
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Division of Informatics, University of Edinburgh

Institute for Adaptive and Neural Computation

An Analysis of Contrastive Divergence Learning in Gaussian
Boltzmann Machines

by

Chris Williams, Felix Agakov

Informatics Research Report EDI-INF-RR-0120

Division of Informatics May 2002
http://www.informatics.ed.ac.uk/



An Analysis of Contrastive Divergence Learning in
Gaussian Boltzmann Machines

Chris Williams, Felix Agakov

Informatics Research Report EDI-INF-RR-0120

DIVISION of INFORMATICS
Institute for Adaptive and Neural Computation

May 2002

Abstract :
The Boltzmann machine (BM) learning rule for random field models with latent variables can be problematic to use

in practice. These problems have (at least partially) been attributed to the negative phase in BM learning where a Gibbs
sampling chain should be run to equilibrium. Hinton (1999, 2000) has introduced an alternative called contrastive
divergence (CD) learning where the chain is run for only 1 step. In this paper we analyse the mean and variance of
the parameter update obtained afteri steps of Gibbs sampling for a simple Gaussian BM. For this model our analysis
shows that CD learning produces (as expected) a biased estimate of the true parameter update. We also show that the
variance does usually increase withi and quantify this behaviour.

Keywords : learning, contrastive divergence, products of experts

Copyright c 2002 by The University of Edinburgh. All Rights Reserved

The authors and the University of Edinburgh retain the right to reproduce and publish this paper for non-commercial
purposes.

Permission is granted for this report to be reproduced by others for non-commercial purposes as long as this copy-
right notice is reprinted in full in any reproduction. Applications to make other use of the material should be addressed
in the first instance to Copyright Permissions, Division of Informatics, The University of Edinburgh, 80 South Bridge,
Edinburgh EH1 1HN, Scotland.



An Analysis of Contrastive Divergence Learning in

Gaussian Boltzmann Machines

Christopher K. I. Williams and Felix V. Agakov
Division of Informatics, University of Edinburgh, Edinburgh EH1 2QL, UK

c.k.i.williams@ed.ac.uk, felixa@dai.ed.ac.uk

http://anc.ed.ac.uk

May 17, 2002

Abstract

The Boltzmann machine (BM) learning rule for random field models with latent
variables can be problematic to use in practice. These problems have (at least
partially) been attributed to the negative phase in BM learning where a Gibbs
sampling chain should be run to equilibrium. Hinton (1999, 2000) has introduced
an alternative called contrastive divergence (CD) learning where the chain is run
for only 1 step. In this paper we analyse the mean and variance of the parameter
update obtained after i steps of Gibbs sampling for a simple Gaussian BM. For this
model our analysis shows that CD learning produces (as expected) a biased estimate
of the true parameter update. We also show that the variance does usually increase
with i and quantify this behaviour.

Recently Hinton (1999, 2000) has introduced the contrastive divergence (CD) learning
rule. This was introduced in the context of Products of Experts architectures, although
it is a general learning algorithm for random field models. The idea is that instead of
using the negative phase of Boltzmann machine (BM) learning (which in theory requires
running a Gibbs sampler to equilibrium), a smaller number of Gibbs sampling iterations
should be used (e.g. 1). The contribution of this paper is to analyse the CD learning
rule for an arbitrary number i > 0 of Gibbs sampling iterations for a simple Gaussian
Boltzmann machine. This allows us to compare the mean and variance of the CD(i)
update with the BM update. In a nutshell, we find that the bias of the CD(i) update
decreases with i, while the variance of the update increases with i (although this latter
conclusion depends on exactly how the learning rule is implemented).
The structure of the paper is as follows: in section 1 we introduce binary and Gaussian

Boltzmann machines, and the BM and CD learning rules. In section 2 we first introduce
a simple Gaussian BM and then calculate the mean and variance of the parameter update
as a function of i, the number of Gibbs sampling iterations. Finally, in section 3 we
briefly describe extension of the results to the case of multivariate Gaussian Boltzmann
machines.
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1 Boltzmann Machines and Gaussian Boltzmann Ma-

chines

A Boltzmann machine (Ackley, Hinton and Sejnowski, 1985) is a latent variable model
used for modelling data. Let x and z be stochastic visible and hidden variables of the
Boltzmann machine, and let y = (xT , zT )T . There is a weight matrix W so that the
energy of configuration y is E(y) = 1

2
yTW y. The usual BM has binary variables. The

probability distribution over y is given by p(y) ∝ exp−E(y).
In the case that x and z are real-valued we can still maintain the BM formalism,

althoughW must be symmetric positive definite in order for the distribution to be proper
(see e.g. Williams (1993)).

1.1 Boltzmann Machine Learning and CD Learning

The Boltzmann machine defines a probability distribution over the visible variables

p(x) =
1

Z

∫

exp−E(x, z) dz, (1)

where

Z =

∫ ∫

exp−E(x, z) dz dx. (2)

Let X denote a sample drawn iid from a target distribution over the visible variables. The
log likelihood of X under the Boltzmann machine model is L(W ) =∑x∈X log p(x). Let us
consider a weight wij which connects a visible unit x

i with a hidden unit zj. Then

∂L
∂wij

=
∑

x∈X

[〈xizj〉+ − 〈xizj〉−] (3)

where

〈xizj〉+ def
=

∫

xizjp(z|x)dz, (4)

〈xizj〉− def
=

∫

xizjp(x, z)dxdz. (5)

Thus the learning rule consists of the positive phase, where z is sampled given the pre-
sented x pattern, and the negative phase, where a sample is drawn from the joint distri-
bution of x and z. In fact the exact averages shown in (4) and (5) are usually intractable
and replaced by a sample drawn from the correct distribution. This is easily achieved by
Gibbs sampling for the positive phase, but for the negative phase a Markov Chain Monte
Carlo (MCMC) method which alternates sampling from the hidden and visible units is
required. This chain is illustrated in Figure 1. Starting at the clamped data vector x0,
we sample first from p(z|x0) to obtain z0, then from p(x|z0) to obtain x1 and so on. Under
general conditions the MCMC method is guaranteed to draw from the correct distribution
p(x, z) as the number of iterations tends to infinity.
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However, MCMC approximation of the negative phase may be unacceptably slow in
practice and give rise to samples with high variance. The idea of contrastive divergence
learning (Hinton, 1999, 2000) is to replace the negative phase of Boltzmann machine
learning with 〈xizj〉p(x1,z1), where p(x1, z1) denotes the distribution of the Gibbs sampling
variables as illustrated in Figure 1. We denote this as the CD(1) learning rule. In this
notation the original negative phase is denoted 〈xizj〉p(x∞,z∞). In general we can consider
a CD(i) learning rule, that replaces the negative phase of the BM with 〈xizj〉p(xi,zi).

x0

p(x|z1)

z0 z1

x1 . . . 

p(x)
p(z|x0) p(x|z0) p(z|x1)

Figure 1: Markov chain used in Gibbs sampling for the x and z variables, starting with
the data vector x0.

The advantage of the CD(1) method is that it reduces the computational burden of
the update. Also, it can be shown (Hinton, 2002, personal communication) that if the
model can perfectly represent the data distribution then the stationary points of the
CD(1) objective function are also stationary points of the CD(∞) or Boltzmann machine
learning rule. We would expect that the gradient of the CD(1) objective function would
be a biased estimate of the CD(∞) gradient, but that it would have smaller variance.
These issues are explored below for a particular Gaussian BM architecture.

2 Case Study: CD(i) Learning in a Simple Gaussian

Boltzmann Machine

We consider a simple 1-hidden variable, 1-visible variable Gaussian BM, with x and z
denoting the visible and hidden variables respectively. Let W have the form

W =

[

α ω
ω α

]

. (6)

Inverting this matrix we find that the covariance matrix of y = (x, z)T is

C =
1

α2 − ω2

[

α −ω
−ω α

]

def
=

[

a w
w a

]

, (7)

where a
def
= α/(α2 − ω2), w

def
= −ω/(α2 − ω2), |w| < a. We consider α to be fixed and

are interested in the distribution of x as ω is varied. In fact x ∼ N(0, a). Thus we seek
to adapt ω so that the resulting variance a of the visible variable matches the variance of

the data. Let this target variance be denoted at
def
= var(x0). We assume that the data is

centered so that E[x] = 0.
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In this section we analyse in detail the properties of the CD(i) learning rule for the
1-hidden 1-visible Gaussian Boltzmann machine. In section 3 we consider the general
multivariate case, where we obtain more general but less strong results than in the specific
case.

2.1 Gibbs Sampling for a Gaussian Boltzmann Machine

Let y be partitioned as yT = (yT
1 , y

T
2 ), and the corresponding partition of the covariance

matrix C of the joint Gaussian be

C =

[

C11 C12

C21 C22

]

. (8)

The conditional p(y1|y2) can be expressed as

p(y1|y2) ∼ N(µ1 + C12C
−1
22 (x2 − µ2),C11 − C12C

−1
22 C21) (9)

where (µT
1 ,µ

T
2 )

T is the mean vector of the Gaussian (see e.g. pp. 226-228 of Mises 1964).
From (7) and (9) it is easy to show that for the 1-visible 1-hidden variable model

p(x|z) ∼ N(σz, τ 2), p(z|x) ∼ N(σx, τ 2), (10)

with the auxiliary parameters given by σ
def
= w/a and τ 2 def

= (1− σ2)a. For the covariance
of the complete model to be positive-definite, σ should belong to the open interval (−1, 1).
Let v1, v2, . . ., u0, u1, . . . correspond to mutually independent N(0, 1) random variables,

i.e. 〈uivk〉 = 0, 〈uiuk〉 = 〈vivk〉 = δik, where δik is the Kronecker delta. From (10) we
have

zi = σxi + τui, i ≥ 0, xj = σzj−1 + τvj, j ≥ 1. (11)

We are interested in the CD(i) parameter update which is proportional to

∆0i = x0z0 − xizi. (12)

This is a random quantity, which depends not only on the u’s and v’s in the Gibbs sampling
chain, but also on the random choice of x0. Below we calculate the mean conditional on
x0 i.e. 〈∆0i|x0〉 and the unconditional mean 〈∆0i〉 = 〈〈∆0i|x0〉〉x0

, where 〈. . .〉x0
denotes

expectation over the data distribution p(x0). We also calculate the conditional variance
var(∆0i|x0) and the unconditional variance var(∆0i).
Of course for a Gaussian Boltzmann machine it is not necessary to use the Boltzmann

machine or CD(i) learning rules to adapt the parameters W , one can simply use matrix
inversion and analytic derivatives of the likelihood. However, our aim is to investigate
these learning rules and the Gaussian model is an interesting one in which exact analysis
can be carried out.
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2.2 Calculation of the Mean 〈∆0i〉
Expression (11) leads to

xizi = σx2
i + τuixi ⇒ 〈xizi|x0〉 = σ〈x2

i |x0〉. (13)

It can be shown (see Appendix A) that 〈x2
i |x0〉 = σ4i(x2

0 − a) + a, thus

〈xizi|x0〉 = σ4i+1(x2
0 − a) + aσ. (14)

Therefore
〈∆0i|x0〉 = σ(x2

0 − a)(1− σ4i) (15)

and

〈∆0i〉 = 〈〈∆0i|x0〉〉x0
= σ(at − a)(1− σ4i), (16)

where at is the variance of the data.

2.3 Comparison with Boltzmann Learning

From (16) we can compute the average weight update of Boltzmann learning 〈∆BM〉:

〈∆BM〉 = 〈〈x0z0|x0〉 − 〈x∞z∞〉〉x0
= σ(at − a). (17)

We can further notice that since |σ| < 1 then

lim
i→∞

|〈∆0i〉| = lim
i→∞

|σ(at − a)|(1− σ4i) = |σ(at − a)|. (18)

Thus, in the considered model the gradient of the log-likelihood in i-step contrastive
divergence learning |∂L(i)/∂ω| underestimates the absolute value of the gradient of the
log-likelihood of the Boltzmann learning rule |∂LBM/∂ω|, but asymptotically approaches
to it as the number of Gibbs sampling iterations i increases, see Figure 2. Moreover, it is
easy to see from (16) and (17) that for both BM and CD(i) learning, the optimal choice
of ω leads to a = at. This is an expected result, since the Gaussian Boltzmann machine
can perfectly fit the training distribution N(0, at). Note also that 〈∆0i〉 has the same sign
as 〈∆BM〉.

2.4 Calculation of the Variance var(∆0i)

We first calculate the conditional variance var(∆0i|x0) due to stochasticity of the Gibbs
sampling and then calculate the unconditional variance var(∆0i).
There are two different situations that we can analyse, depending on whether or not

two different chains are run to calculate equation 12, i.e. that the sample z0 used in the
negative phase of the learning rule is distinct from the sample used in the positive phase
for calculating x0z0. For the case that two chains are used (call this case I, where I stands
for independent), we have

var(∆0i|x0) = var(x0z0|x0) + var(xizi|x0). (19)
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Figure 2: Plot of |〈∆0i〉|/|〈∆0∞〉| against iteration number i for σ = 0.9.

It is easy to show that var(x0z0|x0) = τ 2x2
0 = (1− σ2)ax2

0 and thus

var(∆0i|x0) = (1− σ2)ax2
0 + 〈(xizi)

2|x0〉 − (〈xizi|x0〉)2.

If only one chain is used (call this case D, D for dependent) then (19) must be corrected
by a term −2cov(x0z0, xizi|x0). Analysis shows that cov(x0z0, xizi|x0) = 2x

2
0a(1− σ2)σ4i.

In the remainder of this section our derivations are made for case I; expressions for case
D can be obtained by including this extra term. The expression for 〈xizi|x0〉 in the r.h.s.
of (20) has been derived in (14). Expanding 〈(xizi)

2|x0〉, we obtain

〈(xizi)
2|x0〉 = σ2〈x4

i |x0〉+ 2στ〈x3
iui|x0〉

+τ 2〈u2
ix

2
i |x0〉

= σ2〈x4
i |x0〉+ τ 2〈x2

i |x0〉. (20)

After some simplifications shown in Appendix A, (19) can be re-written as

var(∆0i|x0) = 2aσ
2(a− 2x2

0)k
2 − 3σ2a(a− x2

0)k

−a(a− x2
0)k + a2(1 + σ2) + (1− σ2)ax2

0, (21)

where k = σ4i ⊂ (0, 1]. The unconditional variance var(∆0i) may be expressed as
∫

[

(〈∆0i|x0〉 − 〈∆0i〉)2 + var(∆0i|x0)
]

p(x0)dx0. (22)

By applying (22) to (15) and (16) and performing some manipulations, we can express
the unconditional variance of the parameter update as

var(∆0i) = 〈var(∆0i|x0)〉x0
+ σ2(〈x4

0〉 − a2
t )(1− k)2. (23)
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By averaging (21) over p(x0) and using 〈x4
0〉 = 3a2

t for a Gaussian target distribution we
obtain

var(∆0i) = 2σ
2(a− at)

2k2 − [a(a− at)(1 + 3σ
2) + 4σ2a2

t ]k

+ a2(1 + σ2) + (1− σ2)aat + 2σ
2a2

t . (24)

2.5 Behaviour of var(∆0i) as a function of i

Here we investigate the behaviour of the variance of the CD(i) update term for the given
model as a function of the the number of Gibbs sampling iterations.
Note that (24) is a quadratic in k, say Ak2 + Bk + C. As k = σ4i we note that as i

increases from 1, k will vary from σ4 towards 0 (as |σ| < 1). Hence the behaviour of the
variance as a function of i depends on the parameters A and B in the quadratic. Note that
A > 0 and thus that we have a quadratic bowl whose minimum falls at k∗ = −B/2A.
If k∗ ≥ σ4 then the variance will increase monotonically with i. Conversely if k∗ ≤ 0
the variance will decrease monotonically with i, but if 0 < k∗ < σ4 then there can be
non-monotonic behaviour, with the variance first rising then falling. Which behaviour is
obtained will depend on the values of the parameters at, a and σ.
There are many quantities that we might examine, e.g. the conditional and uncondi-

tional variances as a function of i, for both cases I and D. We first focus on the uncondi-
tional variance for case I. We can show that a ≥ at is a sufficient (although not necessary)
condition for this quantity to increase monotonically. Consider the specific case of at = 1
and α = 2; here increasing |ω| away from 0 causes a to increase. For |ω| . 0.5524 the
variance decreases as a function of i, although this decrease is very small and var(∆0i) is
in fact almost constant. (For example, for at = 1, α = 2, and |ω| = 0.5, the drop is from
≈ 0.92740 on iteration 1 to ≈ 0.92722 for subsequent iterations.) For |ω| & 0.5528 the
variance increases monotonically with i. In the intermediate region the behaviour is non-
monotonic (although almost constant). For |ω| =

√
2 (corresponding to a = at = 1) the

increase in variance with iteration number i is plotted in Figure 3(a). Note that for small
|ω| there is weak coupling between the hidden and visible variables which explains the
almost-constant behaviour of the variance. For reasonably large |ω| the variance var(∆0i)
increases significantly with i.

For case D, i.e. when a single chain is used for both positive and negative stages of
learning, it can be shown that the unconditional variance increases monotonically as a
function of i for all attainable values of the parameters at, a and σ. It is also worth noting
that for both cases I and D, 〈var(∆0i|x0)〉x0

can display non-monotonic or decreasing
behaviour of relatively large magnitude (see Figure 3(b) and Figure 3(c)). This suggests
that variation of the variance of the parameter update with the number of iterations is
strongly influenced by the exact learning rule used.
In all cases these analytical results have been confirmed by experiments using many

Gibbs sampling runs.
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Figure 3: (a) Plot of var(∆oi) for case I as a function of i for at = 1, α = 2 and ω =
√
2.

(b) Plot of the conditional variance 〈var(∆oi|x0)〉x0
for case I as a function of i for at = 25,

α = 12 and ω = 10. (c) Plot of the conditional variance 〈var(∆oi|x0)〉x0
for case I as a

function of i for at = 25, α = 12 and ω = 11.5.

2.6 Quantification of the Contrastive Divergence Approxima-
tion

The CD(i) learning rule discards a term in the expression for the gradient of the log-
likelihood. Here we quantify the CD(i) approximation of the gradient of the log-likelihood
for the case of a simple Gaussian Boltzmann machine defined above.

Let Q0(x)
def
= p(x0) and Qi(x)

def
= p(xi) be the data distribution and the distribution of

the visible variables after their i-step reconstruction. It is easy to see that maximization

of the likelihood Q∞(x)
def
= p(x) under the model is equivalent to minimization of the KL

divergence KL(Q0(x)‖Q∞(x)) between the data and the model as

KL(Q0‖Q∞) = −H(Q0)− 〈log(Q∞)〉Q0
, (25)

where H(Q0) is the empirical entropy. Clearly the free energy term is in general difficult
to compute [see expressions (1) and (2)].
Let L(i) be the i-step estimate of the log-likelihood, defined as

L(i) = KL(Qi‖Q∞)−KL(Q0‖Q∞)−H(Q0) (26)

=

∫

Q0(x) logQ∞(x)dx−H(Qi)

−
∫

Qi(x) logQ∞(x)dx. (27)

Notice that limi→∞ L(i) = L. The gradient of L(i) is given by

∇ωL(i) = 〈∆0i〉 −
∂H(Qi(x))

∂ω
−
∫

∂Qi(x)

∂ω
logQ∞(x)dx. (28)
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Here 〈∆0i〉 is the CD(i) parameter update given by

〈∆0i〉 =
〈

∂ logL
∂ω

〉

Q0

−
〈

∂ logL
∂ω

〉

Qi

. (29)

For the Gaussian Boltzmann machine considered in section 2.1 Q∞(x) ∼ N(0, a) and
Qi ∼ N(0, σ2

i ), where σ2
i = σ4i(at − a) + a. The variance a of the data under the model

changes over time as the CD(i) updates are performed and approaches at if the learning
rule is set up correctly.

Let εi
def
= ∇ωL(i) − 〈∆0i〉, the term discarded from the gradient (28) under the CD(i)

learning. From (28) we obtain

εi =
−∂H(Qi(x))

∂ω
+

1√
2πσ2

i

∂σi

∂ω

∫

exp

{

− x2

2σ2
i

}

×
[

1− x2

σ2
i

](

−x2

2a
− log 2πa

2

)

dx. (30)

Analytic expressions for the Gaussian integrals in the r.h.s. of equation (30) are well
known: if

In
def
=

∫ ∞

−∞

exp

{

− x2

2σ2
i

}

xndx (31)

then I0 = σi

√
2π, I2 = σ3

i

√
2π, I4 = 3σ5

i

√
2π. Also, the entropy of a Gaussian ∼

N(0, σ2
i ) is

1
2
log(2πeσ2

i ). Substituting these expressions into (30) and performing some
manipulations we get

εi =

(

− 1
σi

+
σi

a

)

∂σi

∂ω
, (32)

∂σi

∂ω
=
1

2σi

[(

(at − a)(4i/ω) + 2a2σ
)

σ4i − 2a2σ
]

. (33)

Note that from (32) and the fact that limi→∞ σ2
i = a we obtain limi→∞ εi = 0 as expected.

In order to analyze importance of the discarded term εi for evaluation of the gradient
∇ωL(i) we can consider the ratio between εi and the mean parameter update of the CD(i)
learning. From equations (16) and (32) it follows that

∣

∣

∣

∣

εi

〈∆0i〉

∣

∣

∣

∣

=
σ4i

aσi(1− σ4i)

∣

∣

∣

∣

1

σ

∂σi

∂ω

∣

∣

∣

∣

. (34)

As we see from Figure 4, there exist parameter settings such that |ε1| yields a large
contribution to ∇ωL(1). This is consistent with the experimental results in Hinton (2000,
section 10) where quite large deviations can be observed for individual parameters. How-
ever, Hinton notes that for networks with several units, the vector 〈∆0i〉 is almost certain
to have a positive cosine with 〈∆0∞〉. Figure 4 also shows that limi→∞ |εi/〈∆0i〉| = 0 as
we would expect.
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√
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3 Extension To Multivariate Gaussian Boltzmann Ma-

chines

In this section we describe general properties of the CD(i) learning for a multivariate
Gaussian Boltzmann machine. We give an upper bound on the geometric rates of conver-
gence of the mean and the variance of the parameter update and discuss how the exact
convergence rate for the mean can be found.

3.1 Gibbs Sampling for a Multivariate Gaussian Boltzmann Ma-
chine

Let Σ and W be the covariance and the inverse covariance (weight) matrix of a Gaussian
Boltzmann machine with |x| visible and |z| hidden variables, such that

W =

[

Wzz Wzx

Wxz Wxx

]

, Σ =

[

Σzz Σzx

Σxz Σxx

]

, W = Σ−1. (35)

Since both W, Σ ∈ R(|z|+|x|)×(|z|+|x|) are symmetric, Wzx = WT
xz and Σzx = Σ

T
xz. As in

the simple case considered above, learning in a multivariate Gaussian Boltzmann machine
assumes adapting the weights Wzx between hidden and visible variables so that the co-
variance matrix Σxx of the visible variables under the model matches the covariance of
the data (as before, we assume that the data is centered at the origin).
Representing the conditional distributions (9) in terms of W (using the partitioned

matrix inverse equations, see e.g. Press et al. (1992)[p 77]) we obtain

p(z|x) ∼ N(−W−1
zz Wzxx, W

−1
zz ) (36)

p(x|z) ∼ N(−W−1
xxWxzz, W

−1
xx ). (37)
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Equivalently, by analogy with the 1-hidden 1-visible variable case we can expand the
Gibbs sampling chain as

zi = Sxi + ui ∈ R|z|, i ≥ 0 (38)

xj = Tzj−1 + vj ∈ R|x|, j ≥ 1. (39)

Here S = −W−1
zz Wzx ∈ R|z|×|x|, T = −W−1

xxWxz ∈ R|x|×|z|, and v1, v2, . . . , u0, u1, . . . are
mutually independent random variables such that

ui ∼ N(0,W−1
zz ), vj ∼ N(0,W−1

xx ). (40)

For the i-step learning rule the parameter update is given by

∆0i = z0x
T
0 − zixTi ∈ R|z|×|x|, (41)

where a (k, j) element ∆kj
0i of∆0i corresponds to the weight update between the k

th hidden
and the jth visible unit.

3.2 Geometric Convergence of 〈∆0i〉 and var(∆0i)

Let 〈∆0i〉 =
{

〈∆kj
0i 〉
}

and var(∆0i) =
{

var(∆kj
0i )
}

for k = 1 . . . |h|, j = 1 . . . |v|. Note
that each element ∆kj

0i is a function of the chain variables xi and zi. We may hope to
understand dependence of 〈∆0i〉 and var(∆0i) on i if we are able to estimate the rate of
convergence for arbitrary functions defined on the induced Markov chain.
Suppose that {y0, y1, . . .} is a Markov chain with the target density p?(y), f(y) is some

p?-integrable function, and

p?(f) =

∫

f(y)p?(y)dy (42)

is the expectation of function f under the stationary density. The rate of geometric
convergence of function f on the chain {y} may be defined as the minimum number ρ(f)
such that for all r > ρ(f)

lim
i→∞

1

ri

∫
(
∫

f(yi)p(yi|y0)dyi − p?(f)

)2

p(y0)dy0 = 0. (43)

Roberts and Sahu (1997) investigate properties of geometric convergence for functions
of Markov chains when the target density is a Gaussian. They show that under the
deterministic updating strategy the convergence rate ρ(f) of any function f(y) is bounded
above by the spectral radius ρ (maximum modulus eigenvalue) of a matrix B formed from
elements of the inverse covariance W. For the case of the Gaussian Boltzmann machine
described in section 3.1 the chain is given by {y} = {[zT0 xT0 ]T , [zT1 xT1 ]T , . . .} and B is given
by1

B =

[

0 −W−1
zz Wzx

0 W−1
xxWxzW

−1
zz Wzx

]

. (44)

1Note that since the leftmost blocks of B are zeros ρ(B) = ρ(W−1
xx WxzW

−1
zz Wzx).
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From expression (41) we see that 〈∆0i〉 is a function of {y}. Therefore, ρ(B) gives an upper
bound on the rate of geometric convergence of 〈∆0i〉 to its expectation 〈∆BM〉 under
the stationary density. Analogously, ρ(B) is an upper bound on the rate of geometric
convergence for the variances var(∆0i).
If we apply this bound to the 1-hidden 1-visible BM analyzed in section 2 we obtain

a loose bound on the true rate of convergence. However, this is not very surprising as
the spectral radius bound must apply for any function f . A specific analysis for 〈∆0i〉 is
given in section 3.3.

3.3 Analysis of 〈∆0i〉
Consider the Markov chain for the evolution of xi. This has Gaussian dynamics, so that
xi = Fxi−1 + ni for some state transition matrix F = TS and some zero-mean Gaussian

noise vector ni with covariance Q
def
= Tcov(ui)T

T + cov(vi). As zi = Sxi + ui, we obtain

〈∆0i〉 = S〈x0xT0 〉 − S〈xixTi 〉. (45)

Of course we have the decomposition

〈xixTi 〉 = 〈xi〉〈xi〉T + cov(xi). (46)

Assuming that x0 ∼ N(0,Σt) (the target density), then 〈xi〉 = 0. Let Pi denote cov(xi);
clearly Pi = FPi−1F

T + Q. Applying this recursively we can build up the expression
Pi = FiP0(F

T )i +
∑i−1

k=0 F
kQ(FT )k but this does not give a clear view of the convergence

behaviour. However, we can carry out an analysis by viewing the Markov chain for xi as
a Kalman Filter with no observations, and solving the discrete-time matrix Riccati equa-
tion (see e.g. Grewal and Andrews (1993), section 4.9) with a zero state-to-observation
mapping.
We represent Pi as Pi = AiB

−1
i . It can then be shown that the equation for the update

of Pi is equivalent to
[

Ai

Bi

]

=

[

F QF−T

0 F−T

] [

Ai−1

Bi−1

]

. (47)

This is initialized with A0 = Σt and B0 = I. The 2|x| × 2|x| matrix in equation (47) is
known as the Hamiltonian matrix; let it have an eigendecomposition VΛV−1, where Λ is
a diagonal matrix. Then we obtain

[

Ai

Bi

]

= VΛiV−1

[

Σt

I

]

. (48)

Clearly the convergence of both Ai and Bi can be analyzed in terms of the eigenspectrum
diag(Λ), but as Pi = AiB

−1
i an exact analysis of the convergence of Pi is more taxing.

We note that as xi is a Gaussian random variable, the fourth-order moments needed
to analyze var(∆0i) can be expressed in terms of the second order moments, although
the analysis will be quite messy.
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4 Discussion

In this paper we have generalized Hinton’s one-step Gibbs sampling contrastive divergence
learning rule to the general i-steps case, and analysed its performance as compared to
the the Boltzmann machine learning rule on a simple Gaussian Boltzmann machine. The
CD(i) rule leads to a systematic bias in the calculation of the gradient of the log likelihood,
although the stationary points of the CD(i) rule are stationary points of the Boltzmann
machine rule. One key reason for the introduction of the CD(i) learning rule was that it
was expected to reduce the variance of the parameter update ∆0i (although introducing
bias). We have confirmed this effect does indeed occur (for the single Gibbs sampling
chain procedure, case D) and have quantified the effect. For case I and certain parameter
settings (e.g. small |ω|) var(∆0i) does not increase monotonically with i, but in these
cases it is almost constant. We have also analyzed the error in the CD(i) update rule
due to ignoring the εi term, and have found that there are parameter settings where the
relative error is large.
We have also been able to extend the analysis to the multivariate Gaussian Boltzmann

machine and have shown geometric convergence of 〈∆0i〉 and var(∆0i) in this case.

A Analysis of CD Learning: Auxiliary Derivations

The appendix offers auxiliary derivations supporting results of sections 2.2 and 2.4 for
the second and fourth moments 〈x2

i |x0〉, 〈x4
i |x0〉 of the ith reconstruction of the visible

variable conditioned on the initial data point x0.
From (11) we find that

xi = x0σ
2i + τ

i
∑

k=1

σ2i−2k(uk−1σ + vk). (49)

Let Ck
def
= σuk−1 + vk. By squaring (49) we obtain

x2
i = σ4i



x2
0 + 2x0τ

i
∑

k=1

Ckσ
−2k + τ 2

(

i
∑

k=1

σ−2kCk

)2


 . (50)

Notice that since uk, vk ∼ N(0, 1), 〈Ck〉 = 0 and 〈C2
k〉 = 1 + σ2. Thus we obtain

〈x2
i |x0〉 = σ4i

[

x2
0 + (σ

2 + 1)τ 2

i
∑

k=1

σ−4k

]

= σ4i(x2
0 − a) + a. (51)

Here we used the definition of τ 2 def
= a(1−σ2) and the known form for the sum of geometric

series.
Note that xi|x0 is a Gaussian random variable with mean 〈xi|x0〉 = x0σ

2i and variance
〈x2

i |x0〉 − 〈xi|x0〉2. It is well known that for a Gaussian RV ζ ∼ N(m, v) 〈ζ4〉 = 3v2 +
6vm2 +m4. Using this and (51) above we obtain 〈x4

i |x0〉 = 3(〈x2
i |x0〉)2 − 2x4

0σ
8i.
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