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Bayes’ law

P(A | B) =
P(B | A)×P(A)

P(B)

Bayesian reasoning:
I predict future, based on model and prior evidence
I infer causes, based on model and posterior evidence
I learn better model, based on prior model and evidence
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Bayesian networks
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Bayesian inference
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Linear regression
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Probabilistic programming

P(A | B) ∝ P(B | A)× P(A)

posterior ∝ likelihood× prior

functional programming + observe + sample
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Linear regression

(defquery Bayesian-linear-regression

(let [f (let [s (sample (normal 0.0 3.0))

b (sample (normal 0.0 3.0))]

(fn [x] (+ (* s x) b)))]

(observe (normal (f 1.0) 0.5) 2.5)

(observe (normal (f 2.0) 0.5) 3.8)

(observe (normal (f 3.0) 0.5) 4.5)

(observe (normal (f 4.0) 0.5) 6.2)

(observe (normal (f 5.0) 0.5) 8.0)

(predict :f f)))
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Linear regression
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Linear regression
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Measure theory

Impossible to sample 0.5 from standard normal distribution
But sample in interval (0,1) with probability around 0.34

A measurable space is a set X with a family ΣX of subsets
that is closed under countable unions and complements

A (probability) measure on X is a function p : ΣX → [0,∞]
that satisfies p(

∑
Un) =

∑
p(Un) (and has p(X) = 1)

A function f : X → Y is measurable if f−1(U) ∈ ΣX for U ∈ ΣY
A random variable is a measurable function R→ X
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Function types

Z × X

[X → Y]× X Y

f̂f × idX

ev

[R→ R] cannot be a measurable space!
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Quasi-Borel spaces

A quasi-Borel space is a set X together with MX ⊆ [R→ X] satisfying:

I α ◦ f ∈ MX if α ∈ MX and f : R→ R is measurable

I α ∈ MX if α : R→ X is constant

I if R =
⊎

n∈N Sn, with each set Sn Borel, and α1, α2, . . . ∈ MX ,
then β is in MX , where β(r) = αn(r) for r ∈ Sn

A morphism is a function f : X → Y with f ◦ α ∈ MY if α ∈ MX

I has product types
I has countable sum types
I has function types!

M[X→Y] = {α : R→ [X → Y] | α̂ : R× X → Y morphism}
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Distribution types

A measure on a quasi-Borel space (X,MX) consists of

I α ∈ MX and

I a probability measure µ on R

Two measures are identified when they induce the same µ(α−1(−))

Gives monad

I P(X,MX) = {(α, µ) measure on (X,MX}/ ∼
I return x = [λr.x, µ]∼ for arbitrary µ

I bind uses integral
∫

fd(α, µ) :=
∫

(f ◦ α)dµ if f : (X,MX)→ R

for distribution types
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Example: facts about distributions

s
let x = sample(gauss(0.0,1.0))

in return (x<0)

{
= J sample(bern(0.5))K
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Example: importance sampling

J sample(exp(2)) K

=

t
let x = sample(gauss(0,1)))

observe(exp-pdf(2,x)/gauss-pdf(0,1,x));

return x

|
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Example: conjugate priors

t
let x = sample(beta(1,1))

in observe(bern(x), true);

return x

|

=

t
observe(bern(0.5), true);

let x = sample(beta(2,1))

in return x

|
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Linear regression

(defquery Bayesian-linear-regression

Prior:

(let [f (let [s (sample (normal 0.0 3.0))

b (sample (normal 0.0 3.0))]

(fn [x] (+ (* s x) b)))]

Likelihood:

(observe (normal (f 1.0) 0.5) 2.5)

(observe (normal (f 2.0) 0.5) 3.8)

(observe (normal (f 3.0) 0.5) 4.5)

(observe (normal (f 4.0) 0.5) 6.2)

(observe (normal (f 5.0) 0.5) 8.0)

Posterior:

(predict :f f)))

17 / 21



Linear regression: prior
Define a prior measure on [R→ R]

t
(let [f (let [s (sample (normal 0.0 3.0))

b (sample (normal 0.0 3.0))]

(fn [x] (+ (* s x) b)))]

|

= [α, ν ⊗ ν]∼ ∈ P([R→ R])

where ν is normal distribution, mean 0 and standard deviation 3,
and α : R× R→ [R→ R] is (s, b) 7→ λr.sr + b
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Linear regression: likelihood

Define likelihood of observations (with some noise)
u

www
v

(observe (normal (f 1.0) 0.5) 2.5)

(observe (normal (f 2.0) 0.5) 3.8)

(observe (normal (f 3.0) 0.5) 4.5)

(observe (normal (f 4.0) 0.5) 6.2)

(observe (normal (f 5.0) 0.5) 8.0)

}

���
~

= d(f(1),2.5) · d(f(2),3.8) · d(f(3),4.5) · d(f(4),6.2) · d(f(5),8.0)

where f free variable of type [R→ R], and d : R2 → [0,∞) is density
of normal distribution with standard deviation 0.5

d(µ, x) =
√

2/π exp(−2(x − µ)2)
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Linear regression: Posterior

Normalise combined prior and likelihood

J(predict :f f)))K ∈ P([R→ R])
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Want more?

I “Semantics for probabilistic programming: higher-order functions,
continuous distributions, and soft constraints”
LiCS 2016

I “A convenient category for higher-order probability theory”
arXiv:1701.02547
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