEM(T)

## Eilenberg-Moore algebras

▶ Frobenius-Eilenberg-Moore algebra is algebra  $T(A) \xrightarrow{a} A$  with

$$\begin{array}{c} T(A) \xrightarrow{T(a)^{\dagger}} T^{2}(A) \\ \mu^{\dagger} \downarrow & \downarrow \mu \\ T^{2}(A) \xrightarrow{T(a)} T(A) \end{array}$$

Gives full subcategory FEM(T)

▶ Largest full subcategory with Kl(T) and  $EM(T) \rightarrow C$  dagger

## Eilenberg-Moore algebras

▶ Frobenius-Eilenberg-Moore algebra is algebra  $T(A) \xrightarrow{a} A$  with

$$T(A) \xrightarrow{T(a)^{\dagger}} T^{2}(A)$$
$$\mu^{\dagger} \downarrow \qquad \qquad \downarrow \mu$$
$$T^{2}(A) \xrightarrow{T(a)} T(A)$$

Gives full subcategory FEM(T)

- ▶ Largest full subcategory with Kl(T) and  $EM(T) \rightarrow C$  dagger
- ▶ There are EM-algebras that are not FEM

Theorem

If F, G are dagger adjoint, there are unique dagger functors with



J is full, K is full and faithful, and JK is the canonical inclusion

Theorem

If F, G are dagger adjoint, there are unique dagger functors with



J is full, K is full and faithful, and JK is the canonical inclusion Proof.

► EM-algebra (A, a) is FEM iff  $a^{\dagger}$  is morphism  $(A, a) \rightarrow (TA, \mu_A)$ 

Theorem

If F, G are dagger adjoint, there are unique dagger functors with



J is full, K is full and faithful, and JK is the canonical inclusion Proof.

- ► EM-algebra (A, a) is FEM iff  $a^{\dagger}$  is morphism  $(A, a) \to (TA, \mu_A)$
- ►  $(A, a) \in \operatorname{Im}(J)$  associative  $\implies (TA, \mu_A) \stackrel{a}{\to} (A, a)) \in \operatorname{Im}(J)$  $\implies a^{\dagger} \in \operatorname{Im}(J)$  $\implies (A, a) \in \operatorname{FEM}(GF)$

- Monad T is strong when coherent natural  $A \otimes T(B) \to T(A \otimes B)$
- monoids in  $\mathbf{C} \simeq \text{monads on } \mathbf{C}$

$$\begin{array}{cccc} M & \mapsto & -\otimes M \\ T(I) & \leftarrow & T \end{array}$$

- ▶ Monad T is strong when coherent natural  $A \otimes T(B) \to T(A \otimes B)$
- ▶ monoids in  $\mathbf{C} \simeq \text{monads on } \mathbf{C}$

$$\begin{array}{cccc} M & \mapsto & - \otimes M \\ T(I) & \leftarrow & T \end{array}$$

- ▶ Dagger monad is strong when strength is unitary
- ► Frobenius monoids in  $\mathbf{C} \simeq \text{strong dagger monads on } \mathbf{C}$   $M \mapsto - \otimes M$  $T(I) \leftrightarrow T$

- ▶ Monad T is strong when coherent natural  $A \otimes T(B) \to T(A \otimes B)$
- ▶ monoids in  $\mathbf{C} \simeq \text{monads on } \mathbf{C}$

$$\begin{array}{cccc} M & \mapsto & - \otimes M \\ T(I) & \leftrightarrow & T \end{array}$$

- ▶ Dagger monad is strong when strength is unitary
- ► Frobenius monoids in  $\mathbf{C} \simeq \text{strong dagger monads on } \mathbf{C}$   $M \mapsto - \otimes M$  $T(I) \leftrightarrow T$
- ▶  $[\mathbb{Z}, \mathbf{FHilb}] \rightarrow [\mathbb{N}, \mathbf{FHilb}]$  has dagger adjoint  $f \mapsto \text{Im}(f)$  but induced monad decreases dimension so not strong

- ▶ Monad T is strong when coherent natural  $A \otimes T(B) \to T(A \otimes B)$
- ▶ monoids in  $\mathbf{C} \simeq \text{monads on } \mathbf{C}$

$$\begin{array}{cccc} M & \mapsto & - \otimes M \\ T(I) & \leftarrow & T \end{array}$$

- ▶ Dagger monad is strong when strength is unitary
- ► Frobenius monoids in  $\mathbf{C} \simeq$  strong dagger monads on  $\mathbf{C}$   $M \mapsto -\otimes M$  $T(I) \leftrightarrow T$
- ▶  $[\mathbb{Z}, \mathbf{FHilb}] \rightarrow [\mathbb{N}, \mathbf{FHilb}]$  has dagger adjoint  $f \mapsto \text{Im}(f)$  but induced monad decreases dimension so not strong
- ▶ If T commutative, then Kl(T) dagger symmetric monoidal

## Dagger limits

Should:

- ▶ be unique up to unique unitary
- ▶ be defined canonically (without e.g. enrichment)
- ▶ generalize dagger biproducts and dagger equalisers
- ▶ connect to dagger adjunctions and dagger Kan extensions

### Unique up to unitary

▶ Two limits  $(L, l_A)$ ,  $(M, m_A)$  of same diagram are iso  $L \xrightarrow{f} M$ . Now  $f^{-1}$  is iso of limits  $M \to L$ . But  $f^{\dagger}$  is iso of colimits.

#### Unique up to unitary

- ▶ Two limits  $(L, l_A)$ ,  $(M, m_A)$  of same diagram are iso  $L \xrightarrow{f} M$ . Now  $f^{-1}$  is iso of limits  $M \to L$ . But  $f^{\dagger}$  is iso of colimits.
- ▶ Two limits are unitarily iso iff



commutes for all A, B

#### Unique up to unitary

- ▶ Two limits  $(L, l_A)$ ,  $(M, m_A)$  of same diagram are iso  $L \xrightarrow{f} M$ . Now  $f^{-1}$  is iso of limits  $M \to L$ . But  $f^{\dagger}$  is iso of colimits.
- ▶ Two limits are unitarily iso iff



commutes for all A, B

• Right notion of dagger limit means fixing maps  $A \to L \to B$ .

#### Definition

The *dagger limit* of dagger functor  $D: \mathbf{J} \to \mathbf{C}$  is a limit  $(L, l_J)$  with

- each  $l_J \circ l_J^{\dagger}$  is projection;
- $l_K \circ l_J = 0$  when  $\mathbf{J}(J, K) = \emptyset$ .

#### Definition

The *dagger limit* of dagger functor  $D: \mathbf{J} \to \mathbf{C}$  is a limit  $(L, l_J)$  with

- each  $l_J \circ l_J^{\dagger}$  is projection;
- $l_K \circ l_J = 0$  when  $\mathbf{J}(J, K) = \emptyset$ .

#### Theorem

**C** has all **J**-shaped limits  $\iff \Delta \colon \mathbf{C} \to [\mathbf{J}, \mathbf{C}]$  has dagger adjoint and  $\varepsilon \circ \varepsilon^{\dagger}$  idempotent

#### Definition

The *dagger limit* of dagger functor  $D: \mathbf{J} \to \mathbf{C}$  is a limit  $(L, l_J)$  with

- each  $l_J \circ l_J^{\dagger}$  is projection;
- $l_K \circ l_J = 0$  when  $\mathbf{J}(J, K) = \emptyset$ .

#### Theorem

**C** has all **J**-shaped limits  $\iff \Delta \colon \mathbf{C} \to [\mathbf{J}, \mathbf{C}]$  has dagger adjoint and  $\varepsilon \circ \varepsilon^{\dagger}$  idempotent

Proof.  $l_J \circ l_J^{\dagger}$  is largest projection compatible with D

#### Definition

The *dagger limit* of dagger functor  $D: \mathbf{J} \to \mathbf{C}$  is a limit  $(L, l_J)$  with

- each  $l_J \circ l_J^{\dagger}$  is projection;
- $l_K \circ l_J = 0$  when  $\mathbf{J}(J, K) = \emptyset$ .

#### Theorem

Proof.  $l_J \circ l_J^{\dagger}$  is largest projection compatible with D

• Dagger product: product  $J \xleftarrow{p_J} J \times K \xrightarrow{p_K} K$  with  $p_K^{\dagger} p_J = \delta_{JK}$ 

• Dagger equaliser: equaliser  $E \xrightarrow{e} J \rightrightarrows K$  with  $e^{\dagger}e = \mathrm{id}$ 

- ► Dagger product: product  $J \xleftarrow{p_J} J \times K \xrightarrow{p_K} K$  with  $p_K^{\dagger} p_J = \delta_{JK}$
- ▶ Dagger equaliser: equaliser  $E \xrightarrow{e} J \rightrightarrows K$  with  $e^{\dagger}e = id$
- Dagger stabiliser:  $\mathbf{J} = \operatorname{Free}( \cdot \Longrightarrow \cdot )$

- Dagger product: product  $J \stackrel{p_J}{\longleftarrow} J \times K \stackrel{p_K}{\longrightarrow} K$  with  $p_K^{\dagger} p_J = \delta_{JK}$
- ▶ Dagger equaliser: equaliser  $E \xrightarrow{e} J \rightrightarrows K$  with  $e^{\dagger}e = id$
- Dagger stabiliser:  $\mathbf{J} = \operatorname{Free}( \cdot \Longrightarrow \cdot )$
- ▶ Dagger projection: infimum of projections  $p_j: J \to J$  splits

- ► Dagger product: product  $J \xleftarrow{p_J} J \times K \xrightarrow{p_K} K$  with  $p_K^{\dagger} p_J = \delta_{JK}$
- Dagger equaliser: equaliser  $E \xrightarrow{e} J \rightrightarrows K$  with  $e^{\dagger}e = \mathrm{id}$
- Dagger stabiliser:  $\mathbf{J} = \operatorname{Free}( \cdot \Longrightarrow \cdot )$
- ▶ Dagger projection: infimum of projections  $p_j: J \to J$  splits
- C has dagger limits of dagger shapes with κ components C has dagger limits of
  - $\blacktriangleright$  dagger products of size  $\kappa$
  - dagger stabilisers
  - dagger projections

## Non-dagger shapes?

What to do with loops?



#### Non-dagger shapes?

What to do with loops?





### Daggers are evil

► No dagger on FVect respects forgetful FHilb → FVect. Proof: equip vector space with two inner products; then v → v not unitary but maps to identity

### Daggers are evil

- ► No dagger on FVect respects forgetful FHilb → FVect. Proof: equip vector space with two inner products; then v → v not unitary but maps to identity
- ► Dagger equivalence is equivalence in **DagCat** unitary (co)unit
- ► If  $\mathbf{C} \in \mathbf{DagCat}$ , when does equivalence  $\mathbf{C} \xleftarrow{F}{G} \mathbf{D}$  in  $\mathbf{Cat}$  lift to dagger equivalence? Clearly need  $\eta$  and  $G\varepsilon$  unitary.

Daggers are evil ... but they ain't all that bad

- ▶ No dagger on **FVect** respects forgetful **FHilb**  $\rightarrow$  **FVect**. Proof: equip vector space with two inner products; then  $v \mapsto v$  not unitary but maps to identity
- ► Dagger equivalence is equivalence in **DagCat** unitary (co)unit
- ► If  $\mathbf{C} \in \mathbf{DagCat}$ , when does equivalence  $\mathbf{C} \xleftarrow{F}{G} \mathbf{D}$  in  $\mathbf{Cat}$  lift to dagger equivalence? Clearly need  $\eta$  and  $G\varepsilon$  unitary.

Theorem: this is sufficient.

Daggers are evil ... but they ain't all that bad

- ▶ No dagger on **FVect** respects forgetful **FHilb**  $\rightarrow$  **FVect**. Proof: equip vector space with two inner products; then  $v \mapsto v$  not unitary but maps to identity
- ► Dagger equivalence is equivalence in **DagCat** unitary (co)unit
- ► If  $\mathbf{C} \in \mathbf{DagCat}$ , when does equivalence  $\mathbf{C} \xleftarrow{F}{G} \mathbf{D}$  in  $\mathbf{Cat}$  lift to dagger equivalence? Clearly need  $\eta$  and  $G\varepsilon$  unitary.

Theorem: this is sufficient.

▶ Theorem: If there is unitary  $GFA \rightarrow A$  for each A, can replace F, G with isomorphic functors that lift to dagger equivalence.

### Conclusion

- DagCat is not just a 2-category so dagger category theory nontrivial
- $\blacktriangleright$  Dagger monads = monad + dagger functor + Frobenius law
- Dagger-shaped limits = limit + dagger + idempotent Dagger limits = ?
- ▶ Dagger categories can't be that evil