Semantics for Probabilistic Programming

Chris Heunen

.
\ THE UNIVERSITY of EDINBURGH

- informatics

1/27

Bayes’ law

P(B | A)xP(A)

P(A|B) =)

2/27

Bayes’ law

P(B|A)xP(A)

P(A|B) =)

Bayesian reasoning:
» predict future, based on model and prior evidence
» infer causes, based on model and posterior evidence

» learn better model, based on prior model and evidence

2/27

Bayesian networks

SPRINKLER

0.4 0.8
0.01 0.99

—- =

GRASS WET
SPRINKLER RAIN‘ T F
F F 0.0 1.0
F T 0.8 0.2
T F 0.9 0.1
T T 0.99 0.01

3/27

Bayesian inference

Stan implements gradient-based Markov chain Monte Carlo (MCMC) algorithms for Bayesian inference, stochastic, gradient-based variational
Bayesian methods for approximate Bayesian inference, and gradient-based optimization for penalized maximum likelihood estimation.

About TensorFlow

TensorFlow™ is an open source software library for numerical
computation using data flow graphs. Nodes in the graph represent

TENSOIFIOW o irermatient anerations white the aranh sriaes ronrosant the

Infer,NET

5 Infer.NET is a framework for running Bayesian inference in graphical models.
infer.net

4/27

Bayesian data modelling

1. Develop probabilistic (generative) model
2. Design inference algorithm for model
3. Use algorithm to fit model to data

T T T T T T T T T T T 1
0.0 0.5 1.0 1.5 20 25 3.0 35 4.0 4.5 5.0 55 6.0

Example: find effect of drug on patient, given data

5/

/27

Linear regression

Generative model

s ~mnormal(0,2)

b~ normal(0,6)

f)=s-x+b

yi = normal(f(i),0.5)
fori=0...6

Conditioning
Yo = 0.6’},1 — 0'7’},2 — 1_2"}/3 = 3-2,}/4 = 6.8,}’5 = 8'27.)/6 =84

Predict f

/27

Linear regression

Try to find values for W and b that compute y_data = W * x_data + b
(We know that W should be 8.1 and b 0.3, but TensorFlow will

figure that out for us.)

W = tf.Variable(tf.random_uniform([1], -1.8, 1.0))

b = tf.variable(tf.zeros([1]))

y =W * x_data + b

Minimize the mean squared errors.

loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

Before starting, initialize the variables. We will 'run' this first.
init = tf.global_variables_initializer()

Launch the graph.
sess = tf.Session()
sess.run(init)

Fit the line.
for step in range(201):
sess.run(train)
if step % 26 == 0:
print(step, sess.run(W), sess.run(b))

7/27

Probabilistic programming

1. Pevelop-probabilistie {generative)-model Write a program
9 Desieninf loorithmf o]

2. Use built-in algorithm to fit model to data

8/27

Probabilistic programming

1. Pevelop-probabilistie {generative)-model Write a program
9 Desieninf loorithmf o]

2. Use built-in algorithm to fit model to data

P(A|B) x P(B|A) x P(A)
posterior likelihood x prior

functional programming + observe + sample

/27

Probabilistic programming

1. Pevelop-probabilistie {generative)-model Write a program
5 Desierinf loorithmf o]

2. Use built-in algorithm to fit model to data

P(A|B) x P(B|A) x P(A)
posterior likelihood x prior
functional programming + observe + sample

Church & is a universal probabilistic programming language, extending Scheme with probabilistic semantics, and is
well suited for describing infinite-dimensional stochastic processes and other recursively-defined generative processes

Venture & is an interactive, Turing-complete, higher-order probabilistic programming platform that aims to be
sufficiently expressive, extensible and efficient for general-purpose use. Its virtual machine supports multiple scalable,
reprogrammable inference strategies, plus two front-end languages: VenChurch and VentureScript.

Anglican @ is a portable Turing-complete research probabilistic programming language that includes particle MCMC
inference.

Linear regression

(defquery Bayesian-linear-regression

(let [f (let [s (sample (normal 0.0 3.0))
b (sample (normal 0.0 3.0))]

(observe
(observe
(observe
(observe
(observe

(predict

(fn [x]

(normal
(normal
(normal
(normal
(normal

:f £)))

(+

(f
(f
(f
(f
(f

(x s x) b)))]

1.0)
2.0)
3.0)
4.0)
5.0)

0.5)
0.5)
0.5)
0.5)
0.5)

2.5)
3.8)
4.5)
6.2)
8.0)

9/27

Linear regression

10/27

Linear regression

10

11/27

Measure theory

Impossible to sample 0.5 from standard normal distribution
But sample in interval (0, 1) with probability around 0.34

Q
o
gt

12/27

Measure theory

Impossible to sample 0.5 from standard normal distribution
But sample in interval (0, 1) with probability around 0.34

e

A measurable space is a set X with a family Yx of subsets
that is closed under countable unions and complements

A (probability) measure on X is a function p: ¥x — [0, o]
that satisfies p(> Un) = >_p(Uy) (and has p(X) = 1)

12/27

Measure theory

Impossible to sample 0.5 from standard normal distribution
But sample in interval (0, 1) with probability around 0.34

A measurable space is a set X with a family Yx of subsets
that is closed under countable unions and complements

A (probability) measure on X is a function p: ¥x — [0, o]
that satisfies p(> Un) = >_p(Uy) (and has p(X) = 1)

A function f: X — Y is measurable iff_l(U) cYxforUcecXy
A random variable is a measurable function R — X

12/27

5

e
%
b
X
< —
X ——mmmmmmm = y P
N g T
X =

“

Function types

13/27

Function types

13/27

Quasi-Borel spaces

A quasi-Borel space is a set X together with My C [R — X] satisfying:

14/27

Quasi-Borel spaces

A quasi-Borel space is a set X together with My C [R — X] satisfying:
» o € My if o: R — X is constant

14/27

Quasi-Borel spaces

A quasi-Borel space is a set X together with My C [R — X] satisfying:

» o € My if a: R — X is constant

» oy € My if « € My and ¢: R — R is measurable

14/27

Quasi-Borel spaces
A quasi-Borel space is a set X together with My C [R — X] satisfying:
» o € My if o: R — X is constant
» oy € My if « € My and ¢: R — R is measurable

» if R = ¢, Sn, with each set S, Borel, and a1, az, ... € My,
then 3 is in My, where 3(r) = an(r) forr € S,

case{Sn.an |n€N}\ 4

14/27

Quasi-Borel spaces
A quasi-Borel space is a set X together with My C [R — X] satisfying:

» o € My if o: R — X is constant
» aop € My if « € My and ¢: R — R is measurable

» if R = [#),cn Sn, with each set S, Borel, and a1, az, ... € My,
then 3 is in My, where 3(r) = an(r) forr € S,

A morphism is a function f: X — Y with f o « € My if « € My

14/27

Quasi-Borel spaces

A quasi-Borel space is a set X together with My C [R — X] satisfying:

» o € My if o: R — X is constant
» aop € My if « € My and ¢: R — R is measurable
» if R = [#),cn Sn, with each set S, Borel, and a1, az, ... € My,

then 3 is in My, where 3(r) = an(r) forr € S,

A morphism is a function f: X — Y with f o « € My if « € My

» has product types
» has sum types
» has function types!

My ={a: R = [X = Y]|&: R xX — Y morphism}

14/27

Example quasi-Borel spaces

T
Set L Qbs

X +——— (X, {case Sp.xn | Sn C X partition,x, € R})
X { (XvMX)

15/27

Example quasi-Borel spaces

T

Set L Qbs
X +——— (X, {case Sp.xn | Sn C X partition,x, € R})
X { (XvMX)
- T
Set {x"l'// Qbs
X X, {a: R - X})

X { (X’MX)

15/27

Example quasi-Borel spaces

T
Set L Qbs

X +——— (X, {case Sp.xn | Sn C X partition,x, € R})
X { (Xv MX)

Set T Qbs

X X, {a: R - X})
X | (X,Mx)

Y T
Meas _‘I‘// Qbs
(X, 3x) t (X,{a: R — X measurable})

(X,{U | Va € Myx: a~}(U) measurable}) —— i (X, Mx)

15/27

Distribution types

A measure on a quasi-Borel space (X, Mx) consists of

» o € My and

» a probability measure ; on R

Two measures are identified when they induce the same p(a~1(-))

16/27

Distribution types

A measure on a quasi-Borel space (X, Mx) consists of

» o € My and

» a probability measure ; on R

Two measures are identified when they induce the same p(a~1(-))

Gives monad

» P(X,Mx) = {(«, 1) measure on (X,Mx}/ ~
» return x = [Ar.x, u]. for arbitrary
» bind uses integral [fd(«,p) = [(foa)duiff: (X,Mx) —» R

for distribution types

16/27

Example: facts about distributions

Hlet x = sample(gauss(0.0,1.0))

in return (x<0) ﬂ = [sample(bern(0.5))]

17/27

Example: importance sampling

[sample(exp(2)) I

let x = sample(gauss(0,1)))
= | observe(exp-pdf(2,x)/gauss-pdf(0,1,x));
return x

18/27

Example: conjugate priors

in observe(bern(x), true); let x = sample(beta(2,1))

ulet x = sample(beta(l,1)) ﬂ uobserve(bern(O.S), true);ﬂ
return x in return x

//
/

y
beta(1,1) /" beta(2,1)

19/27

Linear regression

(defquery Bayesian-linear-regression

Prior:

(let [f (let [s (sample (normal 0.0 3.0))
b (sample (normal 0.0 3.0))]

Likelihood:

(observe
(observe
(observe
(observe
(observe

Posterior:

(predict

(fn [x] (+ (* s x) b)))]

(normal (f 1.0)
(normal (£ 2.0)
(normal (f 3.0)
(normal (f 4.0)
(normal (f 5.0)

:f £)))

0.5)
0.5)
0.5)
0.5)
0.5)

2.5)
3.8)
4.5)
6.2)
8.0)

20/27

Linear regression: prior
Define a prior measure on [R — R]

b (sample (normal 0.0 3.0))]

N(let [f (let [s (sample (normal 0.0 3.0)) ﬂ
(fn [x] (+ (* s x) B)))]
= [a, v ® V] € P([R — R])

where v is normal distribution, mean 0 and standard deviation 3,
and a: RxR — [R — R]is (s,b) — Arsr+b

10

21/27

Linear regression: likelihood

Define likelihood of observations (with some noise)

(observe (normal (f 1.0) 0.5) 2.5)
(observe (normal (f 2.0) 0.5) 3.8)
(observe (normal (f 3.0) 0.5) 4.5)
(observe (normal (f 4.0) 0.5) 6.2)
(observe (normal (f 5.0) 0.5) 8.0)

= d(f(1),2.5)-d(f(2),3.8) - d(f(3),4.5) - d(f(4),6.2) - d(f(5),8.0)

where f free variable of type [R — R], and d: R? — [0, cc) is density
of normal distribution with standard deviation 0.5

d(p,%) = \/2/mexp(—2(x — p)?)

22/27

Linear regression: Posterior
Normalise combined prior and likelihood

[(predict :f £)))] € P([R — R])

10

23/27

Piecewise linear regression: Posterior

Normalise combined prior and likelihood

[(predict :f £)))] € P([R — R])

24/27

Modular inference algorithms

An inference representation is monad (T, return, >=)

with TX — PX, sample: 1 — T [0, 1], score: [0,00) — T 1.

» Discrete weighted sampler (e.g. coin flip)

» Continuous sampler

25/27

Modular inference algorithms

An inference representation is monad (T, return, >=)
with TX — PX, sample: 1 — T [0, 1], score: [0,00) — T 1.

» Discrete weighted sampler (e.g. coin flip)

» Continuous sampler

An inference transformer respects meaning, sample, and score.

» List: T(—) — T(List(—))
» Continuous weighting: T(—) — T([0,00) x (—))
» Population: T(—) — T(List([0,00) * (—)))

25/27

Modular inference algorithms library

Sequential Monte Carlo: approximate distribution by
population of weighted samples (particles/suspended computations),
repeatedly applying fixed random process (particle filter)

instance Cond = Cond Trans (Sus) where
returng, 7 x = returng(Roturn x)

instance Sampling Monad (Sam) where aw=gyer [=fold(Ab.T.do{
return x = Return x teb;
a»=f =matchawith(instance Cond Trans (Pop) where match £ with {

Returnx — f(x) returnpop 7 = TetUIN(W o ListT)T Return x— f (x)
Sample k— P=popT PE(W e ListT)T | Yieldt —Yielde})}
liftpop T Tiftyy, 7y o liftLiserT
Sample (Ar. k(r) »= f)} pT W/(ListT 1) T a

sample = Sample Ar. (Return r) tmapp,,; = tMapyyiser 1) © MAPLigeT T liftsus7 @ =T.do {x & a;returngys x}

ma = match a with { Mpop T = MW ListT)T (nnap5u51£)xz Sus TX fold (1b. ms (b))

= Ja. fm (@(AX) Lrer, TOS, msura = my(finishs (@)

List(R+xX) scorer = return(Yicld liftsys r(scorer))

Returnx —§.

Oy
Sample k— i k(x)U(dx)}
I SCOTepopT = SCOTE(W o ListT)I

a) Continuous sampler representation
(@) pl p (b) The population transformer (a) The suspension transformer

26/27

Want more?

» “Semantics for probabilistic programming: higher-order
functions, continuous distributions, and soft constraints”
LiCS 2016

» “A convenient category for higher-order probability theory”
LiCS 2017

» “Denotational validation of higher-order Bayesian inference”
POPL 2018

27/27

De Finetti’s theorem

Every exchangeable sequence of random observations
on R can be generated by:

» choose a single probability distribution on R
» sample that one independently repeatedly

De Finetti’s theorem

Every exchangeable sequence of random observations
on a quasi-Borel space X can be generated by:

» choose a single probability distribution on X
» sample that one independently repeatedly

Trace Markov Chain Monte Carlo

Repeatedly use kernel to propose new value,
decide whether to accept (Metropolis-Hastings update).
Random walk in target space: program traces.

» Metropolis-Hastings-Green: update preserves distribution.
» Program traces form inference representation.

» Trace MCMC is inference transformation
(parametrised by proposal kernel)

	Appendix

