How to use a quantum computer

Chris Heunen



What is a quantum computer?
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Neutral atoms Majorana fermions

Trapped ions



What is quantum information?



Qubits

e Flements of unit circle in G2

e false=(1,0)

|1>n

/-

true = (0,1)

(2,

0
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j 0)

o Also|+)=(1L,1D)~N2 |-)=(1-1)/2

e Manipulate by 2x2 unitary matrices

e Cannotcloneor delete



Measurement

e Probabilistic operation qubit — bit

Il)h
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true with probability [(y|1)]?

e Dependson basis/angle

e (Collapse after measurement




Multiple qubits

e Compound systems given by tensor product
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e State not determined by factors

e Dimension multiplies

e Measurement of one qubit influences other




How not to use a quantum computer



% i [ Circuits
0
a2 R b e Timeflows lefttoright

e Space goes up and down

e Qubitsundergo unitary gates

e (Gates can be controlled by multiple qubits

e Bits may influence control flow
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Universal:

e (Computational universality:
can compute every computable function

But:
e Hardtoverify

e Hardtomanipulate
e Hard todiscover algorithms
e Hardtoscale

e Hardtoreuse classical infrastructure




Scale

This circuit adds two 8-bit numbers:
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Reasoning

Toffoli gate has many ‘obvious’ properties ...

... that are completely obscured once expressed by elementary gates
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Quantum conditional

e [if g then U else V]
BEERTY
0 [V]

e Both branches in superposition

e Not monotone
(unlike probabilistic computing)




Coherent Control

e Quantum switch:
if g then AB else BA

e Possible as circuit
(with multiple uses of oracles A and B)
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e Possible experimentall
(with single use of oracles)

e |mpossible as circuit
(with single use of oracles)




Teleportation

Use entanglement as communication channel
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Transmit 2 bits
to teleport 1 qubit

Pay cost ahead of time




How to use quantum information



Notation
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LARGE DISPLAY

Notation isn't just a way to write ideas.

&0 2E It stimulates ideas you can have.
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Abstraction

e Scalable
e Automatable
e Optimisable

e Understandable




Abstraction
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e Optimisable

e Understandable




Abstraction

Scalable

Automatable

Optimisable

Understandable
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How to use a quantum computer



Billiard Ball Computing

Universal for reversible computation [Fredkin & Toffoli, 1982]
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Permutations

Permutation with n elements is
nx n matrix with boolean entries

Permutations give semantics for
reversible classical programs

Not all polynomials x*+f have solutions:
not every permutation has a square root



Rig categories
Categorification of natural numbers: finite sets and bijections

f:A—> B g:B—C f:A— B fli A= B f:A— B fli Al —> B
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Quantum computing
as a completion

“It's really something that is special for
quantum computation because it's
somehow complete’ — quantum
computation is some kind of completion,
mathematically, of classical computation. |
think of this as maybe similar to the fact
that the complex numbers are an algebraic

closure of the real numbers.” / '




Universality

Categorical universality
characterise property up to isomorphism
by behaviour rather than construction
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I linear
bilinear v

Z
Finite sets and permutations are initial rig category

Axioms Free model

Any model




A Few Square Roots

Add two generators

w:le 1
v i1+l 1+1

And impose three equations

2 L™
V= = SWap
W8 =id \ _
VSV = SVS /

<

where s = id+w?

Canbuild Clifford+T:  T=id+w S=id+w? Z=id+w* H=w/vsv
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Theorem: Free model I exists

Theorem: If D is dyadic rationals, € is 8" root of unity,
then M= Unitary(D[])

Theorem: There is inclusion [-J: 'T— Unitary(©),
and it is dense

Theorem: [f]=[g] iff (f)=(g) for all interpretations (f)

Theorem: There is faithful F(IM) — FCstar

for universal constructionF P



Conclusion

How to use a quantum computer?
| don't know.

If scalable, optimisable, and understandable,

then programming language must be abstract.

Universality: no alarms and no surprises.
Candiscover primitives and algorithms.

Can uncover nature of quantum information.

Suggestion: rig categories, square roots.
Next: syntax, optimisation. Hamiltonians.

Many exciting questions for next 100 years!
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Taking back control

e Startwith any ‘circuit theory’

e Addcontrol

FEeE TS @
::-:: o —
A ] -7]

?f @
B

e Getcomplete, structured language




It’s just a phase

e Many (most?) quantum algorithms come down to
eigenspace decomposition and eigenvector manipulation

e Lifttoprimitive

e Universal

Z = if let|1) then Ph(x) X := if let |-) then Ph(or)
T := if let |1) then Ph(7/4) Y = if letS - |-) then Ph(x)
H := if let Y/* - |1) then Ph(x) CX := if let|1) ® id; then X

e (Grover now one-liner:

if let |w;) ® - -+ ® |w,) then Ph(x)




More ancillae, more problems

e Cannotreusedirty qubits
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e Rusttype system: ownership, borrowing

1 fn main() { 1 fn main() {

2 let x = [1,2,31]: 2 et i=n 1525340

3 let y = f(x); // value of x is moved 3 let y = f(&x); // x is borrowed

4 print!("{x},{y}"); // so x lost access 4 print!("{x},{y}"); // x can be read
5 B 5 3}

6 [N ER<T>(OCRTONE>ET G 6 FENREST=GxIN: TN => T

7 X 7 X

8 3 8 3

e Compiler automatically inserts uncomputation

PR,
1 fn and3<'a>( X —e—— X
2 x:&"'a gbit, | 1
X 2 3 y:&'a gbit, y : : y
4 z:&'a gbit | 1
y—eo—Y 5 ) -> #'a gbit { l0> () M C) : tmp
6 let tmp = and(x,y); t
7 let ref = &tmp; 7 - 7
yany
|0) A and(xy) s and(ref,z)
o 2 [0) & and3(x,y,z)
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Syntax ° ° °
' NN P Programming with equations

Types
hadamard : 1+1 < 1+ 1

Equations

e \Word problem decidable

]]__. R c—

+ hadamard hadamard L2l

e Normalisation by evaluation

— e —
+ hich Bk e Fewer generators thanTl
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e Theorem (completeness): [J=[g] iff (F)=C(g)
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Orthogonal group presentations

Proposition: there is finite presentation for unitary matrices OH(Z[l/x/Z])

H? .. ~¢
(—l)fa] BE [a,b]
X2 e
b
G (=Dt Hipel ~ Hipe)(=Dia]

Xla,p1H[c,a] ® H{c,a1X[a,b]
(—Dia1(—Dip) & (—Dp)(—Dja)

(—Dia)Xb,c] ® X(b,c](—Dpq]
X[a,b1X[c,d] ® X[c,d1X[a,b]

Hiq p)H[c,a) ® Hic,d1H[a,b]

Hp,c1X[a,b] ® X[a,b]H[a,c]

(— 1) 1% X = 1) Hiq,c1X[b,c] ® X[b,c]H[a,b]
[a,b] =~ A[a,b]

Xb’.X ,b ~ X ,bX >
Lolabn Lk (=D (=Dp1H[a,b] ® Ha,b](=D(a](=Dp]

(=Dp1H[a,b] ® H{a,b]X[a,b]

X1b,c1H[a,b1X[a,c1H[a,d1H[a,b]X[a,c] H[a,d] * H[a,b1X[a,c1H[a,d]H[a,b1X[a,c1H[a,d]X[c,d]

X[a,c1X[b,c] ® X[b,c]X[a,b]




Bit commitment

e Alice commits to value hidden from Bob

e Cryptographic primitive, essential in
o zero-knowledge proofs
o secretsharing

o secure multi-party computation

e |mpossible with guantum values



