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Outline

I What are dagger categories?

I What are dagger monads?

I What are dagger limits?

I What are evils about daggers?
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Dagger

A dagger is contravariant involutive identity-on-objects endofunctor

X Y
f = f ††

f †

Terminology: adjoints in Hilbert spaces 〈f(x) | y〉Y = 〈x | f †(y)〉X

If S(X) is poset of closed subspaces, get S(f) : S(X)op → S(Y )

Theorem [Palmquist 74]: S(f) and S(f †) adjoint, and
up to scalar any adjunction of this form
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Examples

I Any groupoid

I Hilbert spaces and continuous linear maps

I Sets and relations

I Finite sets and doubly stochastic matrices

I Dagger categories and contravariant adjunctions

I Inverse category: any f has unique g with f = gfg and g = fgf

I Sets and partial injections

I Free dagger category: same objects, [X ← · → · · · ← · → Y ]∼

I Cofree dagger category: same objects, pairs X � Y

I Dagger functors and natural transformations

I Unitary representations and intertwiners
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Way of the dagger

Category theory Dagger category theory

isomorphism unitary f−1 = f †

idempotent projection f = f † ◦ f

functor dagger functor F (f †) = F (f)†

natural transform natural transformation (α†)X = (αX)†

monoidal structure monoidal dagger structure (f ⊗ g)† = f † ⊗ g†

monad ?

limit ?

isn’t this trivially trivial?
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Formal dagger category theory

I Daggers not preserved under equivalence

I Dagger categories, dagger functors, and natural
transformations: not just 2-category, but dagger 2-category

2-cells have dagger, so should have unitary coherence laws

I Principle: if P =⇒ Q for categories,
then P † + laws =⇒ Q† + laws for dagger categories
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Dagger monads

I Want
dagger monads

dagger adjunctions
=

monads

adjunctions

Kl(GF ) D FEM(GF )

C

GF

I Dagger adjunction is adjunction in DagCat: no left/right

I Dagger monad should at least be dagger functor: so comonad

I What interaction between monad and comonad?
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Dagger monads

I A dagger monad is a monad that is a dagger functor satisfying

µT ◦ Tµ† = Tµ ◦ µ†T

=

I If M is dagger Frobenius monoid, then −⊗M is dagger monad

I Dagger adjunctions induce dagger monads
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Kleisli algebras

I If T is dagger monad on C, then Kl(T ) has dagger(
A

f
T (B)

)
7→

(
B

η
T (B)

µ†
T 2(B)

T (f†)
T (A)

)
that commutes with C→ Kl(T ) and Kl(T )→ C

I Frobenius law for monoid M is Frobenius law for monad −⊗M

=
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Eilenberg-Moore algebras

I Frobenius-Eilenberg-Moore algebra is algebra T (A)
a→ A with

T (A) T 2(A)

T 2(A) T (A)

µ†

T (a)†

T (a)

µ

Gives full subcategory FEM(T )

I Largest full subcategory with Kl(T ) and EM(T )→ C dagger

I There are EM-algebras that are not FEM
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Dagger monads

Theorem
If F,G are dagger adjoint, there are unique dagger functors with

Kl(GF ) D FEM(GF )

C

K J

GF

J is full, K is full and faithful, and JK is the canonical inclusion

Proof.

I EM-algebra (A, a) is FEM iff a† is morphism (A, a)→ (TA, µA)

I (A, a) ∈ Im(J) associative =⇒
(
TA, µA)

a→ (A, a)
)
∈ Im(J)

=⇒ a† ∈ Im(J)
=⇒ (A, a) ∈ FEM(GF )
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Strength

I Monad T is strong when coherent natural A⊗T (B)→ T (A⊗B)

I monoids in C ' monads on C
M 7→ − ⊗M

T (I) ←[ T

I Dagger monad is strong when strength is unitary

I Frobenius monoids in C ' strong dagger monads on C
M 7→ − ⊗M

T (I) ←[ T

I [Z,FHilb]→ [N,FHilb] has dagger adjoint f 7→ Im(f)
but induced monad decreases dimension so not strong

I If T commutative, then Kl(T ) dagger symmetric monoidal
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Dagger limits

Should:

I be unique up to unique unitary

I be defined canonically (without e.g. enrichment)

I generalize dagger biproducts and dagger equalisers

I connect to dagger adjunctions and dagger Kan extensions

13 / 19



Unique up to unitary

I Two limits (L, lA), (M,mA) of same diagram are iso L
f→M .

Now f−1 is iso of limits M → L. But f † is iso of colimits.

I Two limits are unitarily iso iff

A L

M B

commutes for all A,B

I Right notion of dagger limit means fixing maps A→ L→ B.
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Dagger-shaped limits

Definition
The dagger limit of dagger functor D : J→ C is a limit (L, lJ) with

I each lJ ◦ l†J is projection;

I lK ◦ lJ = 0 when J(J,K) = ∅.

Theorem
C has all J-shaped limits ⇐⇒ ∆: C→ [J,C] has dagger adjoint

and ε ◦ ε† idempotent

⇐⇒ dagger D : J→ C have compatible
dagger Kan extension along J→ 1
with ε ◦ ε† idempotent

Proof.
lJ ◦ l†J is largest projection compatible with D

15 / 19
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Constructing dagger-shaped limits

I Dagger product: product J
pJ←− J ×K pK−→ K with p†KpJ = δJK

I Dagger equaliser: equaliser E J K
e

with e†e = id

I Dagger stabiliser: J = Free
(
· ·

)
I Dagger projection: infimum of projections pj : J → J splits

I C has dagger limits of dagger shapes with κ components ⇐⇒
C has dagger limits of

I dagger products of size κ
I dagger stabilisers
I dagger projections
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Non-dagger shapes?

What to do with loops?

C C

C

2

2
1
4

· · · C C C · · ·2 2 2 2
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Daggers are evil

... but they ain’t all that bad

I No dagger on FVect respects forgetful FHilb→ FVect.
Proof: equip vector space with two inner products;

then v 7→ v not unitary but maps to identity

I Dagger equivalence is equivalence in DagCat unitary (co)unit

I If C ∈ DagCat, when does equivalence C D
F

G
in Cat

lift to dagger equivalence? Clearly need η and Gε unitary.

Theorem: this is sufficient.

I Theorem: If there is unitary GFA→ A for each A, can replace
F,G with isomorphic functors that lift to dagger equivalence.

18 / 19
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Conclusion

I DagCat is not just a 2-category
so dagger category theory nontrivial

I Dagger monads = monad + dagger functor + Frobenius law

I Dagger-shaped limits = limit + dagger + idempotent
Dagger limits = ?

I Dagger categories can’t be that evil
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