Semantics for Probabilistic Programming

Chris Heunen

Bayes' law

$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(B \mid A) \times \mathbf{P}(A)}{\mathbf{P}(B)}$$

Bayes' law

$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(B \mid A) \times \mathbf{P}(A)}{\mathbf{P}(B)}$$

Bayesian reasoning:

- predict future, based on model and prior evidence
- ► *infer* causes, based on model and posterior evidence
- learn better model, based on prior model and evidence

Bayesian networks

Bayesian inference

Stan implements gradient-based Markov chain Monte Carlo (MCMC) algorithms for Bayesian inference, stochastic, gradient-based variational Bayesian methods for approximate Bayesian inference, and gradient-based optimization for penalized maximum likelihood estimation.

About TensorFlow

TensorFlow™ is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the

Infer.NET

Infer.NET is a framework for running Bayesian inference in graphical models.

```
# Try to find values for W and b that compute y_{data} = W * x_{data} + b
# (We know that W should be 0.1 and b 0.3, but TensorFlow will
# figure that out for us.)
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b
# Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
# Before starting, initialize the variables. We will 'run' this first.
init = tf.global_variables_initializer()
# Launch the graph.
sess = tf.Session()
sess.run(init)
# Fit the line.
for step in range(201):
    sess.run(train)
    if step % 20 == 0:
        print(step, sess.run(W), sess.run(b))
```

Probabilistic programming

$$\begin{split} \mathsf{P}(A \mid B) \propto \mathsf{P}(B \mid A) \times \mathsf{P}(A) \\ \text{posterior} \propto \text{likelihood} \times \text{prior} \\ \text{functional programming} + \mathbf{observe} + \mathbf{sample} \end{split}$$

Probabilistic programming

$$\begin{split} \mathsf{P}(A \mid B) \propto \mathsf{P}(B \mid A) \times \mathsf{P}(A) \\ \text{posterior} \propto \text{likelihood} \times \text{prior} \\ \text{functional programming} + \mathbf{observe} + \mathbf{sample} \end{split}$$

Church 🕑 is a universal probabilistic programming language, extending Scheme with probabilistic semantics, and is well suited for describing infinite-dimensional stochastic processes and other recursively-defined generative processes

Venture 🗗 is an interactive, Turing-complete, higher-order probabilistic programming platform that aims to be sufficiently expressive, extensible and efficient for general-purpose use. Its virtual machine supports multiple scalable, reprogrammable inference strategies, plus two front-end languages: VenChurch and VentureScript.

Anglican \mathcal{Q} is a portable Turing-complete research probabilistic programming language that includes particle MCMC inference.

(defquery Bayesian-linear-regression

(observe	(normal	(f	1.0)	0.5)	2.5)
(observe	(normal	(f	2.0)	0.5)	3.8)
(observe	(normal	(f	3.0)	0.5)	4.5)
(observe	(normal	(f	4.0)	0.5)	6.2)
(observe	(normal	(f	5.0)	0.5)	8.0)

(predict :f f)))

Measure theory

Impossible to sample 0.5 from standard normal distribution But sample in interval (0, 1) with probability around 0.34

Measure theory

Impossible to sample 0.5 from standard normal distribution But sample in interval (0, 1) with probability around 0.34

- A measurable space is a set *X* with a family Σ_X of subsets that is closed under countable unions and complements
- A (probability) measure on *X* is a function $p: \Sigma_X \to [0, \infty]$ that satisfies $p(\sum U_n) = \sum p(U_n)$ (and has p(X) = 1)

Measure theory

Impossible to sample 0.5 from standard normal distribution But sample in interval (0, 1) with probability around 0.34

- A measurable space is a set *X* with a family Σ_X of subsets that is closed under countable unions and complements
- A (probability) measure on *X* is a function $p: \Sigma_X \to [0, \infty]$ that satisfies $p(\sum U_n) = \sum p(U_n)$ (and has p(X) = 1)
- A function $f: X \to Y$ is measurable if $f^{-1}(U) \in \Sigma_X$ for $U \in \Sigma_Y$ A random variable is a measurable function $\mathbb{R} \to X$

Function types

Function types

 $[\mathbb{R} \to \mathbb{R}]$ cannot be a measurable space!

Quasi-Borel spaces

A quasi-Borel space is a set *X* together with $M_X \subseteq [\mathbb{R} \to X]$ satisfying:

- $\alpha \circ f \in M_X$ if $\alpha \in M_X$ and $f \colon \mathbb{R} \to \mathbb{R}$ is measurable
- $\alpha \in M_X$ if $\alpha \colon \mathbb{R} \to X$ is constant
- ▶ if $\mathbb{R} = \biguplus_{n \in \mathbb{N}} S_n$, with each set S_n Borel, and $\alpha_1, \alpha_2, \ldots \in M_X$, then β is in M_X , where $\beta(r) = \alpha_n(r)$ for $r \in S_n$

Quasi-Borel spaces

A quasi-Borel space is a set *X* together with $M_X \subseteq [\mathbb{R} \to X]$ satisfying:

- $\alpha \circ f \in M_X$ if $\alpha \in M_X$ and $f \colon \mathbb{R} \to \mathbb{R}$ is measurable
- $\alpha \in M_X$ if $\alpha \colon \mathbb{R} \to X$ is constant
- ▶ if $\mathbb{R} = \biguplus_{n \in \mathbb{N}} S_n$, with each set S_n Borel, and $\alpha_1, \alpha_2, \ldots \in M_X$, then β is in M_X , where $\beta(r) = \alpha_n(r)$ for $r \in S_n$

A morphism is a function $f: X \to Y$ with $f \circ \alpha \in M_Y$ if $\alpha \in M_X$

- has product types
- has countable sum types
- has function types!

 $M_{[X \to Y]} = \{ \alpha \colon \mathbb{R} \to [X \to Y] \mid \hat{\alpha} \colon \mathbb{R} \times X \to Y \text{ morphism} \}$

Distribution types

A measure on a quasi-Borel space (X, M_X) consists of

- $\alpha \in M_X$ and
- a probability measure μ on \mathbb{R}

Two measures are identified when they induce the same $\mu(\alpha^{-1}(-))$

Distribution types

A measure on a quasi-Borel space (X, M_X) consists of

- $\alpha \in M_X$ and
- a probability measure μ on \mathbb{R}

Two measures are identified when they induce the same $\mu(\alpha^{-1}(-))$

Gives monad

- ► $P(X, M_X) = \{(\alpha, \mu) \text{ measure on } (X, M_X\} / \sim$
- return $x = [\lambda r.x, \mu]_{\sim}$ for arbitrary μ
- ▶ bind uses integral $\int f d(\alpha, \mu) := \int (f \circ \alpha) d\mu$ if $f : (X, M_X) \to \mathbb{R}$

for distribution types

Example: facts about distributions

$$\begin{bmatrix} let x = sample(gauss(0.0, 1.0)) \\ in return (x<0) \end{bmatrix} = [sample(bern(0.5))]$$

Example: importance sampling

```
[ sample(exp(2)) ]
= [ let x = sample(gauss(0,1)))
observe(exp-pdf(2,x)/gauss-pdf(0,1,x));
return x
```


Example: conjugate priors

$$\begin{bmatrix} let x = sample(beta(1,1)) \\ in observe(bern(x), true); \\ return x \end{bmatrix} = \begin{bmatrix} observe(bern(0.5), true); \\ let x = sample(beta(2,1)) \\ in return x \end{bmatrix}$$

(defquery Bayesian-linear-regression Prior:

Likelihood:

(observe	(normal	(f	1.0)	0.5)	2.5)
(observe	(normal	(f	2.0)	0.5)	3.8)
(observe	(normal	(f	3.0)	0.5)	4.5)
(observe	(normal	(f	4.0)	0.5)	6.2)
(observe	(normal	(f	5.0)	0.5)	8.0)

Posterior:

(predict :f f)))

Linear regression: prior

Define a prior measure on $[\mathbb{R} \to \mathbb{R}]$

 $= \qquad [\alpha, \nu \otimes \nu]_{\sim} \in P([\mathbb{R} \to \mathbb{R}])$

where ν is normal distribution, mean 0 and standard deviation 3, and $\alpha \colon \mathbb{R} \times \mathbb{R} \to [\mathbb{R} \to \mathbb{R}]$ is $(s, b) \mapsto \lambda r.sr + b$

Linear regression: likelihood

Define likelihood of observations (with some noise)

ſ	(observe	(normal	(f	1.0)	0.5)	2.5)
	(observe	(normal	(f	2.0)	0.5)	3.8)
	(observe	(normal	(f	3.0)	0.5)	4.5)
	(observe	(normal	(f	4.0)	0.5)	6.2)
l	(observe (observe (observe (observe	(normal	(f	5.0)	0.5)	8.0)

 $= \quad d(f(1), 2.5) \cdot d(f(2), 3.8) \cdot d(f(3), 4.5) \cdot d(f(4), 6.2) \cdot d(f(5), 8.0)$

where *f* free variable of type $[\mathbb{R} \to \mathbb{R}]$, and $d \colon \mathbb{R}^2 \to [0, \infty)$ is density of normal distribution with standard deviation 0.5

$$d(\mu, x) = \sqrt{2/\pi} \exp(-2(x-\mu)^2)$$

Linear regression: Posterior

Normalise combined prior and likelihood

 $\llbracket \texttt{(predict :f f))} \end{bmatrix} \in P([\mathbb{R} \to \mathbb{R}])$

- "Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints" LiCS 2016
- "A convenient category for higher-order probability theory" arXiv:1701.02547