
Semantics for Probabilistic Programming

Chris Heunen

1 / 27

Bayes’ law

P(A | B) =
P(B | A)×P(A)

P(B)

Bayesian reasoning:
I predict future, based on model and prior evidence
I infer causes, based on model and posterior evidence
I learn better model, based on prior model and evidence

2 / 27

Bayes’ law

P(A | B) =
P(B | A)×P(A)

P(B)

Bayesian reasoning:
I predict future, based on model and prior evidence
I infer causes, based on model and posterior evidence
I learn better model, based on prior model and evidence

2 / 27

Bayesian networks

3 / 27

Bayesian inference

4 / 27

Bayesian data modelling
1. Develop probabilistic (generative) model
2. Design inference algorithm for model
3. Use algorithm to fit model to data

Example: find effect of drug on patient, given data

5 / 27

Linear regression

Generative model

s ∼ normal(0,2)
b ∼ normal(0,6)
f(x) = s · x + b
yi = normal(f(i),0.5)

for i = 0 . . . 6

Conditioning

y0 = 0.6, y1 = 0.7, y2 = 1.2, y3 = 3.2, y4 = 6.8, y5 = 8.2, y6 = 8.4

Predict f

6 / 27

Linear regression

7 / 27

Probabilistic programming
1. Develop probabilistic (generative) model Write a program
2. Design inference algorithm for model
2. Use built-in algorithm to fit model to data

P(A | B) ∝ P(B | A)× P(A)

posterior ∝ likelihood× prior

functional programming + observe + sample

8 / 27

Probabilistic programming
1. Develop probabilistic (generative) model Write a program
2. Design inference algorithm for model
2. Use built-in algorithm to fit model to data

P(A | B) ∝ P(B | A)× P(A)

posterior ∝ likelihood× prior

functional programming + observe + sample

8 / 27

Probabilistic programming
1. Develop probabilistic (generative) model Write a program
2. Design inference algorithm for model
2. Use built-in algorithm to fit model to data

P(A | B) ∝ P(B | A)× P(A)

posterior ∝ likelihood× prior

functional programming + observe + sample

8 / 27

Linear regression

(defquery Bayesian-linear-regression

(let [f (let [s (sample (normal 0.0 3.0))

b (sample (normal 0.0 3.0))]

(fn [x] (+ (* s x) b)))]

(observe (normal (f 1.0) 0.5) 2.5)

(observe (normal (f 2.0) 0.5) 3.8)

(observe (normal (f 3.0) 0.5) 4.5)

(observe (normal (f 4.0) 0.5) 6.2)

(observe (normal (f 5.0) 0.5) 8.0)

(predict :f f)))

9 / 27

Linear regression

10 / 27

Linear regression

11 / 27

Measure theory

Impossible to sample 0.5 from standard normal distribution
But sample in interval (0,1) with probability around 0.34

A measurable space is a set X with a family ΣX of subsets
that is closed under countable unions and complements

A (probability) measure on X is a function p : ΣX → [0,∞]
that satisfies p(

∑
Un) =

∑
p(Un) (and has p(X) = 1)

A function f : X → Y is measurable if f−1(U) ∈ ΣX for U ∈ ΣY
A random variable is a measurable function R→ X

12 / 27

Measure theory

Impossible to sample 0.5 from standard normal distribution
But sample in interval (0,1) with probability around 0.34

A measurable space is a set X with a family ΣX of subsets
that is closed under countable unions and complements

A (probability) measure on X is a function p : ΣX → [0,∞]
that satisfies p(

∑
Un) =

∑
p(Un) (and has p(X) = 1)

A function f : X → Y is measurable if f−1(U) ∈ ΣX for U ∈ ΣY
A random variable is a measurable function R→ X

12 / 27

Measure theory

Impossible to sample 0.5 from standard normal distribution
But sample in interval (0,1) with probability around 0.34

A measurable space is a set X with a family ΣX of subsets
that is closed under countable unions and complements

A (probability) measure on X is a function p : ΣX → [0,∞]
that satisfies p(

∑
Un) =

∑
p(Un) (and has p(X) = 1)

A function f : X → Y is measurable if f−1(U) ∈ ΣX for U ∈ ΣY
A random variable is a measurable function R→ X

12 / 27

Function types

Z × X

[X → Y]× X Y

f̂f × idX

ev

[R→ R] cannot be a measurable space!

13 / 27

Function types

Z × X

[X → Y]× X Y

f̂f × idX

ev

[R→ R] cannot be a measurable space!

13 / 27

Quasi-Borel spaces
A quasi-Borel space is a set X together with MX ⊆ [R→ X] satisfying:

I α ∈ MX if α : R→ X is constant

I α ◦ ϕ ∈ MX if α ∈ MX and ϕ : R→ R is measurable

I if R =
⊎

n∈N Sn, with each set Sn Borel, and α1, α2, . . . ∈ MX ,
then β is in MX , where β(r) = αn(r) for r ∈ Sn

A morphism is a function f : X → Y with f ◦ α ∈ MY if α ∈ MX

I has product types
I has sum types
I has function types!

M[X→Y] = {α : R→ [X → Y] | α̂ : R× X → Y morphism}

14 / 27

Quasi-Borel spaces
A quasi-Borel space is a set X together with MX ⊆ [R→ X] satisfying:

I α ∈ MX if α : R→ X is constant

I α ◦ ϕ ∈ MX if α ∈ MX and ϕ : R→ R is measurable
I if R =

⊎
n∈N Sn, with each set Sn Borel, and α1, α2, . . . ∈ MX ,

then β is in MX , where β(r) = αn(r) for r ∈ Sn

A morphism is a function f : X → Y with f ◦ α ∈ MY if α ∈ MX

I has product types
I has sum types
I has function types!

M[X→Y] = {α : R→ [X → Y] | α̂ : R× X → Y morphism}

14 / 27

Quasi-Borel spaces
A quasi-Borel space is a set X together with MX ⊆ [R→ X] satisfying:

I α ∈ MX if α : R→ X is constant
I α ◦ ϕ ∈ MX if α ∈ MX and ϕ : R→ R is measurable

I if R =
⊎

n∈N Sn, with each set Sn Borel, and α1, α2, . . . ∈ MX ,
then β is in MX , where β(r) = αn(r) for r ∈ Sn

A morphism is a function f : X → Y with f ◦ α ∈ MY if α ∈ MX

I has product types
I has sum types
I has function types!

M[X→Y] = {α : R→ [X → Y] | α̂ : R× X → Y morphism}

14 / 27

Quasi-Borel spaces
A quasi-Borel space is a set X together with MX ⊆ [R→ X] satisfying:

I α ∈ MX if α : R→ X is constant
I α ◦ ϕ ∈ MX if α ∈ MX and ϕ : R→ R is measurable
I if R =

⊎
n∈N Sn, with each set Sn Borel, and α1, α2, . . . ∈ MX ,

then β is in MX , where β(r) = αn(r) for r ∈ Sn

A morphism is a function f : X → Y with f ◦ α ∈ MY if α ∈ MX

I has product types
I has sum types
I has function types!

M[X→Y] = {α : R→ [X → Y] | α̂ : R× X → Y morphism}

14 / 27

Quasi-Borel spaces
A quasi-Borel space is a set X together with MX ⊆ [R→ X] satisfying:

I α ∈ MX if α : R→ X is constant

I α ◦ ϕ ∈ MX if α ∈ MX and ϕ : R→ R is measurable

I if R =
⊎

n∈N Sn, with each set Sn Borel, and α1, α2, . . . ∈ MX ,
then β is in MX , where β(r) = αn(r) for r ∈ Sn

A morphism is a function f : X → Y with f ◦ α ∈ MY if α ∈ MX

I has product types
I has sum types
I has function types!

M[X→Y] = {α : R→ [X → Y] | α̂ : R× X → Y morphism}

14 / 27

Quasi-Borel spaces
A quasi-Borel space is a set X together with MX ⊆ [R→ X] satisfying:

I α ∈ MX if α : R→ X is constant

I α ◦ ϕ ∈ MX if α ∈ MX and ϕ : R→ R is measurable

I if R =
⊎

n∈N Sn, with each set Sn Borel, and α1, α2, . . . ∈ MX ,
then β is in MX , where β(r) = αn(r) for r ∈ Sn

A morphism is a function f : X → Y with f ◦ α ∈ MY if α ∈ MX

I has product types
I has sum types
I has function types!

M[X→Y] = {α : R→ [X → Y] | α̂ : R× X → Y morphism}

14 / 27

Example quasi-Borel spaces

Set Qbs⊥

X (X, {case Sn.xn | Sn ⊆ X partition, xn ∈ R})
X (X,MX)

Set Qbs>

X (X, {α : R→ X})
X (X,MX)

Meas Qbs>

(X,ΣX) (X, {α : R→ X measurable})
(X, {U | ∀α ∈ MX : α−1(U) measurable}) (X,MX)

15 / 27

Example quasi-Borel spaces

Set Qbs⊥

X (X, {case Sn.xn | Sn ⊆ X partition, xn ∈ R})
X (X,MX)

Set Qbs>

X (X, {α : R→ X})
X (X,MX)

Meas Qbs>

(X,ΣX) (X, {α : R→ X measurable})
(X, {U | ∀α ∈ MX : α−1(U) measurable}) (X,MX)

15 / 27

Example quasi-Borel spaces

Set Qbs⊥

X (X, {case Sn.xn | Sn ⊆ X partition, xn ∈ R})
X (X,MX)

Set Qbs>

X (X, {α : R→ X})
X (X,MX)

Meas Qbs>

(X,ΣX) (X, {α : R→ X measurable})
(X, {U | ∀α ∈ MX : α−1(U) measurable}) (X,MX)

15 / 27

Distribution types

A measure on a quasi-Borel space (X,MX) consists of

I α ∈ MX and

I a probability measure µ on R

Two measures are identified when they induce the same µ(α−1(−))

Gives monad

I P(X,MX) = {(α, µ) measure on (X,MX}/ ∼
I return x = [λr.x, µ]∼ for arbitrary µ

I bind uses integral
∫

fd(α, µ) :=
∫

(f ◦ α)dµ if f : (X,MX)→ R

for distribution types

16 / 27

Distribution types

A measure on a quasi-Borel space (X,MX) consists of

I α ∈ MX and

I a probability measure µ on R

Two measures are identified when they induce the same µ(α−1(−))

Gives monad

I P(X,MX) = {(α, µ) measure on (X,MX}/ ∼
I return x = [λr.x, µ]∼ for arbitrary µ

I bind uses integral
∫

fd(α, µ) :=
∫

(f ◦ α)dµ if f : (X,MX)→ R

for distribution types

16 / 27

Example: facts about distributions

s
let x = sample(gauss(0.0,1.0))

in return (x<0)

{
= J sample(bern(0.5))K

17 / 27

Example: importance sampling

J sample(exp(2)) K

=

t
let x = sample(gauss(0,1)))

observe(exp-pdf(2,x)/gauss-pdf(0,1,x));

return x

|

18 / 27

Example: conjugate priors

t
let x = sample(beta(1,1))

in observe(bern(x), true);

return x

|

=

t
observe(bern(0.5), true);

let x = sample(beta(2,1))

in return x

|

19 / 27

Linear regression

(defquery Bayesian-linear-regression

Prior:

(let [f (let [s (sample (normal 0.0 3.0))

b (sample (normal 0.0 3.0))]

(fn [x] (+ (* s x) b)))]

Likelihood:

(observe (normal (f 1.0) 0.5) 2.5)

(observe (normal (f 2.0) 0.5) 3.8)

(observe (normal (f 3.0) 0.5) 4.5)

(observe (normal (f 4.0) 0.5) 6.2)

(observe (normal (f 5.0) 0.5) 8.0)

Posterior:

(predict :f f)))

20 / 27

Linear regression: prior
Define a prior measure on [R→ R]

t
(let [f (let [s (sample (normal 0.0 3.0))

b (sample (normal 0.0 3.0))]

(fn [x] (+ (* s x) b)))]

|

= [α, ν ⊗ ν]∼ ∈ P([R→ R])

where ν is normal distribution, mean 0 and standard deviation 3,
and α : R× R→ [R→ R] is (s, b) 7→ λr.sr + b

21 / 27

Linear regression: likelihood

Define likelihood of observations (with some noise)
u

www
v

(observe (normal (f 1.0) 0.5) 2.5)

(observe (normal (f 2.0) 0.5) 3.8)

(observe (normal (f 3.0) 0.5) 4.5)

(observe (normal (f 4.0) 0.5) 6.2)

(observe (normal (f 5.0) 0.5) 8.0)

}

���
~

= d(f(1),2.5) · d(f(2),3.8) · d(f(3),4.5) · d(f(4),6.2) · d(f(5),8.0)

where f free variable of type [R→ R], and d : R2 → [0,∞) is density
of normal distribution with standard deviation 0.5

d(µ, x) =
√

2/π exp(−2(x − µ)2)

22 / 27

Linear regression: Posterior

Normalise combined prior and likelihood

J(predict :f f)))K ∈ P([R→ R])

23 / 27

Piecewise linear regression: Posterior

Normalise combined prior and likelihood

J(predict :f f)))K ∈ P([R→ R])

24 / 27

Modular inference algorithms

An inference representation is monad (T, return,�=)
with T X → P X, sample : 1→ T [0,1], score : [0,∞)→ T 1.

I Discrete weighted sampler (e.g. coin flip)
I Continuous sampler

An inference transformer respects meaning, sample, and score.
I List: T(−) 7→ T

(
List(−)

)
I Continuous weighting: T(−) 7→ T

(
[0,∞) ∗ (−)

)
I Population: T(−) 7→ T

(
List

(
[0,∞) ∗ (−)

))

25 / 27

Modular inference algorithms

An inference representation is monad (T, return,�=)
with T X → P X, sample : 1→ T [0,1], score : [0,∞)→ T 1.

I Discrete weighted sampler (e.g. coin flip)
I Continuous sampler

An inference transformer respects meaning, sample, and score.
I List: T(−) 7→ T

(
List(−)

)
I Continuous weighting: T(−) 7→ T

(
[0,∞) ∗ (−)

)
I Population: T(−) 7→ T

(
List

(
[0,∞) ∗ (−)

))

25 / 27

Modular inference algorithms library

Sequential Monte Carlo: approximate distribution by
population of weighted samples (particles/suspended computations),
repeatedly applying fixed random process (particle filter)

26 / 27

Want more?

I “Semantics for probabilistic programming: higher-order
functions, continuous distributions, and soft constraints”
LiCS 2016

I “A convenient category for higher-order probability theory”
LiCS 2017

I “Denotational validation of higher-order Bayesian inference”
POPL 2018

27 / 27

De Finetti’s theorem

Every exchangeable sequence of random observations
on R can be generated by:

I choose a single probability distribution on R
I sample that one independently repeatedly

De Finetti’s theorem

Every exchangeable sequence of random observations
on a quasi-Borel space X can be generated by:

I choose a single probability distribution on X
I sample that one independently repeatedly

Trace Markov Chain Monte Carlo

Repeatedly use kernel to propose new value,
decide whether to accept (Metropolis-Hastings update).
Random walk in target space: program traces.

I Metropolis-Hastings-Green: update preserves distribution.
I Program traces form inference representation.
I Trace MCMC is inference transformation

(parametrised by proposal kernel)

	Appendix

