
How to use a quantum computer

Chris Heunen

What is a quantum computer?

Superconducting PhotonsSpin

Majorana fermionsTrapped ions Neutral atoms

What is quantum information?

Qubits

● Elements of unit circle in ℂ2

● false = (1,0) true = (0,1)

● Also |+⟩ = (1,1)/√2 |-⟩ = (1,-1)/√2

● Manipulate by 2x2 unitary matrices

● Cannot clone or delete

Measurement

● Probabilistic operation qubit → bit

true with probability |⟨ψ|1⟩|2

● Depends on basis/angle

● Collapse after measurement

Multiple qubits

● Compound systems given by tensor product

● State not determined by factors

● Dimension multiplies

● Measurement of one qubit influences other

How not to use a quantum computer

Circuits
● Time flows left to right

● Space goes up and down

● Qubits undergo unitary gates

● Gates can be controlled by multiple qubits

● Bits may influence control flow

()*

Universal:

● Computational universality:
can compute every computable function

But:

● Hard to verify

● Hard to manipulate

● Hard to discover algorithms

● Hard to scale

● Hard to reuse classical infrastructure

Scale

This circuit adds two 8-bit numbers:

Reasoning

Toffoli gate has many ‘obvious’ properties …

… that are completely obscured once expressed by elementary gates

Quantum conditional

● ⟦if q then U else V⟧

= ⟦U⟧ 0
 0 ⟦V⟧

● Both branches in superposition

● Not monotone
(unlike probabilistic computing)

Coherent Control
● Quantum switch:

if q then AB else BA

● Possible as circuit
(with multiple uses of oracles A and B)

● Possible experimentally
(with single use of oracles)

● Impossible as circuit
(with single use of oracles)

Teleportation
● Use entanglement as communication channel

● Transmit 2 bits (finite amount of information)
to teleport 1 qubit (uncountable)

● Pay cost ahead of time

How to use quantum information

Notation

Notation isn’t just a way to write ideas.

It stimulates ideas you can have.

Abstraction

● Scalable

● Automatable

● Optimisable

● Understandable

Abstraction

● Scalable

● Automatable

● Optimisable

● Understandable

Abstraction

● Scalable

● Automatable

● Optimisable

● Understandable

How to use a quantum computer

Billiard Ball Computing
Universal for reversible computation [Fredkin & Toffoli, 1982]

Permutations

Permutation with n elements is
n x n matrix with boolean entries

Permutations give semantics for
reversible classical programs

Not all polynomials x2+f have solutions:
not every permutation has a square root

Rig categories
Categorification of natural numbers: finite sets and bijections

Quantum computing
as a completion

“It’s really something that is special for
quantum computation because it’s
somehow ‘complete’ — quantum
computation is some kind of completion,
mathematically, of classical computation. I
think of this as maybe similar to the fact
that the complex numbers are an algebraic
closure of the real numbers.”

Universality

Categorical universality
characterise property up to isomorphism
by behaviour rather than construction

Finite sets and permutations are initial rig category

A Few Square Roots

Add two generators

 w : 1 ↔ 1
 v : 1+1 ↔ 1+1

And impose three equations

 v2 = swap
 w8 = id
 vsv = svs

where s = id+w2

Can build Clifford+T: T = id + w S = id + w2 Z = id + w4 H = w7 v s v

Freeq
Theorem: Free model Π exists

Theorem: If 𝔻 is dyadic rationals, ζ

is 8th root of unity,

 then Π

= Unitary(𝔻[ζ])

Theorem: There is inclusion ⟦-⟧: Π

→ Unitary(ℂ),

 and it is dense

Theorem: ⟦f⟧=⟦g⟧ iff ⦅f⦆=⦅g⦆ for all interpretations ⦅f⦆

Theorem: There is faithful F(Π) → FCstar
cp

for universal construction F

Conclusion
● How to use a quantum computer?

I don’t know.

● If scalable, optimisable, and understandable,
then programming language must be abstract.

● Universality: no alarms and no surprises.
Can discover primitives and algorithms.

● Can uncover nature of quantum information.

● Suggestion: rig categories, square roots.
Next: syntax, optimisation. Hamiltonians.

Many exciting questions for next 100 years!

References
● “Categories for Quantum Theory”

Oxford University Press, 2019

● “Axioms for the Category of Hilbert Spaces”
Proceedings of the National Academy of Sciences, 2022

● “Weakly Measured While Loops: Peaking at Quantum States”
Quantum Science and Technology, 2022

● “With a Few Square Roots, Quantum Computing is as Easy as Pi”
Principles of Programming Languages, 2024

● “Qurts: Automatic Quantum Uncomputation by Affine Types with Lifetimes”
Principles of Programming Languages, 2025

● “Quantum Circuits are Just a Phase”
Principles of Programming Languages, 2026

● “One Rig to Control Them All”
arXiv, 2026

Taking back control

● Start with any ‘circuit theory’

● Add control

● Get complete, structured language

It’s just a phase

● Many (most?) quantum algorithms come down to
eigenspace decomposition and eigenvector manipulation

● Lift to primitive

● Universal

● Grover now one-liner:

More ancillae, more problems

● Cannot reuse dirty qubits

● Rust type system: ownership, borrowing

● Compiler automatically inserts uncomputation

Becoming measured

● classical computation
= classical reversible computation
+ information effects

● Can copy and delete classical bits with

erase : b ⇝ 1
create : 1 ⇝ b

● Dynamic quantum programming language

● Compiles measurements anywhere to
single standard measurement at end

Programming with equations

● Word problem decidable

● Normalisation by evaluation

● Fewer generators than Π

● Theorem (completeness): ⟦f⟧=⟦g⟧ iff ⦅f⦆=⦅g⦆

Orthogonal group presentations

Proposition: there is finite presentation for unitary matrices O
n
(ℤ[1/√2])

Bit commitment

● Alice commits to value hidden from Bob

● Cryptographic primitive, essential in

○ zero-knowledge proofs

○ secret sharing

○ secure multi-party computation

● Impossible with quantum values

