Sheaf representation of monoidal categories

Chris Heunen
Categories should be nice and easy

Category \textbf{Vect} of vector spaces is monoidal. So is \textbf{Vect} \times \textbf{Vect}. Clearly \textbf{Vect} is easier: does not decompose as product.

Any monoidal category embeds into a \textbf{nice} one, and any \textbf{nice} monoidal category is dependent product of \textbf{easy} ones.
Nice and easy

\[\prod_{i \in \{0,1\}} \textbf{Vect} \text{ is decomposable since } \{0,1\} \text{ is disjoint union} \]

Can reconstruct opens of \(\{0,1\} \) as subunits of \(\textbf{Vect} \times \textbf{Vect} \)
Nice and easy

\[\prod_{i \in \{0, 1\}} \textbf{Vect} \] is decomposable since \(\{0, 1\} \) is disjoint union

Can reconstruct opens of \(\{0, 1\} \) as subunits of \(\textbf{Vect} \times \textbf{Vect} \)

Category is nice if subunits form frame respected by tensor product:

- **stiff**: subunits form semilattice
- **universal joins of subunits**: subunits form complete lattice
Nice and easy

\[\prod_{i \in \{0, 1\}} \text{Vect} \] is decomposable since \(\{0, 1\} \) is disjoint union

Can reconstruct opens of \(\{0, 1\} \) as *subunits* of \(\text{Vect} \times \text{Vect} \)

Category is nice if subunits form frame respected by tensor product:
 - stiff: subunits form semilattice
 - universal joins of subunits: subunits form complete lattice

Category is easy if subunits are like singletons:
 - (sub)local: any (finite) cover contains the open that is covered every net converges to a single *focal point*
Sheaves are continuously parametrised objects

Write $\mathcal{O}(X)$ for open sets of space X.

Presheaf on X is functor $F : \mathcal{O}(X)^{\text{op}} \to \text{Set}$

Elements of $F(U)$ are called *local sections*.

Elements of $F(X)$ are called *global sections*.

Map $F(U \subseteq V) : F(V) \to F(U)$ is called *restriction*.
Sheaf condition

Sheaf is continuous presheaf: \(F(\text{colim } U_i) = \lim F(U_i) \)

- Elements of \(F(U) \) are **global sections** over \(U = \text{colim } U_i = \bigcup U_i \)
- Elements of \(\lim F(U_i) \) are **compatible local sections**:

\[
\lim F(U_i) = \{ (s_i) | F(U_i \cap U_j \subseteq U_i)(s_i) = F(U_i \cap U_j \subseteq U_j)(s_j) \}
\]

Compatible local sections must glue together to unique global section

Example: \(F(U) = \{ \text{continuous functions } U \to \mathbb{R} \} \)
Sheaves of categories

What if F takes values not in \textbf{Set} but in \mathbf{V}?

Then sheaf condition becomes equaliser in \mathbf{V}:

$$F(\bigcup U_i) \xrightarrow{\langle F(U_i \subseteq U_i) \rangle_i} \prod_i F(U_i) \xrightarrow{\langle F(U_i \cap U_j \subseteq U_i \circ \pi_i) \rangle_{i,j}} \prod_{i,j} F(U_i \cap U_j)$$
Stalk

of sheaf F at point x is $\text{colim}\{F(U) \mid x \in U\}$

Say F is a “sheaf of ...” when its stalks are “...”
E.g. sheaves of local rings
Sheaf representation

Literature:

- Boolean algebra is global sections of sheaf of spaces \(\{0, 1\}\)
- ring is ring of global sections of sheaf of local rings
- topos is category of global sections of sheaf of local toposes

Will generalise all three into:

- monoidal category with universal join of subunits is category of global sections of sheaf of local monoidal categories

Corollary:

- stiff monoidal category embeds into category of global sections of sheaf of local monoidal categories
Subunits

How to recover $\mathcal{O}(X)$ from $\text{Sh}(X)$?
Look at subobjects of terminal object $s: S \rightarrow 1$.

What if we want sheaves with values not in \textbf{Set}?
A subunit in a monoidal category \mathbf{C} is a subobject $s: S \rightarrow I$
such that $S \otimes s: S \otimes S \rightarrow S \otimes I$ is invertible. They form set $\text{ISub}(\mathbf{C})$.

$\text{ISub}(\text{Sh}(X)) = \mathcal{O}(X)$
$\text{ISub}(L) = L$ for semilattice L
$\text{ISub}(\text{Mod}_R) = \{ I \subseteq R \text{ ideal} \mid I^2 = I \}$ for commutative ring R
$\text{ISub}(\text{Hilb}_C(X)) = \mathcal{O}(X)$
Nice subunits

Draw subunit as \bullet_s, and draw S for inverse of $\bullet_s \circ \bullet_s = \bullet_s \circ \bullet_s$

\[
\text{ISub}(C) \text{ semilattice} \iff C \text{ is stiff} \iff
\]

\[
\begin{array}{ccc}
S \otimes T \otimes A & \Rightarrow & T \otimes A \\
\downarrow & & \downarrow \\
S \otimes A & \Rightarrow & A
\end{array}
\]

\[
\text{S, T, A} = \text{S, T, A}
\]
Nicer subunits

\[
\begin{align*}
 s \leq t \text{ if there is unique } m: S \to T \text{ with } s = t \circ m:
\end{align*}
\]

\[
\begin{tikzpicture}
 \node (s) at (0,0) {S};
 \node (t) at (2,0) {T};
 \draw[->] (s) -- (t);
 \node (s) at (0,-1) {S};
 \node (t) at (2,-1) {T};
 \draw[->] (s) -- (t);
 \node (s) at (0,-2) {S};
 \node (t) at (2,-2) {T};
 \draw[->] (s) -- (t);
 \node (s) at (0,-3) {S};
 \node (t) at (2,-3) {T};
 \draw[->] (s) -- (t);
\end{tikzpicture}
\]

\(\text{ISub}(\mathcal{C})\) distributive lattice

\[\iff \quad \mathcal{C} \text{ has universal finite joins of subunits}\]

\[\iff \quad \text{ISub}(\mathcal{C}) \text{ has finite joins, } 0 \cong 0 \otimes A \text{ is initial, and}\]

\[
\begin{align*}
 S \otimes T \otimes A &\Rightarrow T \otimes A \\
 S \otimes A &\Rightarrow (S \lor T) \otimes A \\
 S \vee T &\Rightarrow A \\
 S &\Rightarrow S \\
 T &\Rightarrow T \\
 A &\Rightarrow A
\end{align*}
\]
Embedding

\textbf{Stiff} \(C\) embeds into category with \textit{universal finite joins} of subunits
embeds into category with \textit{universal joins} of subunits

Universally, faithfully, preserving subunits and tensor products
Base space

\(\textbf{C} \text{ has universal (finite) joins of subunits} \)

\(\implies \text{ ISub(} \textbf{C} \text{)} \text{ is a (distributive lattice) frame} \)

\(\implies \text{ Zariski spectrum } X = \text{ Spec(ISub(} \textbf{C} \text{))} \text{ is topological space} \)

points \(x \) are (completely) prime filters in ISub(\textbf{C})
Local sections $F(s)$

- **Objects**: as in \mathbf{C}
- **Morphisms**: $A \otimes S \rightarrow B$ in \mathbf{C}

\[\begin{array}{c}
\text{Composition:} \\
\begin{array}{c}
\text{Identity:} \\
\text{Tensor product:}
\end{array}
\end{array} \]

\[\begin{array}{c}
\text{Composition:} \\
\begin{array}{c}
\text{Identity:} \\
\text{Tensor product:}
\end{array}
\end{array} \]
Sheaf condition

To specify a sheaf $F : \mathcal{O}(X)^{\text{op}} \to \text{MonCat}$, it’s enough to give a presheaf $F : \text{ISub}(C)^{\text{op}} \to \text{MonCat}$, such that $F(0)$ is terminal and the following is an equaliser:

$$F(s \vee t) \xrightarrow{\langle F(s \leq s \vee t), F(t \leq s \vee t) \rangle} F(s) \times F(t) \xrightarrow{\begin{array}{c} F(s \wedge t \leq s) \circ \pi_1 \\ F(s \wedge t \leq t) \circ \pi_2 \end{array}} F(s \wedge t)$$
Stalks $F(x)$ are (sub)local

- **Objects:** as in \mathbf{C}
- **Morphisms:** $A \otimes S \to B$ in \mathbf{C} for $s \in x$, identified when $f_{SR} = f'_{SR}$

Composition of (s, f) and (t, g) is
Theorem

Any small stiff category with universal (finite) joins of subunits is monoidally equivalent to category of global sections of sheaf of (sub)local categories.

Any small stiff category embeds into a category of global sections of a sheaf of local categories.
Preservation

<table>
<thead>
<tr>
<th>category</th>
<th>local sections</th>
<th>stalks</th>
</tr>
</thead>
<tbody>
<tr>
<td>stiff</td>
<td>monoidal</td>
<td>stiff</td>
</tr>
<tr>
<td>closed</td>
<td>closed</td>
<td>closed</td>
</tr>
<tr>
<td>traced</td>
<td>traced</td>
<td>traced</td>
</tr>
<tr>
<td>compact</td>
<td>compact</td>
<td>compact</td>
</tr>
<tr>
<td>Boolean</td>
<td></td>
<td>two-valued</td>
</tr>
<tr>
<td>limits</td>
<td>limits</td>
<td>limits</td>
</tr>
<tr>
<td>projective colimits</td>
<td>colimits</td>
<td>colimits</td>
</tr>
</tbody>
</table>
Conclusion

- Cleanly separate ‘spatial’ from ‘temporal’ directions
- Does for multiplicative linear logic what was known for intuitionistic logic
- Directly capture more examples
- Concrete proof

- Completeness theorem?
- Coherence theorem?
- Restriction categories?
- Applications in computer science? Probability? Quantum theory?
References

- “Space in monoidal categories” [arXiv:1704.08086]
 P. Enrique Moliner, C. Heunen, S. Tull

- “Tensor topology” [arXiv:1810.01383]
 P. Enrique Moliner, C. Heunen, S. Tull

- “Sheaf representation for monoidal categories” [arXiv:soon]
 R. Soares Barbosa, C. Heunen

 C. Heunen, J. S. Pacaud Lemay
Restriction categories

Turn monoidal category \mathbf{C} into restriction category $S[\mathbf{C}]$:

- Objects: as in \mathbf{C}
- Morphisms: $A \otimes S \to B$ in \mathbf{C}
- Composition:
- Identity: $A \otimes I \to A$
- Tensor product:

Restriction: $\begin{pmatrix} B \\ f \\ A \otimes S \end{pmatrix} = \begin{pmatrix} A \otimes S \\ f \end{pmatrix}$
Tensor-restriction categories

point is \(d: I \rightarrow S \) with restriction inverse that is tensor-total

\[
\begin{align*}
I \xrightarrow{e = \bar{e}} I \\
I \xleftarrow{d} S \xrightarrow{s} I
\end{align*}
\]

\[
\begin{align*}
I \xrightarrow{d} S \xleftarrow{s} I \\
I \xrightarrow{\bar{d}} X
\end{align*}
\]

\[
\begin{align*}
I \xrightarrow{d} X \\
S \xleftarrow{s} I
\end{align*}
\]

- \(f \otimes g = \bar{f} \otimes \bar{g} \)
- any \(e = \bar{e}: I \rightarrow I \) factors via subunit \(s \) and point \(d \)
- any subunit \(s \) has point as restriction section
- any \(f = \bar{f}: X \rightarrow X \) equals \(f = e \bullet X \) for unique \(e = \bar{e}: I \rightarrow I \)
- any tensor-total \(f \) equals \(f = g \circ \bar{f} \) for a unique restriction-total \(g \);
- points left-lift against subunits
- points are closed under tensor product
- points are determined by codomain up to unique scalar