
Empirical evaluation of Gaussian Process

approximation algorithms

Krzysztof Chalupka

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Informatics

University of Edinburgh

2011

Abstract
Many large datasets are becoming available as technology advances. The fast devel-

opment of the Internet makes creating huge databases of interesting data more feasible

than ever; similarly, scientific simulations on modern computers can produce large

amounts of information that needs to be analyzed. Machine Learning uses methods

developed in Computer Science and Mathematics to deal with challenges posed in the

context of such large scale data analysis. As the Bayesian framework became more

popular, many flexible and theoretically elegant methods have been developed in the

field. One such Bayesian framework uses Gaussian Processes to perform the two basic

Machine Learning tasks, regression and classification. As it turns out, regression with

Gaussian Processes is particularly elegant and analytically tractable. However, it scales

badly with the size of the dataset which makes it infeasible for use in most interesting

situations. Several approximation algorithms were developed to deal with this issue.

While there were attempts to analyze and compare these approximations theoretically,

not much has been done to present an unbiased and useful empirical evaluation of

the algorithms. In this dissertation we create a solid framework for such comparison

and perform experiments that allow us to analyze the practical usefulness of Gaussian

Process approximation algorithms.

i

Acknowledgements
I am very grateful to Chris Williams for being the most helpful and patient mentor–

him guiding me through this project has been a truly educative experience. I thank Iain

Murray for many useful ideas and critical comments without which my understanding

of the issues discussed here would be much narrower. I am also indebted to Andreas

Krause who first sparked my interest in Machine Learning through his enthusiastic

attitude towards research. Finally, none of this work would happen without the loving

support of my mother- dziekuje za wszystko, mamo.

ii

Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Krzysztof Chalupka)

iii

Table of Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Related Work . 2

1.3 Outline of the dissertation . 3

2 Theoretical Background 5
2.1 Regression . 5

2.2 Linear Regression . 6

2.3 Gaussian Process Regression . 7

2.3.1 Extending linear regression 7

2.3.2 Basic GPR: Training and Testing 8

2.3.3 Hyperparameter Estimation 10

3 GPR Approximations 13
3.1 Subset of Data . 14

3.2 Local GP . 14

3.3 Fully Independent (Training) Conditional 16

3.4 Improved Fast Gauss Transform MVM 17

3.5 Clustering . 18

3.5.1 Recursive Projection Clustering (RPC) 18

3.5.2 Recursive Random Clustering (RRC) 19

3.6 Choosing the Inducing Points . 20

3.6.1 Random subset . 20

3.6.2 Farthest Point Clustering . 20

3.6.3 Differences between Random and FPC 21

4 Implementation 25

iv

4.1 GPML . 26

4.1.1 SoD and Local GP . 26

4.1.2 FITC . 27

4.2 Figtree . 27

4.2.1 IFGT predictive variances 27

4.2.2 IFGT hyperparameter optimization 28

4.3 Complexity in practice . 29

4.3.1 Space/time complexity . 29

4.3.2 Local GP Time behavior . 30

4.3.3 IFGT complexity . 32

4.4 Clustering and Inducing Points . 34

4.5 Tests and additional scripts . 34

5 Empirical Comparison Setup 35
5.1 Datasets . 36

5.2 Error Measures . 39

5.3 Time Measures . 40

5.4 Theory vs. Practice . 41

6 Results 42
6.1 Problems with IFGT . 43

6.2 SoD, Local GP and FITC: performance as a function of m 45

6.2.1 Best expected performance 45

6.2.2 SoD . 46

6.2.3 FITC . 48

6.2.4 Local GP . 49

6.3 SoD, Local GP and FITC: time-wise comparison 57

6.3.1 SYNTH2 . 58

6.3.2 SYNTH8 . 60

6.3.3 CHEM . 61

6.3.4 SARCOS . 61

6.4 Recommendations . 62

6.4.1 Recommendations by computational budget constraint 63

6.4.2 Recommendations by dataset type 64

7 Conclusions and Future Work 67

v

7.1 Summary of completed work . 67

7.2 Other methods . 68

7.2.1 Partially Independent Conditional 68

7.2.2 Sparse Spectrum Gaussian Processes 70

7.2.3 Warped Gaussian Process 70

7.3 Future Work . 72

7.3.1 FITC on a subset of data . 72

7.3.2 Local GP efficiency . 73

7.3.3 Mixing different methods for training and testing 73

7.4 Conclusion . 73

A Appendix: Tables 75

B Appendix: The Code 104
B.1 /code: approximation implementations and external source code . . . 106

B.2 /evaluations: the experiment and analysis framework 106

Bibliography 108

vi

Chapter 1

Introduction

This short introductory chapter serves to motivate our work (Section 1.1) and present

related research that we are aware of (Section 1.2). We also outline the rest of this

dissertation in Section 1.3.

1.1 Motivation

The field of Machine Learning (ML) is concerned with creating methods that extract

useful information from data. The often encountered need to deal with with large

datasets suggests using statistical methods, and such statistical inference has been per-

haps the predominant paradigm in the field in recent years1 . In particular, Bayesian

methods have grown in popularity due to their great flexibility and theoretical optimal-

ity (see Bishop [2006], a popular recent book investigating Bayesian methods in some

depth and significant breadth). In this thesis we look at one Bayesian framework, based

on the Gaussian Process (GP) formalism, in more detail. Gaussian Process algorithms

can be useful in many different settings. The most obvious application is in the offline

regression problem, which we describe in much detail in 2; but the flexible nature of

Bayesian algorithms in general and Gaussian Processes in particular makes them ap-

pear in such contexts as sensor placement (Krause [2005]) and experimental design

(Srinivas et al. [2010]), in approximating stochastic differential equations (Archam-

beau et al. [2007]) or incorporated into Dirichlet Processes (Jackson et al. [2007]).

We will first explain how and why Gaussian Process algorithms can be useful and then
1Vapnik [1999] provides an overview of the theory behind statistical learning.

1

Chapter 1. Introduction 2

proceed to investigate the main point of concern: their space and time complexity. It

turns out that Gaussian Processes suggest a useful but slow class of algorithms. The

Machine Learning community has developed numerous approximation algorithms that

try to lighten these computational requirements. While many publications investigate

interesting theoretical properties of GP approximations , a fair practical comparison

of their usefulness has not been published to our knowledge. This is not a satisfactory

state of matters. After all, the goal of introducing an approximation algorithm is to

make another method practically useful; hence it would be very useful to explicitly

state how the new approximation’s performance relates to that of other, already existing

methods. In this dissertation we develop a clear and practical way of evaluating the

approximations’ usefulness and demonstrate experimentally which method, and why,

the potential user should choose for their particular task.

1.2 Related Work

Throughout this thesis we will refer to many publications introducing new GP approx-

imation algorithms. Very often these papers evaluate the new methods’ performances

in ways that are hard to compare explicitly. More research has been done to look at the

theoretical properties of the different GP approximations. We refer to some of these

publications extensively throughout our work. The list below gives short overview of

some of these papers.

• Quinonero-Candela and Rasmussen [2005] provides a unifying framework that

shows how several seemingly different approximations can be represented using

very similar formalisms.

• Snelson [2001] is a PhD thesis introducing several related methods (FI(T)C,

PI(T)C and Warped GP - we will encounter each of them in this dissertation). It

also provides interesting insights into the workings of several other algorithms

and presents a limited practical comparison of the different flavors of FITC that

Snelson [2001] introduces.

• Quinonero-Candela et al. [2007] is similar to Quinonero-Candela and Rasmussen

[2005] but wider in scope, as it mentions more methods and looks both at regres-

sion and classification settings.

Chapter 1. Introduction 3

1.3 Outline of the dissertation

Our ultimate goal is to understand which GP approximation, and why, is best used in

a particular setting. Even though our evaluation focuses on empirical performance,

some theoretical background is necessary to develop and understanding of the issues

involved both in creating the evaluative framework and analyzing the results.

• Chapter 2 develops the basic Machine Learning background and relates one of

the simplest ML algorithms, linear regression, to Gaussian Process regression.

It also looks at GPs as algorithms working in the function space. Understand-

ing this material is important, as the mathematical formulation of GP inference

shows explicitly how the algorithm scales badly with growing amounts of data.

• In Chapter 3 we describe four Gaussian Process approximation algorithms that

we feel would best represent the different kinds of approximations currently

available.

• Chapter 4 elaborates on the implementation phase of this project, in which we

gathered already-existing code and modified it for our purposes, as well as put

significant amounts of work into implementing some algorithms ourselves. Im-

portantly, we also elaborate on the practical complexity of the algorithms in some

detail; as it turns out, the practical differences in different algorithms’ runtime

and space requirements can be significant, which is not visible during theoretical,

asymptotic analysis.

• We then decide on the framework for empirical algorithm performance compari-

son in Chapter 5. Several alternative approaches to the problem are discussed in

this chapter. The choices that needed to be made include what datasets to test on

and how to quantify the performance of the algorithms in a way general enough

to enable us to compare the different approximations fairly.

• Chapter 6 presents the practical results of our work: we show, from several dif-

ferent points of view, how the algorithms perform in practice. Discussing these

practical results encourages tackling some interesting questions about the nature

of the algorithms. Finally, in this chapter we explain which approximations can

work best given a particular task.

• Chapter 7 concludes this thesis and presents possible future directions for related

research. It also mentions several GP approximations we do not analyze in this

Chapter 1. Introduction 4

dissertation and relates them to our results.

In addition, we provide two Appendices that should make our work more useful for

any interested party. Appendix A lists all the hyperparameter tables, one important

output of our tests (the concept of hyperparameters in the context of GP algorithms is

explained in Chapter 2). Appendix B presents a guide to our codebase, which should

make reproducing our results easy for anyone interested in using the code we have

written.

Chapter 2

Theoretical Background

This chapter presents the basic theory needed to understand the remaining parts of the

dissertation. We do not assume the reader is familiar with machine learning theory, but

some knowledge of probability theory and statistics, basic linear algebra, and calculus

is necessary to follow the discussion below.

Sections 2.1 and 2.2 introduce the problem of regression and perhaps the most basic

regression model, linear regression. This model is then expanded using the kernel trick

to introduce Gaussian Process Regression (GPR) in Section 2.3. The latter section also

derives the GPR model from a different point of view, providing a wider perspective

for understanding the material. We complete Section 2.3 and the chapter by looking in

some detail at different phases of working with the model in the Bayesian framework:

training the parameters and hyperparameters and producing posterior predictions.

2.1 Regression

In Machine Learning, the regression problem is to predict values of a function given

only a limited amount of information about it. More formally, given a dataset {(xi,yi)}n
i=1

of d-dimensional input points xi and scalar output values yi = f (xi)+ εi (where εi is a

noise term), the goal is to predict the value of f (x∗) for some test point x∗ not in the

input set.

5

Chapter 2. Theoretical Background 6

Figure 2.1: Even though the four simple datasets shown above have very distinct char-

acteristics (linear outputs with Gaussian noise, smooth nonlinear outputs, linear outputs

with little noise and an outlier, strongly clustered outputs with an outlier), all of them

have the same linear best squared error fit. Linear regression seems to work best in

the top left example, where the data follows the assumption of a linear relationship be-

tween the inputs and the outputs, with added Gaussian noise. Figure adapted from

Anscombe [1973].

2.2 Linear Regression

Regression algorithms work by making assumptions about the function f and search-

ing a hypothesis space - the space of all functions fulfilling these assumptions - for

the best fit to the data. In linear regression only functions of form f (x) = xT w + w0

(w ∈ Rd and w0 is a bias term) are considered. The task reduces to finding the best

value of the parameters w,w0, often by minimizing some loss function such as Mean

Squared Error MSE =
〈
(yi−xT

i w)2〉 (triangular brackets indicate the average in this

dissertation. Usually it should be clear which vales we average over, like the (yi,xi)

tuples in this case). Linear regression is very simple and easily interpretable, but has

little expressive power. Figure 2.1 shows four very different datasets that all have the

same best linear fit. As evident, much information about the structure of the data can

be lost when using simple regression techniques. The first step we will take to define

more interesting regression algorithms is to look at linear regression from a probabilis-

tic standpoint.

Chapter 2. Theoretical Background 7

If we assume that the noise term is Gaussian and the same for every i, so that yi =

f (xi)+ ε,ε ∼ N (0,σ2
n), we get a likelihood model of the data. Defining a prior over

the parameters w, for example p(w) ∼ N (0,Σpar) where Σpar is the prior covariance

matrix, completes a probabilistic Bayesian model for linear regression. Rasmussen

and Williams [2006] shows that under this model, the posterior over the parameters is

again Gaussian,

p(w|X ,y)∼N (
1

σ2
n

A−1Xy,A−1), (2.1)

where A = σ−2
n XXT + Σ−1

par. We see that the Bayesian model yields a probabilistic

distribution over the output hypotheses. In particular, for a test input x∗ the estimated

output value f∗ is shown to be

p(f∗|x∗,X ,y)∼N (
1

σ2
n

xT
∗A−1Xy,xT

∗A−1x∗). (2.2)

Such predictive distribution can be very useful and makes Bayesian algorithms partic-

ularly attractive. Gaussian Process Regression is a fully Bayesian algorithm which can

be seen as Bayesian linear regression with nonlinear basis functions. The next sections

discuss this idea in more detail. For more on Bayesian linear models in general, see

Bishop [2006].

2.3 Gaussian Process Regression

2.3.1 Extending linear regression

We can add nonlinearity to the Bayesian linear model by redefining f (x) = φ(x)T w
where φ : Rd → RD is a nonlinear basis function mapping the inputs into a feature

space RD. This model is otherwise the same as Bayesian linear regression (if we make

Gaussian assumptions on noise and the parameters) and as shown in Rasmussen and

Williams [2006], Equation 2.2 now becomes

p(f∗|x∗,X ,y) ∼ N (φT
∗ ΣparΦ(K +σ

2
nI)−1y,

φ
T
∗ Σparφ∗−φ

T
∗ ΣparΦ(K +σ

2
nI)−1

Φ
T

Σparφ∗). (2.3)

Above, we use the notation φ∗ = φ(x∗),Φ = Φ(X),A = σ2
nΦΦT +Σ−1

par,K = ΦT ΣparΦ.

This is same as equation 2.2 with every x substituted with φ(x), rewritten in a way

that suggests the possibility of using the kernel trick (Scholkopf and Smola [2002]).

Chapter 2. Theoretical Background 8

Because Σpar, as a covariance matrix, is positive definite, we can always find its square

root Σ
1/2
par (so that Σ

1/2
parΣ

1/2
par = Σpar) and define ψ(x)= Σ

1/2
parφ(x) so that φ(xi)T Σparφ(x j)=

dot(ψ(xi),ψ(x j)) where dot denotes the usual vector dot product. Looking back at

Equation 2.3, we see that it can now be formulated in terms of a kernel function that is

defined by this dot product, k(xi,x j) = dot(ψ(xi),ψ(x j)):

p(f∗|x∗,X ,y)∼N (K∗,f(Kf,f +σ
2
noiseI)−1y,K∗,∗−K∗,f(Kf,f +σ

2
noiseI)−1Kf,∗). (2.4)

In this equation, K∗,f signifies the vector with entries k(x∗,x1),k(x∗,x2), ...,k(x∗,xN)

and Kf,f is a matrix with i jth entry equal to k(xi,x j). It is possible and indeed often

useful to implicitly define the dot products in terms of a kernel function; in this case, the

algorithm can work with dot products in high (or infinite) dimensional spaces without

explicitly computing the dot products feature-by-feature.

We have now formulated kernelized Bayesian linear regression, which shifts the data

into a possibly infinite dimensional feature space and efficiently finds a linear fit to

the data in that space, enabling nonlinear predictions in the original input space. The

feature space is fully defined by the kernel k. This function is called a covariance

function in Gaussian Process (GP) literature. It turns out that kernelized Bayesian

linear regression is equivalent to GP regression, which we now describe from a more

direct point of view.

2.3.2 Basic GPR: Training and Testing

In this short introduction to GP regression (GPR) from the function space perspective

we mostly follow the concise overview in Quinonero-Candela and Rasmussen [2005];

for a detailed treatment of Gaussian Processes see Rasmussen and Williams [2006].

A Gaussian Process is a generalization of the Gaussian distribution to stochastic pro-

cesses. Instead of finite dimensional vectors, a GP is defined over functions; this exten-

sion becomes intuitive if functions are seen as vectors of infinite (often uncountable)

dimension. If we have a collection of random variables { f (x)}i such that any finite

number of them has a joint Gaussian distribution, we write

f (x)∼ GP(m(x),k(x,x′))

where m is a mean function and k is a covariance function which specifies how closely

Chapter 2. Theoretical Background 9

correlated or similar any two random variables are1. Intuitively, if we draw func-

tions from this distribution we are most likely to get functions “similar” to m on aver-

age, with any additional assumptions like smoothness, stationarity, local independence

etc. encoded by k. The covariance function specifies correlations between random

variables which in case of regression will be the latent function values f (xi) on inputs

xi. However, these covariances will often be functions of distances between the input

points, so that k(f (xi), f (x j)) = h(xi,x j) where h is some function from the input space

into the real line. As a consequence, we will often write simply k(xi,x j); it should be

remembered, however, that we not try to model the input distribution here.

The above defines a GP distribution over functions. This distribution can be used

in Bayesian regression as a prior. If the likelihood (that models the observation noise)

takes the common form of Gaussian noise, many of the usual Bayesian integrals can be

solved analytically. This fortunate behavior makes GPR a simple and useful method.

Formally, assume again that we are given a data set D = {(xi,yi)}N
i=1 of inputs xi and

outputs yi and make the standard independent Gaussian noise assumption,

yi = f (xi)+ εi, where εi ∼N (0,σ2
noise).

Crucially, we set the prior to a Gaussian Process (with zero mean):

p(f|x1,x2, · · · ,xN) = N (0,Kf,f)

where f = [f (x1), f (x2), · · · , f (xn)] is a vector of function values and Kf,f is a covari-

ance matrix defined as in Section 2.3.1.. To predict the values f∗ of the generative

function on a set of test points we calculate the joint posterior

p(f, f∗|y) =
p(f, f∗)p(y|f)

p(y)
(2.5)

and marginalize the latent training functions values:

p(f∗|y) =
Z

p(f, f∗|y)df =
1

p(y)

Z
p(y|f)p(f, f∗)df. (2.6)

We defined both the likelihood and the prior to be Gaussians so the solution is a Gaus-

sian too. After going through some linear algebra (again, see Rasmussen and Williams

[2006] for the details) we get the posterior

p(f∗|y) = N (K∗,f(Kf,f +σ
2
noiseI)−1y,K∗,∗−K∗,f(Kf,f +σ

2
noiseI)−1Kf,∗). (2.7)

1The covariance function must be positive semi-definite, as any covariance matrix is. Section 2.3.1
shows that this is necessary for GPR to be equivalent to kernelized linear regression.

Chapter 2. Theoretical Background 10

This exactly repeats Equation 2.4. Note the form of the mean prediction vector. The

predicted value on each test point is a weighted sum of the training output values. The

weights are fully determined by the covariance function, which specifies the influence

of each training point on the test variable, and the (noisy) precision matrix. The prior

predictive uncertainty on any test point (K∗,∗) is decreased by the amount of informa-

tion the training points should give us about the test case K∗,f(Kf,f + σ2
noiseI)−1Kf,∗.

Note that this term is independent of any output values in a GP, but it does not have

to be for stochastic processes in general. Figure 2.2 shows a toy regression problem

and its GPR predictive distribution. Comparing with Figure 2.1, we see that GPR with

an appropriate kernel allows for highly nonlinear predictions; furthermore, the predic-

tive distribution estimates the certainty of prediction, suggesting regions in input space

that the algorithm has little reliable information about. This makes the algorithm very

flexible and usable in all kinds of non-standard settings some of which we already

mentioned in Section 1.1.

2.3.3 Hyperparameter Estimation

An important aspect of Bayesian inference is the availability of a general process for

choosing any hyperparameters present in the model. In the case of GPR, the hyperpa-

rameters are any parameters used by the covariance function, and the noise variance

of the data. A commonly used covariance, which we also use in the experiments pre-

sented in this dissertation, is the Squared Exponential function

k(xi,x j) = σ
2
f exp

(
−1

2
Σ

D
d=1

(xd,i− xd, j)2

l2
d

)
(2.8)

where ld specifies how far the influence of a point reaches in the dth dimension of in-

put space and σ2
f is the squared amplitude of the signal. In the Bayesian framework

the hyperparameters can be chosen to maximize the likelihood of the data. This has

the fortunate effect of favoring models of just-right complexity, the so called Bayesian

Occam’s Razor (see for example MacKay [2003], Chapter IV). The log marginal like-

lihood to be minimized is

log p(y|X) =−1
2

yT (K +σ
2
nI)−1y− 1

2
log |K +σ

2
nI|− N

2
log2π, (2.9)

and its partial derivatives with respect to the hyperparameter

∂

∂θ j
log p(y|X ,θ) =

1
2

tr
(

(αα
T −K−1)

∂K
∂θ j

)
, (2.10)

Chapter 2. Theoretical Background 11

(a) (b)

(c)

Figure 2.2: Example data drawn from a Gaussian Process with a Squared Exponential

covariance with lengthscale l = 0.25 and noise standard deviation σn = 0.1 (a) and re-

sulting predictive distributions (b), (c). In (b) we make GPR predictions using the correct

hyperparameters; the mean prediction is shown as a continuous curve. Also shown is

one standard deviation of the Gaussian distributed expected error on each test point.

As expected, the confidence of the predictions falls away from the datapoints. In (c) we

set the hyperparameter lengthscale to be 1 (Section 2.3.3 discusses GP hyperparame-

ters), hence the prediction is much smoother. However, we did not adjust the noise level

(it stays at σn = 0.1). This particular hyperparameter misestimation makes some of the

training point values to be outside of one predictive error standard deviation. This illus-

trates the need for good hyperparameter optimization. The plots are generated using

modified code from Rasmussen and Nickisch [2010].

Chapter 2. Theoretical Background 12

with α = K−1y and tr calculates the trace of a matrix (see Rasmussen and Williams

[2006], Chapters 2 and 5). Gradient descent techniques can thus be used to minimize

− log p(y|X ,θ), in hope any bad local minima will be skipped and hyperparameters

fitting the data well are found.

Chapter 3

GPR Approximations

Chapter 2 showed that Gaussian Processes can be used as Bayesian priors over func-

tions in the regression task. Equation 2.7 formulates the predictive distribution calcu-

lated in such model (with stationary Gaussian noise). Calculation of the mean and vari-

ance of the predictive distribution on any test point requires using the inverted “noisy

covariance matrix” (Kf,f +σ2
noiseI)−1. Similarly, each iteration of gradient descend hy-

perparameter optimization will require inversions of K. Since K is of size N×N, to

run the exact Gaussian Process Regression algorithm we need O(N3) time and O(N2)

space, where N is the number of training points. This is prohibitive for datasets larger

than several thousand points, which are not difficult to obtain. Many approximation

algorithms were created to deal with this issue; the Gaussian Processes web site (Ras-

mussen [2011]) picks thirty-one publications on approximation algorithms as of Febru-

ary 2011. Our goal is to clarify which approximations are useful in practice, why, and

in what situations. We have chosen four algorithms to focus on, as they are represen-

tative of four different approaches to the approximation process. Sections 3.1 - 3.4

discuss the basic ideas behind these algorithms, and are complemented by Sections

3.5 and 3.6 which elaborate on two algorithmic choices that need to be made before

some of the methods are used. Chapter 4 elaborates on our implementations of the

approximation algorithms, including a more detailed (not asymptotic) time and space

complexity analysis.

13

Chapter 3. GPR Approximations 14

3.1 Subset of Data

The Subset of Data (SoD) method is a simple way of speeding up Gaussian Process

Regression. Given N training datapoints, the method chooses a subset of m points

(which we will call inducing points) and performs inference as usual, using this subset

only. The SoD predictive distribution (compare with Equation 2.7) is then

pSoD(f∗|y)= N (K∗,fSoD(KfSoD,fSoD +σ
2
noiseI)−1ySoD,K∗,∗−K∗,fSoD(KfSoD,fSoD +σ

2
noiseI)−1KfSoD,∗),

where K∗,fSoD is the covariance vector between the test value f (x∗) and the m latent

function values { f (xi)|xi ∈ SoD} and KfSoD,fSoD is the m×m covariance matrix on the

points in the chosen subset of data SoD. ySoD are the training outputs on the points in

the chosen subset of data.

The running time of the method is O(m3) for training and O(m2) per test point for

computing the posterior distribution (means and variances). The space complexity is

O(m2) for storing the covariance matrix over the chosen data subset. Figure 3.1(b)

shows SoD solving a toy dataset.

An additional choice one has to make to use SoD is how to choose the inducing points.

This turns out to be a more general issue valid for other approximations as well. We

discuss it in some detail in Section 3.6.

SoD is the simplest approximation we consider. It might seem wasteful to simply

throw away data without retaining any information about it. However, in the limit of

having infinite data at our disposal, throwing some of it away might be a necessity. In

fact, one might be forced to connect another approximation with SoD to be able to use

it effectively. In particular, we discuss such connection with later in this dissertation.

3.2 Local GP

The local approximation divides the training set (with N training points) into clusters of

size at most m each. Each cluster is then treated as a separate inference problem; in case

of Gaussian Process Regression, the full GPR algorithm is performed on each cluster

separately, with no information transfer between the clusters. If the hyperparameters

are shared between the clusters, the full GP predictive distribution from Equation 2.7

Chapter 3. GPR Approximations 15

is now approximated by

pLocal(f∗|y)= N(KLocal
∗,f (KLocal

f,f +σ
2
noiseI)−1y,KLocal

∗,∗ −KLocal
∗,f (KLocal

f,f +σ
2
noiseI)−1KLocal

f,∗),

where KLocal
a,b is a block diagonal covariance matrix with blocks of size at most m×m

(see Equation 3.2 below).

The time cost of training Local GPR is O(m3× N
m) = O(Nm2). The test time is O(m2)

per test case- with precomputed m-dimensional Cholesky factors one triangulated lin-

ear system in m variables has to be solved per test case to get predictive variances. The

space required is O(m2)– one cluster covariance matrix needs to be stored at any one

time.

Local GP is not a stand-alone approximation. One needs to choose the underlying clus-

tering method– an important choice elaborated on in Section 3.5 where we describe Re-

cursive Projection Clustering (RPC) and Recursive Random Clustering (RRC). Addi-

tionally, two obvious hyperparameter training variants are possible. The hyperparame-

ters can be chosen separately for each cluster, or a joint optimization can be performed

(so that the hyperparameter gradient is taken to be the sum of the gradients of cluster

hyperparameter variables). In case joint hyperparameter optimization is performed, we

can model Local GP as full GP Regression using a modified kernel

kLocal(xi,x j) =

{
k(xi,x j) if xi,x j in the same cluster

0 otherwise

In this case the covariance matrix is block diagonal, as in Equation 3.2. For example,

if m = 2 then the “joint-Local” covariance is:

KLocal =



k1,1 k1,2 0 0

k2,1 k2,2 0 0

0 0 k3,3 k3,4

. . k4,3 k4,4

. . .

. . .

. . .

0 0 0 0 . . . kN−1,N−1 kN−1,N

0 0 0 0 . . . kN,N−1 KN,N


where ki, j = k(xi,x j) for brevity. If the hyperparameters differ between the clusters,

each block will in practice use a different covariance function and the algorithm can

Chapter 3. GPR Approximations 16

not be seen as performing GP regression. However, we can expect such model to have

more expressive power. Figure 3.1(c) shows the results of running Local GP with

joint hyperparameters on a toy dataset. Note the discontinuities in the overall good

prediction.

3.3 Fully Independent (Training) Conditional

FITC is a version of Ed Snelson’s Sparse Pseudo-Input Gaussian Process (SPGP)

method described in detail in Snelson [2001]. It was integrated into a general GP

approximation framework and renamed in Quinonero-Candela and Rasmussen [2005].

Let u be a set of m inducing points, ideally chosen so that every test point is close

to this set1. Let k(xi,u) denote the m element row vector of covariances between xi

and the inducing points; and let Ku,u denote the m×m matrix of covariances between

the inducing points. As Quinonero-Candela and Rasmussen [2005] shows, FITC is

performs GP regression using a modified covariance function

kFITC(xi,x j) = kSoR(xi,x j)+δi, j[k(xi,x j)− kSoR(xi,x j)]

where k is the original covariance function used in the GP to be approximated and

kSoR(xi,x j) = k(xi,u)K−1
u,uk(u,x j)

is the Subset of Regressors (SoR) covariance function. Intuitively, kSoR allows any

two points in the input space to communicate only through the m inducing points.

kFITC is similar but keeps the self-covariances of the data intact. Quinonero-Candela

and Rasmussen [2005] gives a detailed discussion on the two functions. Using kFITC

instead of k reduces the runtime from O(n3) to O(m2n) in the training phase and O(m2)

in the test phase, thanks to a clever use of the matrix inversion lemma (see Snelson

[2001], Sections 1 and 2). Figure 3.1(d) shows FITC regression used on a simple toy

problem. In the figure, FITC is closer to the full GP prediction than SoD, but fails to

capture information about the one datapoint far away from all inducing points.

1Originally, Snelson proposed to optimize the locations of the inducing points during hyperparameter
optimization. This extension makes the algorithm scale worse with dimensionality, but improve its
performance. In this dissertation we consider only the apparently more popular version of the algorithm
where the inducing points are chosen by simpler methods as described below.

Chapter 3. GPR Approximations 17

3.4 Improved Fast Gauss Transform MVM

IFGT (Raykar et al. [2005]) is a fast matrix-vector multiplication (MVM) method de-

veloped specifically for Gaussian potentials. It uses power expansion truncation and

subdivision of input space to evaluate the potentials approximately. It was suggested by

Morariu et al. [2008] that it can speed up Gaussian Process Regression if the Squared

Exponential kernel is used. As already noted in Gibbs and MacKay [1997], the co-

variance matrix inversion performed in GPR, (Kf,f + σ2
noiseI)−1y (see Section 2.3.2),

can be done using Conjugate Gradients methods. The covariance matrix is positive

definite so CG is readily applicable, and one could stop the CG algorithm after m < N

iterations. More importantly, during CG iterations, as well as when computing the final

output values on the test points µ∗ = K∗,fα where α = (Kf,f + σ2
noiseI)−1y, almost all

computational cost comes from matrix-vector multiplications (MVMs).

The algorithm itself is complicated. Below we roughly sketch the procedure, basing

on Yang et al. [2004]. Note that the authors were unable to compress a full description

of the algorithm into the 8-page NIPS limit, and hence their description does not fully

define all the terms, referring the reader to technical reports. We do not hope to be

able to condense the algorithm’s description better than the experts, but we hope the

reader can get an idea behind the basic procedure used in IFGT, and how it can help in

working with Gaussian Processes, from the short description below.

Assume x∗ is a test point and αi is the ith element of the weight vector α = (Kf,f +

σ2
noiseI)−1y from Equation 2.7. IFGT will then compute the mean GP prediction on

x∗, assuming the Squared Exponential covariance with lengthscale l is used, with a

bounded error. The error guarantee is based on a complicated error function; the reader

needs only to assume that it is possible to bound the error of the IFGT approximation

E based on the radii of the created data partitions and accuracy of power expansions.

1. Required: compute the approximate value of the summation

µ∗ = ∑
N
i=1 αi exp(−|xi−x∗|2/l2), with absolute error at most ε.

2. Procedure: Perform Farthest Point Clustering (Section 3.6.2) to partition the

datapoints (x)i into k clusters. Choose k so that each cluster’s radius is smaller

than |l|ρ, where ρ is a term that influences the error bound in the next step.

3. 2. Choose p - which determines the order of the power expansion of the Gaussian

in the next step - large enough for the error bound to guarantee E(µ∗)≤ ε.

Chapter 3. GPR Approximations 18

4. For each cluster, compute a truncated (above the pth degree) multivariate Taylor

series around the cluster’s center, using only the points in the cluster.

5. Sum the results of computations for each cluster.

Of course, the procedure presented above can be used for any MVM involving- in our

case- a covariance matrix K. It turns out that the IFGT MVMs in CG can be performed

in a progressively more inexact manner to speed up the process and the algorithm still

converges, as shown in Raykar and Duraiswami [2007]– that is, the allowed MVM

error ε can grow with CG iterations in a well-defined manner. Figures 3.1(e) and 3.1(f)

show IFGT solving a simple toy regression problem. The prediction can be very bad if

the relative allowed MVM error is too large, but it is hard to predict how the results will

be wrong; in comparison, with SoD, FITC, and Local GP we understand fairly well

how the predictive inaccuracies relate to the choice of the inducing points or clusters.

3.5 Clustering

We use two simple clustering methods with Local GP. We deliberately do not use

the Farthest Point Clustering method (which we do use to choose inducing points for

SoD and FITC, see Section 3.6) with Local GP. This is because the method’s time

complexity scales as O(m2N) where m is the number of points in the largest cluster.

FPC provides no guarantees on the maximum cluster size. The methods presented

below are less complex and will likely not exploit the structure of the data as well as

FPC, but they are guaranteed to produce clusters smaller than a given constant, and

choose the cluster sizes to be roughly uniform under the maximum size constraint.

3.5.1 Recursive Projection Clustering (RPC)

This method, suggested by Iain Murray (personal communication), performs the fol-

lowing recursive procedure.

Initiation Given dataset {x1, · · · ,xN} and constant m, define A = {x1, · · · ,xN}.

If |A|> m: recursive step. Choose two points uniformly at random from A.

Draw a line through these points and calculate the orthogonal projection of all

points from A on the line.

Chapter 3. GPR Approximations 19

Split A into two equal size subsets: AL, the points to the left of the median

projection and AR, the points to the right of the median.

Repeat the recursive step, with A← AL first and A← AR second.

If |A| ≤ m: termination. Add A to the clusters set. Terminate this branch of recur-

sion.

3.5.2 Recursive Random Clustering (RRC)

This method proceeds semi-recursively - the top recursion level is similar but not iden-

tical to lower levels. Starting from the full dataset of size N and given m - the maximum

cluster size:

1. Choose bN
mc cluster centers uniformly at random from the data.

2. Assign each point in the dataset to the closest center, producing bN
mc clusters Ci.

Add these to the clusters list C .

3. For each Ci ∈ C with |Ci|> m:

4. Remove Ci’s from C .

5. Choose two points in Ci– new cluster centers– uniformly at random.

6. Assign each point in Ci to the closer of the two points, creating two clusters

Ck,Cl . Add Ck and Cl to C .

7. If any of the two new clusters has size > m, repeat steps 4-7 on this cluster.

By construction, RPC produces clusters of almost uniform size, equal min
c:n2−c≤m

n2−c

where c is a natural number and the actual cluster sizes are rounded to closest natural

numbers. RRC’s clusters are less uniform in size. Figure 3.2 compares the two cluster-

ing methods graphically . The figure shows that in general, RRC’s clusters are smaller

than RPC’s, as expected. This can have a slightly detrimental effect on Local GP’s

performance if all other factors are ignored.

Chapter 3. GPR Approximations 20

3.6 Choosing the Inducing Points

The SoD and FITC approximations require that a set of inducing points is defined in

the input space. In both cases, these points are taken to be somehow representative

of the whole training input set. We saw in Figure 3.1 that both algorithms give better

predictions close to the inducing points set. Snelson [2001] proposes that the locations

of inducing points be optimized in the likelihood as hyperparameters. We decided to

take simpler approaches that do not depend on the dimensionality of the problems;

otherwise, a general comparison of FITC with the remaining methods would be more

difficult. Instead, we used two less computationally demanding approaches to inducing

points’ selection. Assume we need to obtain a set of m inducing points.

3.6.1 Random subset

The first approach is choosing a random subset of data and was also used in Rasmussen

and Williams [2006]. Note that this might not be as bad an option as it seems at first:

random choice will respect the structure of the data in the sense that the denser areas

(which therefore contribute more to the errors and are perhaps less likely to contain

outliers) will have more inducing points placed in them.

3.6.2 Farthest Point Clustering

The second method we consider is to use the set returned by the Farthest Point Clus-

tering (FPC) algorithm as the centers of m clusters. Gonzalez [1985] proves that this

algorithm is the best possible approximation to the NP-hard problem of finding a clus-

tering with the smallest maximum intracluster distance. Thus we can hope that the set

of inducing points placed at the centers of such chosen clusters is in a way as close to

all other data as possible. This simple algorithm chooses k data clusters as follows:

1. Choose a point, c1, at random. This will be the center of the first cluster.

2. For i = 2, · · · ,k

3. ci← the point farthest from the set {c1, · · · ,ci−1}.

4. Move each datapoint xk to cluster l ∈ {1, · · · ,k}, whose center cl is closest to xk.

Chapter 3. GPR Approximations 21

We also experimented with the IVM method which greedily chooses the subset of data

that decreases uncertainty on training data most (Lawrence et al. [2003]), but the results

seemed very similar to when FPC was used. This makes intuitive sense: for stationary

kernels (where covariance is a function of inter-point distances only) and small data

subsets, a point farthest from a subset will also decrease the overall uncertainty the

most. We did not run all the experiments using IVM because of this and do not report

on the method further.

3.6.3 Differences between Random and FPC

Figure 3.3 illustrates some differences between these two methods when used on the

SYNTH2 dataset (Section 5.1 describes this and other datasets we use in our experi-

ments). The figure shows that in low dimensionalities FPC is able to choose inducing

points regularly across the input space, while Random is more sensitive to irregulari-

ties in data structure. However, in higher dimensions many more points are needed to

fill up space, and FPC fails to produce a regular coverage of the space. Random, on

the other hand, will still focus on the more important data regions; in high dimensions

Random will ignore less dense regions which can reduce accuracy of the inference

methods we use (which will then ignore those regions), but this seems the only feasi-

ble option in high dimensionalities when the data has little structure. The bottom plots

in the Figure plot the inducing point’s standard deviation when they are chosen by FPC

and Random respectively, as a function of growing subset size. For large subsets both

methods converge to the full dataset variance. For small subsets, however, the methods

behave very differently in 2 and 8 dimensions, as explained above.

Chapter 3. GPR Approximations 22

(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Toy data drawn from a Gaussian Process (same as in Figure 2.2) and re-

sulting predictive distributions calculated using approximate GPR algorithms and the

correct hyperparameters. Figure (a) shows the full GP prediction. (b) The Subset of

Data approximation predicts badly away from the inducing points (shown as circles),

but the predictive variances are adjusted accordingly. (c) Local GP introduces discon-

tinuities on the edges between clusters (each cluster marked by different symbols) but

doesn’t ignore any data regions. (d) FITC can do better than SoD in some regions. (e)

IFGT, with a high maximum allowed MVM error; the prediction seems to follow the over-

all trend in the data. (f) In this case, the allowed MVM error is very small and the IFGT

prediction is almost identical to the full GP. IFGT does not yield predictive variances

efficiently, hence they are not shown here (Chapter 4 discusses this and other issues

with IFGT).

Chapter 3. GPR Approximations 23

Figure 3.2: Cluster sizes for RPC and RRC. Note almost perfectly linear cluster size

growth. The solid black crossed line shows the ideal behavior - clusters of size exactly

m as chosen by the user. The values are means taken over 10 trials for each m. The

error bars show, for RRC, one standard deviation. RPC’s cluster size variance is negli-

gible. RPC’s cluster sizes are a deterministic function of the dataset’s size only. For the

SYNTH datasets, where the training set size is a power of 2, RPC produces clusters

of exactly the desired size– as expected. RRC produces clusters of variable size; the

sizes are nondeterministic but influenced by the structure of the data.

Chapter 3. GPR Approximations 24

Figure 3.3: FPC and Random subset choice. The average of standard deviation over

the data dimensions is shown. Top on low dimensional datasets (SYNTH2 here) FPC

places the cluster centers on a regular pattern which covers the whole space well. In

this case, random subset choice largely ignores the exterior of the data distribution. The

SYNTH dataset inputs are sampled from a Gaussian distribution, hence Random has

much more points to choose from in the center. In the plots 128 points were chosen

by each algorithm from among 32000 training cases shown on the right. Bottom the

situation is different in high dimensions, where it is more difficult to populate the space

densely. The left plot shows that for 2 dimensional SYNTH2, Random consistently

chooses subsets with variance around one (the mean of standard deviations across

all dimensions is shown). FPC for small subsets chooses points roughly on a regular

pattern, also on the outskirts of the sample distribution (top left plot), but for larger

subset sizes it must start converging to the true data distribution- hence the variance

is falling towards value one. The plot on the right, on the contrary, shows that in eight

dimensions it takes more time for FPS to yield wide subsets. In eight dimensions there

is much more volume on the exterior of the distribution. By its nature, FPC will first

place points on the exterior, largely ignoring the interior of the sample distribution. This

is prone to create thin subspaces with small average variance for small subset sizes

(an 8 dimensional hypercube has 28 = 256 faces), and only for large subsets FPC is

starting to cover a decent share of the space. The variance starts decreasing when,

as in the two dimensional case, FPC is placing more points in accordance with the real

data’s normal distribution.

Chapter 4

Implementation

Our goal is to compare the GP approximations described in Chapter 3 empirically. To

do this, we needed code implementing the approximations, as well as any of the addi-

tional algorithms used for clustering etc. Part of our work had already been done by

other researchers, and we use their implementations whenever possible. This chapter

describes in some detail the programming work we have done, and attributes outside

code that we use to its creators. Section 4.1 describes the implementation of the core

approximations. We note that using external code was not trivial: we had to put much

work into integrating some of the code into our framework, and we dealt with some

more and less important bugs present in outside source code. Some of our fixes have

been incorporated into the original projects.

This chapter also looks at the actual complexity of the algorithms as we have them

implemented, in Section 4.3. These practical (as opposed to asymptotic) complexities

will be important in practice when in later chapters we compare the results of running

the algorithms on actual complex datasets. The time/space analysis here is still ap-

proximate, skipping some important details such as calculating kernel function values,

and some less important details like vector-vector operations (matrix-vector operations

constitute most of complexity of these algorithms). We hope that such approximate

analysis can give the reader an appreciation that asymptotic complexities can ignore

significant differences in actual runtimes.

Finally, Sections 4.4 and 4.5 look at some additional code we wrote to be able to work

with the GP approximation algorithms.

Appendix B describes the structure of our codebase in more detail, so the code can be

25

Chapter 4. Implementation 26

reused easier should anyone desire to do so.

4.1 GPML

The most important codebase we use is the Gaussian Processes GPML package (Ras-

mussen and Nickisch [2010]). The GPML project went through a major revision

halfway through our work and we updated our code accordingly, which was a ma-

jor change especially for the SoD and Local approximations. The current GPML was

created by Carl Edward Rasmussen and Hannes Nickisch, the earlier version by C. E.

Rasmussen and Chris Williams. Most GPML code is written in Matlab.

4.1.1 SoD and Local GP

The most recent GPML toolbox – version 3.1 – can perform full Gaussian Process Re-

gression and Classification, using a variety of covariance functions as well as several

likelihood models. In our experiments, we use the Squared Exponential covariance

function and Gaussian likelihood, both of which are implemented in the GPML pack-

age. Thus to perform SoD (Section 3.1), once the inducing points are chosen (see

below), we simply use GPML’s full GP regression on this subset of data.

In case of Local GP (Section 3.2) with separate hyperparameters, once the training

data is clustered (see below), each cluster uses GPML to perform GP inference. Local

GP with joint hyperparameters is slightly more tricky if it is to be done efficiently. We

extended the GPML package to handle this situation, so that Maximum Likelihood

hyperparameter estimation can use the sum of the gradients of all clusters on each

iteration.

While implementing Local GP, we have spotted an efficiency issue in the GPML code-

base. Fixing it speeds regression up, in some cases by over 90% (Section 4.3.2 talks

about other issues appearing in the situation where this bug was spotted, that is Local

GP with small clusters). Our fix was incorporated in the newest GPML version1.

1See http://www.gaussianprocess.org/gpml/code/matlab/doc/changelog.

http://www.gaussianprocess.org/gpml/code/matlab/doc/changelog

Chapter 4. Implementation 27

4.1.2 FITC

Originally we used Ed Snelson’s implementation of his SPGP method (Snelson [2006]).

This required modifications as Snelson assumes the user wants to optimize the pseu-

doinput locations in the likelihood, which we don’t (Section 3.3). However, halfway

through the project a new version of GPML was released which implemented FITC

as we need it. Thus we modified our code accordingly, and currently we use GPML’s

FITC routine. As it turned out, this fresh implementation contained a simple but seri-

ous bug which we fixed; our fix again is incorporated in the newest version of GPML

code. Since we don’t optimize the inducing point locations, we choose these locations

using other methods which we implemented ourselves, described below.

4.2 Figtree

The Improved Fast Gauss Transform is implemented in the C++ Figtree package by

Vlad Morariu (Morariu [2010] – the package includes Matlab wrappers which we use).

This, however, is just a fast Matrix-Vector Multiplication method. We have imple-

mented a progressively more inexact Conjugate Gradient algorithm that uses Figtree

for MVM (the idea described in Raykar and Duraiswami [2007]). We then imple-

mented Gaussian Process Regression that uses our CG routine to invert the necessary

matrices.

4.2.1 IFGT predictive variances

It is relatively easy to implement mean GPR prediction using CG with IFGT. However,

a problem so far ignored by the proponents of IFGT is that it is not clear how to

use fast MVMs to estimate the hyperparameters and compute the solution predictive

variances efficiently. The predictive distribution variance of full GPR on test point x∗
is computed as

K∗,∗−K∗,f(Kf,f +σ
2
noiseI)−1Kf,∗,

where f symbolizes all the N training inputs. Our implementations of SoD, Local and

FITC store Cholesky factors of relevant covariance matrices. The factors are precom-

puted during the training phase; then, during test time, the covariance matrix needs not

be inverted again. Instead, a triangular linear system is solved, one for each test point.

Chapter 4. Implementation 28

IFGT on the other hand does not precompute partial solutions to matrix inversion. The

obvious approach to computing the predictive variances requires re-solving the linear

system (Kf,f +σ2
noiseI)−1Kf,∗ for each test point x∗ with respective training-test covari-

ance vector Kf,∗. This seems impractical even for small datasets, in our experience.

In Raykar and Duraiswami [2007] and Murray [2009] the authors focus on IFGT’s

MSE performance only and skip the variance problem. Gibbs and MacKay explicitly

note that the cost of such approximate variance prediction is larger than of full vari-

ance prediction (Gibbs and MacKay [1997]). We suggest that for the algorithm to be

considered useful, a way of efficiently computing the variances should be found. This

of course applies to any iterative method for solving GPR. We have implemented the

obvious method of computing the variances, but don’t report the IFGT variance results

in the following chapters as the time costs, which are larger than for the full GP, are

prohibitive for nontrivial problems.

4.2.2 IFGT hyperparameter optimization

Hyperparameter computation is also problematic with IFGT. In full GP, to estimate

the hyperparameters using the MLE method, likelihood derivatives respective to each

hyperparameter need to be computed:

∂

∂θ j
log p(y|X ,θ) =

1
2

tr
(

(αα
T −K−1)

∂K
∂θ j

)
(4.1)

where α = K−1y (see Rasmussen and Williams [2006] for a derivation). This allows

for a precomputation of the weight vector α which is also used for mean prediction

computation. However, this simplified form of the likelihood derivative seems unsuit-

able for computations with IFGT. This is because IFGT only works with Gaussian

potentials. We can in principle split the computation in two parts:

K−1 ∂K
∂θ j

(4.2)

αα
T ∂K

∂θ j
(4.3)

where computation 4.2 is computed using n conjugate gradient runs (as with the vari-

ances, the full n× n linear system needs to be be solved each time K−1 is multiplied

by a matrix column or a vector). Because it doesn’t involve Gaussian potentials, com-

putation 4.3 has to be solved exactly. One way to approach the problem is to expand

Chapter 4. Implementation 29

Equation 4.1:

∂

∂θ j
log p(y|X ,θ) =

1
2

yT K−1 ∂K
∂θ j

K−1y− 1
2

tr(K−1 ∂K
∂θ j

)

where this time we can avoid storing large matrices if each time we compute the deriva-

tive matrix column by column to perform the relevant IFGT MVM’s. Also storing

K−1 ∂K
∂θ j

is not necessary. Gibbs and MacKay [1997] show that trace of a large matrix

can be computed approximately with low error using the following simple randomized

method. If

τ = dT K−1 ∂K
∂θ j

d (4.4)

where d is a vector of zero mean, unit variance Gaussian variables then

E[τ] = tr(K−1 ∂K
∂θ j

).

Equation 4.4 again can be computed using IFGT for inversion of K. For large n sev-

eral samples of τ can suffice to estimate the expectation reasonably. It should be clear

by now that if no better methods are proposed, likelihood optimization is not feasible

using IFGT or any MVM method. The covariance matrix needs to be re-inverted using

CG numerous times for each derivative computation; the partial derivatives matrix also

needs to be recomputed column by column several times unless enough space to store

it is available. Furthermore, as with all computations, IFGT would only apply in low

dimensional cases where it is much simpler and likely equally efficient to use less so-

phisticated methods. Alternatively, SoD might be used for hyperparameter estimation

and IFGT for MSE computations using SoD-estimating hypers.

4.3 Complexity in practice

4.3.1 Space/time complexity

Once we have the concrete implementations of the approximation algorithms, we can

look more closely at their actual runtimes. It is possible (and indeed true, as we show

in later chapters) that the asymptotics do not kick in until the number of datapoints N

reaches several tens of thousands, and hence a less abstract time and space complexity

analysis can prove valuable in assessing an algorithm’s usefulness. Tables 4.1 and 4.2

compare approximate complexities of Full GP, SoD, Local GP and FITC as imple-

mented using modified routines from the GPML package. Our modifications mostly

Chapter 4. Implementation 30

Asymptotic Space Actual Space

SoD/Full GPa O(m2) 4m2

Local GP O(m2) 4m2 or max(4m2,mN)b

FITC O(mN) max(3Nm+5m2,4Nm+3m2,5Nm+2m2)

aSoD and full GPR have the same complexity as SoD is just GPR with reduced training set size.
bThe latter if Cholesky factors for each cluster need to be stored, when test data is unknown at the

time of training.

Table 4.1: Space usage by method. Note the asymptotic data can give very different re-

quired storage in practice. In each case we report Actual Space as the largest number

of doubles stored in Matlab matrices at any time during the algorithms’ run. Tempo-

rary space needed for linear algebra operations (Cholesky decomposition, Gaussian

elimination, matrix multiplication) is ignored, but since only one such operation is per-

formed at once the difference should not be significant. We also ignore the costs of

storing single vectors. For IFGT, our progressively more inexact Conjugate Gradient

implementation (based on Matlab’s pcg routine) stores at most ten n-element vectors

at a time; for almost all practical cases IFGT will use the least memory.

reduce GPML’s space complexities by cleaning memory whenever possible, but don’t

change the core GPML code in other significant ways. Our code should be available

together with this dissertation for anyone interested. The reported complexities take

any matrix-vector and matrix-matrix (with matrices of size N×N and N-dimensional

vectors) multiplications into account, which arguably use almost all time resources re-

quired by the algorithms. The table makes it clear that while all of SoD, FITC and

Local GP have the same asymptotic complexities, they will require significantly dif-

ferent resources in practice. These additional resources could potentially be used for

example to make SoD competitive by taking the size of the subset mSoD larger than

the number of FITC inducing points mFITC. One of the goals of our empirical experi-

ments, reported in following chapters, was to evaluate whether such manipulations can

be of much practical use.

4.3.2 Local GP Time behavior

An interesting behavior of Local GP that we observed during the experiments (see

Chapter 6) is that the algorithm has a convex time curve - it runs slower for tiny cluster

Chapter 4. Implementation 31

Chol Gauss Mult
SoD m2 m2(4m) –

Local m2(N
m) m2(4N) –

FITC m23 m2(2N +4m2 +3) (mN×Nm)2+(m2×m2)

+(m2×mN)+d
[
3(mN×Nm)+2(m2×mN)

]
Table 4.2: Time usage for SoD, FITC and Local during the training phase. Chol

row indicates how many Cholesky decompositions of matrices are needed, for ex-

ample m23 indicates three decompositions of m×m matrices. Gauss indicates how

many Gaussian eliminations of triangulated linear systems are needed. For example

m2(2N + 4m2 + 3) indicates a number of operations equivalent to that needed when

solving (2N + 2m2 + 3) triangulated systems of size m2. Mult indicates the number

of matrix-vector and matrix-matrix multiplications needed. This excludes element-wise

multiplications written X . ∗Y etc in Matlab. For example, 2(mN×Nm) indicates two

multiplications AB where A is of size m×N and B is of size N×m. d is the number of

partial derivatives to be computed. These are all lower bounds on the time complexity

of the methods; times needed for example for the computations of kernel values, data

clusters and many others are not included. d is dimensionality of the data, which indi-

cates the number of lengthscale derivatives the SQ-ARD covariance needs to compute.

Note that only FITC requires per-derivate operations that are complicated enough to be

included in this table.

Chapter 4. Implementation 32

sizes, reaches the best speed somewhere in the middle and again runs slowly for larger

cluster sizes. Such behavior does not agree with the estimated time complexity from

Table 4.2, which indicates that the time requirement should be a growing function of m.

It turned out the reason is that because for small clusters, most time is spent repeating

trivial operations on each of the thousands of clusters: setting up/erasing memory,

creating namespaces and other bookkeeping etc. Matlab works fast with vectorized

algorithms but the smaller the clusters, the less vectorized Local GP is. Figure 4.1

gives a concrete example of how concave time curves such as Local GP’s can come

about in Matlab. This behavior is unfortunate, as we will see that Local GP appears to

be an interesting approximation method in terms of error performance. Implementing

optimized Local GP in a lower level language like C could be very useful. However,

Local GP is only suited for some applications, which do not require continuity of the

regressed function; thus it is useful to have Local GP available in a more general GPR

package, and the optimized C implementation would best come with other flavors of

GP approximations as well.

4.3.3 IFGT complexity

We have not included IFGT complexity in our tables. This is because IFGT does not

have one parameter that controls its runtime and space requirements and thus compar-

ison to the other methods in one table would be difficult. As in any iterative method,

one can reduce the number of iterations k (of CG in this case) to be smaller than N,

the dimensionality of the CG problem we want to solve. In this case, IFGT requires

O(kN2) training time. More interestingly, one might also increase the allowed MVM

error on each CG iteration; this would further speed up the process. Raykar and Du-

raiswami [2007] shows that the maximum MVM error can grow with CG iterations

and can be automatically inferred from the CG residuals, given a parameter δ which

controls the final accuracy of the CG procedure (see Equation 16 in Raykar and Du-

raiswami [2007]). We employ the automatic procedure as suggested in the paper, and

hence it is difficult if not impossible to say exactly what the actual time complexity

of the method will be. Raykar and Duraiswami [2007] shows that asymptotically CG

with progressively more inexact IFGT takes O(N) time for training; in our experience,

however, there are no actual speedups present on real datasets, and the behavior of

the algorithm is sensitive to additional factors. These are analyzed in more detail in

Chapter 6.

Chapter 4. Implementation 33

Figure 4.1: Time profiles for running sq dist, a simple function included with and used

by the GPML code, that computes squared Euclidean distances between each pair of

elements in a vector. Top Left sq dist run on vectors of size 2, 2048 times. Top

Right 128 vectors of size 32. Bottom Left sq dist run on a 4096 element vector

once. Bottom Right As in Local GP, for each “cluster size” m we run sq dist N/m

times. Asymptotically this requires N
mm2 = Nm operations, so the plot should be linear.

Instead, for small cluster sizes non-asymptotic factors dominate the computation time.

bsxfun is the quadratic operation in this code. For smaller clusters, where all operations

must be repeated many times, there is much overhead from setting up the functions’

namespaces, stacks etc. That’s why in absolute terms, 2048 runs of bsxfun on 2-

vectors in the first table take almost ten times as much time as 128 runs on 32-vectors

in the second table do.

Chapter 4. Implementation 34

4.4 Clustering and Inducing Points

We have implemented both simple clustering algorithms, RRC and RCP (described in

Section 3.5) in Matlab. We tried to make the code simple to ensure it’s bug-free, as

opposed to optimizing its efficiency, as clustering data using these simple approaches

takes negligible time compared to relevant matrix inversions or hyperparameter opti-

mizations.

Section 3.6 describes several methods of choosing the inducing points set. We im-

plemented the trivial random choice. We also implemented the entropy maximizing

data subset choice, described in (Rasmussen and Williams [2006] Section 8.3.3) effi-

ciently. The third method of choosing inducing points we use is picking cluster centers

returned by the Farthest Point Clustering algorithm. This algorithm is also used in the

IFGT package (Morariu [2010]); we integrated that implementation into our code.

4.5 Tests and additional scripts

We have also written scripts to perform testing of the algorithms and scripts to ex-

tract and present data gathered during these tests. In addition, many small experiments

needed to be implemented to understand some behaviors of the algorithms (described

later in this thesis). All this is mostly our own code, with the exception of dimensional-

ity reduction code implementing the t-SNE algorithm (see van der Maaten and Hinton

[2008]) which was implemented in the Matlab Toolbox for Dimensionality Reduction

(van der Maaten [2010]) by Laurens van der Maaten.

Chapter 5

Empirical Comparison Setup

The main goal of our work is to compare the practical usefulness of the GP approxima-

tions described in Chapter 3. However, it is not immediately clear what the best way

to compare approximations like this should be. We wanted to focus on the practical,

not theoretical characteristics of the algorithms, hence first of all we needed to decide

which datasets to use in our tests. We tried to pick data with different characteristics

and of various difficulties. Our choices are discussed in Section 5.1. Once the data is

chosen, several different bases of comparison come to mind.

One might care about how well each method approximates the full Gaussian Process–

the word “approximation” suggests it would be good to get as close to the exact solu-

tion as possible. However, it is not obvious this would actually be a desired behavior

in itself. We do not expect real data to be drawn from a Gaussian Process, so the full

GP is an approximation itself, which we can only hope to be good if we have enough

domain knowledge about the problem to specify good covariance function structures.

Hence one might imagine that an approximation to the full GP could possibly do better

than the full algorithm itself, if it broke some wrong assumptions present in the latter.

As we will see in the next chapters, some approximations can in fact possess more

flexibility than the original algorithm.

A different idea, which we decided to follow, is to look at some kind of performance

measure of the algorithms. We decided to focus on Standardized Mean Squared
Error and Mean Standardized Log Loss described in Section 5.2.

The four different approximations we analyze can be controlled for the accuracy vs.

time/space complexity tradeoff. SoD, Local GP and FITC each use a parameter con-

35

Chapter 5. Empirical Comparison Setup 36

sistently called m in literature (and in our Chapter 3); IFGT can control the magnitude

of the allowed MVM multiplication error. Since each approximation can in theory

control the achievable errors up to some degree, it is still not clear how to use error

measures to perform a comparison. We have decided to look at time vs. error plots.

We can vary the value of the complexity parameter in each algorithm and do regression

using these values, keeping track of algorithm runtimes; we then measure the error in

prediction on a test set, as described below. We can then plot the time it took each

algorithm to achieve resulting error values on each dataset. Plotting such performance

of all algorithms on the same plot for each dataset and error measure should allow for a

fair comparison of their usefulness. However, there might be different kinds of runtime

the user cares about. Section 5.3 examines this issue.

5.1 Datasets

We want to use datasets large enough to pose a computational challenge for the GP

approximations. The sets we chose are of differing dimensionalities and difficulties

(more/less nonlinear, more/less uniformly sampled). We describe those datasets in

some detail in this section.

SYNTH2/SYNTH8 Synthetic data created by Carl Edward Rasmussen, generated

from a GP with zero mean and isotropic Squared Exponential covariance (length-

scale one in each direction) in 2 and 8 dimensions respectively. We split the data

at random into 30543 training points and 30544 test points. SYNTH2 has noise

variance 10−6, SYNTH8 was originally noiseless but we added 0.001 variance

independent Gaussian noise to it. In both cases the training input locations are

sampled from a Gaussian distribution. Figure 5.1(a) shows SYNTH8 embedded

in two dimensions. It is evident that the training and test points cover the space

well, with no obvious structure. The same is true of SYNTH2 (not shown in the

Figure). SYNTH2 is the easiest dataset we use. Its low dimensionality and GP

origin make it perfectly suited for GP regression.

The situation is more complicated in 8 dimensions, even though our model will

fit the data well. The generating GP’s lengthscales are all equal to 1. Consider

a point far away from the origin, say on the surface of the hypersphere with ra-

dius 1 centered at the origin. In eight dimensions, this hypersphere intersects

Chapter 5. Empirical Comparison Setup 37

much smaller proportion of the high-density data regions than it would in the

two dimensional space. As a result, the further a point is from the center of the

sampling distribution the faster its regression difficulty will grow with dimen-

sionality: the GP algorithms will not be provided with enough data from those

regions of input space in which the outputs are well correlated with the test point.

The fact that in SYNTH datasets the sampling is Gaussian, so there is much less

data on the outskirts of the distribution than on the easier inside region, makes

the situation even more complicated.

CHEM consists of physical simulations data related to electron energies in molecules,

provided by Tucker Carrington from Queen’s University (Canada). Thanks to

Iain Murray for help with access to this set. The inputs have 15 dimensions (the

outputs are scalar as usually), and we split the data into 31535 training cases and

31536 test cases. CHEM consists of one large cluster of input points and several

smaller ones added for coverage (Figure 5.1(b)). This dataset was sampled in a

complicated way and in several stages involving both analytic calculations and

neural network simulation (see Malshe et al. [2007]).

SARCOS is a dataset representing the inverse kinetics of a robotic arm. The inputs

have 21 dimensions and we use 44484 training points and 4449 test points. This

dataset is often used in literature to assess regression algorithm’s performance

(for example in Rasmussen and Williams [2006] or Raykar and Duraiswami

[2007]; also see Nguyen-tuong et al. [2008] for a more general treatment of

inverse dynamic problems and Machine Learning). SARCOS is freely available

on the GPML website1. A projection in two dimensions, shown in Figure 5.1(c),

suggests that SARCOS’s inputs are sampled along disconnected trajectories of

the robotic arm. Figure 5.1(d) also shows one view of a three dimensional em-

bedding of SARCOS data. The 3D embedding, when looked at from different

angles, clearly consists of many disconnected, straight paths. This disconnected

sampling structure can influence the way the problem is learned significantly. As

we will see, the results of running different approximations on SARCOS will be

interesting, most likely partially due to its very structured input space.

1http://www.gaussianprocess.org/gpml/data as of March 2011.

http://www.gaussianprocess.org/gpml/data

Chapter 5. Empirical Comparison Setup 38

(a) SYNTH8 (b) CHEM

(c) SARCOS, 2D projection (d) SARCOS, 3D projection (only training inputs)

Figure 5.1: Low dimensional embedding of the datasets. We used the t-SNE

algorithm (see van der Maaten and Hinton [2008]) for embedding. SYNTH8,

CHEM and SARCOS are shown in 2D. Plot (d) shows SARCOS in 3D viewed

from an angle that emphasizes many separate trajectories. SYNTH2, sampled in

2D from a Gaussian, is not shown.

Chapter 5. Empirical Comparison Setup 39

5.2 Error Measures

We use two distinct error measures to assess algorithms’ performance. One of them,

SMSE, takes only the mean prediction into account and can be used with most regres-

sion algorithms. The second measure, MSLL, also looks at the predictive variances:

intuitively, if an algorithm makes an error and is very confident in this prediction we

would like to penalize it more than when it makes an error but admits wider predictive

variance. These two measures are also standardized to make them invariant to data

input/output variances. A more formal description follows, in which we use notation

D to symbolize the training data used to compute the predictive mean and variance

f̄ (x∗,i) and σ2
∗,i on the test point x∗,i. σ2

test and σ2
train indicate the variance of the test

and training set outputs respectively; µtest and µtrain for the respective mean values;

and (x∗,i,y∗,i) is a test input/output pair and (xi,yi) is a training input/output pair. On

some occasions we will also denote the mean using a bar to avoid using confusingly

many angle brackets, e.g. ȳ is the mean training output and ȳ∗ is the mean test output.

Standardized Mean Squared Error The usual Mean Square Error (often used in-

stead of an absolute error as it is differentiable) is

〈(y∗,i− f̄ (x∗,i))2〉, (5.1)

the average of squared differences between the test output values and the pre-

dicted mean value f̄ (x∗,i). We want to normalize this so that our error measure

is invariant to output scaling. Imagine a trivial method of guessing the output val-

ues - fixing all test values to the mean training output values, i.e. f̄ (x∗,i) = ȳ j for

all i. Instead of computing the “absolute” MSE, we can normalize the quantity

from 5.1 by the MSE achieved by such trivial guessing method. This normaliz-

ing MSE is

NMSE = 〈(y∗,i− ȳ)2〉

= 〈(y∗,i− ȳ∗+ ȳ∗− ȳ)2〉

= 〈(y∗,i− ȳ∗)2〉−2(ȳ− ȳ∗)〈y∗,i− ȳ∗〉+ 〈(ȳ− ȳ∗)2〉

= σ
2
test +(ȳ− ȳ∗)2 (5.2)

If our datasets are normalized to zero output mean ȳ = 0, then we have SMSE =
MSE

NMSE = 1
σ2

test+µ2
test
〈(y∗,i− f̄ (x∗,i))2〉.

Chapter 5. Empirical Comparison Setup 40

Mean Standardized Log Loss To include the predictive variances in error assess-

ment we can look at the negative log likelihood of y∗ given the training and test

data and the Gaussian noise assumption (we use negative likelihood to obtain a

loss, as higher likelihood indicates a better fit so smaller error/loss):

− log p(y∗|D,x∗) =
1
2

log(2πσ
2
∗)+

(y∗− f̄ (x∗))2

2σ2
∗

. (5.3)

Again, we want to normalize this quantity. This time our trivial prediction

method is to use the mean training output value as the constant mean prediction,

and training output variance σ2
train as the predictive variance (we use the same

values for each test prediction). This model would give the following Mean Log

Loss:

NMLL =
1
2

log(2πσ
2
train)+

〈(y∗− ȳ)2〉
2σ2

train

=
1
2

log(2πσ
2
train)+

σ2
test +(ȳ− ȳ∗)2

2σ2
train

, (5.4)

where 5.4 follows similarly to 5.2. We can use this loss as a normalizing con-

stant; the Mean Standardized Log Loss compares the actual loss under the model

to this trivial model’s loss. If the training variance is 1 and training mean 0, then

MSLL has the simple form

MSLL = −〈log p(y∗,i|data,x∗)〉−NMLL

=
1
2
〈log(σ2

∗,i)+
(y∗,i− f̄ (x∗,i))2

σ2
∗,i

〉− (σ2
test +µ2

test)
2

. (5.5)

5.3 Time Measures

Chapter 2 suggests that there are several distinct time measures of GPR that one might

care about. First of all, we might have a limited budget of time altogether, in which

case the hyperparameter training time will be of most concern. To train the hy-

perparameters, one will typically run a gradient descent algorithm on the negative log

likelihood of the model; each computation of this likelihood will take O(N3) time

(Chapter 2 gives more details on this and other theoretical properties of GP mentioned

in this section). In addition, it could be beneficial to optimize the hyperparameters sev-

eral times starting from different initial values to avoid bad local minima. If we have

enough time available for the hyperparameters to be of no serious concern, computing

Chapter 5. Empirical Comparison Setup 41

the parameters- that is, inverting the covariance matrix- will not pose a challenge, as

this training time is roughly as long as one iteration of likelihood-optimizing gradient

descent.

However, one might also imagine a situation where fast online predictions must be

made, that is the test time needs to be short, while the training time budget is of

less concern (online exploration in the bandit setting comes to mind, see Srinivas et al.

[2010] for theory). The test time scales differently than the training time, taking O(N2)

for computing the predictive variances if the relevant Cholesky factor is precomputed.

Taking this into account, we decided to look at the hyperparameter training times
and test times per test point of the approximation algorithms. As parameter training

times are roughly proportional to hyperparameter training times, they don’t introduce

any additional useful information for the purposes of inter-algorithm comparison.

5.4 Theory vs. Practice

As explained above, we decided to base our comparison on hyperparameter train-

ing/test time vs. SMSE/MSLL graphs. Chapter 4 notes that the practical runtimes

of approximations can differ significantly, even if they are asymptotically the same;

hence we feel that using actual runtimes as a basis for comparison makes sense. All

our tests are run on the same machine, and force Matlab to use only one CPU core.

One might argue that it is never clear if the approximations are implemented as effi-

ciently as possible. Indeed, it is conceivable that our comparison is unfair in that we

use a much less efficient implementation of for example FITC than IFGT. However,

all of SoD, Local GP and FITC implementations we look at are written in Matlab;

while IFGT is uses C++ modules, we will see that it is not a competitive algorithm

anyway. Since SoD, Local GP and FITC all use common base code from the GPML

package, we might say with some confidence that our comparison framework is not

terribly biased.

Chapter 6

Results

This chapter presents the main results of our work: time-performance plots comparing

the different approximation methods on several datasets. Section 6.1 treats the IFGT

approximation separately, as it turned out it is not feasible to use it on most datasets –

it isn’t amenable to our comparison methods. Section 6.2 looks at how the approxima-

tions behave when we vary their complexity parameter m (inducing set size or cluster

size). This will help us choose the best variant of each method (for example, which

clustering method is best suited for use with Local GP on SARCOS). We can also ex-

pect that looking at this m-dependent behavior can help us understand the results of

Section 6.3, which discusses the time-performance plots of the approximations. This

section presents the most important practical result in this dissertation. Finally, Sec-

tion 6.4 discusses the significance and consequences of our findings and concludes

with recommendations on which approximations to use depending on the situation.

Occasionally we refer to hyperparameter tables in this chapter. These can be found

in Appendix A. The Appendix shows mean hyperparameter values (lengthscales for

each dimension, noise variance, signal amplitude) estimated by each algorithm on each

dataset in our experiments, with standard errors also shown. We don’t comment on

every table explicitly in this thesis; we decided to provide the full tables as they can

potentially contain interesting information that we never use in our analysis of the

algorithms.

42

Chapter 6. Results 43

6.1 Problems with IFGT

As Iain Murray suggested in Murray [2009], it is not clear whether IFGT can be of

use in practical hyperparameter regimes. In particular, the method is likely to bring

speedups only for impractically long data lengthscales, with useful bandwidths scaling

as
√

d with data dimensionality. We wanted to check if indeed the method cannot give

speedups on our datasets. To do this, we use IFGT to multiply the Squared Exponential

covariance matrix on randomly chosen 5000 training points with a 5000 element vector

of random i.i.d. elements (sampled from U[0,1]), for each of the four datasets. Figure

6.1 shows that the method is practical only for the 2D SYNTH2 data. Already for 15d

CHEM, the bandwidth of the data would have to be of the order of 100 for IFGT to be

of use. We don’t know the real hyperparameters of the data, but estimating these with

the other methods strongly suggests much shorter lengthscales (on the order of 1).

We tried running GPR using IFGT with progressively more inexact MVM’s on SYNTH2.

We have found that it was difficult for the algorithm to converge. Because of this we

stopped the run after 1000 iterations. We also wanted to check whether any iterative

method could possibly be useful on more serious data, like SYNTH8. Figure 6.1 shows

that IFGT offers no speedups for SYNTH8, hence we used exact MVM with Conju-

gate Gradient. The advantage of this method over standard GP is that it does not keep

the whole covariance matrix in memory, so CG – in theory – allows one to perform

exact GP regression notwithstanding the size of the problem, given unlimited compu-

tation time budget. Because of time constraints we stopped the algorithm after 10000

iterations. In both cases (SYNTH2 and SYNTH8) we set the hyperparameters to their

exact correct values. We did not compute the predictive variances (Section 4.2 explains

why this would be difficult). Our results are presented in Table 6.1. The table shows

that the MVM methods can give reasonable SMSE values on low dimensional data. In

addition, compared to the other methods analyzed in the reminder of this chapter the

truncated CG approximation gave the best MSE on SYNTH8. However, the result is

of little practical importance as it took over five days to run the algorithm, with pre-set

hyperparameters.

Chapter 6. Results 44

(a) SYNTH2 (b) SYNTH8

(c) CHEM (d) SARCOS

Figure 6.1: IFGT used for fast matrix vector multiplication at different bandwidths. In all

plots, both axes are logarithmic. In each case we chose 5000 points from the dataset at

random and multiplied the Squared Exponential covariance matrix on these points with

a random (uniform on [0,1]5000) vector v. We used three MVM methods on all sets:

Exact Matlab where the whole matrix was stored in memory and multiplied by v using

Matlab matrix multiplication (the complexity of which is, as expected, independent of

data dimensionality), IFGT where the Improved Fast Gauss Transform was used and

Auto which was proposed by Raykar and Duraiswami [2007] as a way to speed up the

IFGT MVM in some regimes. The plots show no difference between the latter two, apart

from a small constant overhead. The plots seem to confirm that IFGT can only be useful

in low dimension or at large lengthscales.

Chapter 6. Results 45

Dataset SYNTH2 SYNTH8

MSE 0.2346 0.1845

Time [s] 12396 (approx. 4 hours) 434420 (approx. 5 days)

Table 6.1: GP using CG. For SYNTH2, we used IFGT for approximate MVM. The Conju-

gate Gradients algorithm had difficulties converging. For SYNTH8 we used exact MVM

but stopped CG after 10,000 iterations.

6.2 SoD, Local GP and FITC: performance as a function

of m

This section examines the approximations’ behavior as we vary their complexity, con-

trolled by a parameter we call m in each case. We later use these results to choose

particular implementations of the algorithms for the time-wise comparison in Section

6.3. Note: in all the plots shown in this section the x-axis uses the log scale. In all

the SMSE plots, the y-axis also uses the log scale, but all the MSLL plots have linear

y-axes.

6.2.1 Best expected performance

SYNTH2 and SYNTH8 are datasets created from Gaussian Processes with known hy-

perparmaters. Because we know the data noise levels σ2
n, we can calculate the best

possible expected performance of any regression method on these data. As explained

in Chapter 2, GP Regression predicts the value f̂ (x∗) of a function f on a test point

x∗. We measure approximation error by comparing these estimates to test outputs y∗;

where y∗ = f (x∗)+ N (0,σ2
n) if we assume Gaussian observation noise (which we do

in GPR). Thus even if our regression method knows exactly what the function f is (so

that f̂ (x∗) = f (x∗)) and reduces predictive variances to noise levels σ2
∗ = σ2

n, we still

Chapter 6. Results 46

expect the errors to be nonzero:

SMSEbest =
1

σ2
test +µ2

test

〈
(y∗,i− f̂ (x∗,i))2〉

=
1

σ2
test +µ2

test

〈
(f (x∗)+N (0,σ2

n)− f (x∗,i))2〉
=

1
σ2

test +µ2
test

〈
(N (0,σ2

n))
2〉

=
σ2

n

σ2
test +µ2

test
, (6.1)

MSLLbest =
1
2

〈
log(σ2

∗,i)+
(y∗,i− f̂ (x∗,i))2

σ2
∗,i

〉
− (σ2

test +µ2
test)

2

=
1
2

〈
log(σ2

n)+
σ2

n
σ2

n

〉
− (σ2

test +µ2
test)

2

=
log(eσ2

n)
2

− (σ2
test +µ2

test)
2

. (6.2)

Above, we derive Equation 6.2 using Equation 6.1 to reduce the squared-error factor

in the log loss.

Thus we expect any method to yield Standardized Mean Squared Errors proportional

to the noise variance at best, and Mean Squared Log Loss proportional to the log of

noise variance. In the approximation performance figures below we computed these

baseline values for SYNTH2 and SYNTH8 and note them in relevant figure captions

for comparison with actual method performances.

6.2.2 SoD

As explained in Chapter 3, running the SoD approximation requires choosing a method

to pick a data subset representative of the full dataset; we experimented with choosing

the subset using the Farthest Point Clustering algorithm and at random. We varied

the subset size to be m = 2,4, ...,4096,6000 (using m = 8192 was problematic due

to memory and time constraints, but we did run this test in several particularly inter-

esting cases) and repeated the experiments five times for each inducing points choice

method (standard error bars are shown in the plots). We only report results for m≥ 128

as the error bars for smaller m were very large. The description of each algorithm’s

Chapter 6. Results 47

performance on each dataset is accompanied by pointers to tables showing the hyper-

parameters the method estimated on this dataset. We found the following facts useful

in understanding SoD’s behavior.

SYNTH2 (Tables A.1, A.2) As will be the case for all other methods, SYNTH2 was

an easy dataset to learn. The tables show that the hyperparameters are learned

almost perfectly, with very little variance over the trials. The plots in Figure

6.3 show a steadily falling learning curve for both Random dataset selection and

the FPC algorithm. The MSLL performance saturates after using 256 induc-

ing points, which constitutes 1
128 of all data available. Note that Random never

reaches FPC’s MSE level. This behavior was already explained in Figure 3.3.

SYNTH8 (Tables A.3, A.4) This eight-dimensional dataset is very difficult to learn.

Table A.3 shows that the hyperparameter estimation is possible with 256 in-

ducing points already, but MSE and MSLL are far from optimal. In this case

Random does slightly better than FPC at estimating the hyperparameters and

gives slightly smaller errors. Figure 3.3 suggests that this is because in high

dimensions FPC places too many points on the exterior of the sample distribu-

tion. As in SYNTH2 experiments, the learning curves have negative slopes as

expected, but this time error reduction is much slower.

CHEM (Tables A.5, A.6) The CHEM dataset (Figure 6.5) behaves similarly to SYNTH8

in that Random does better than FPC clustering for most of the time. This sug-

gests that there is no structure in the inputs that would make using FPC benefi-

cial. Thus Random does better, as it simply places more inducing points in the

denser data regions with high probability.

SARCOS (Tables A.7, A.8) For SARCOS FPC gives better results than Random clus-

tering (Figure 6.6). Similar behavior is encountered when Local GP algorithm

is used. In Section 5.1 we saw that there are strong indicators that SARCOS

inputs are not sampled uniformly, but rather have a strong structure that can be

well used by the GP approximations. As expected, FPC recognizes this structure

better than random subset choice.

Chapter 6. Results 48

6.2.3 FITC

In FITC we can vary the number of inducing points m, which we try to choose using

FPC or randomly, similarly to choosing SoD’s active set. We varied the number of

inducing points to be m = 8,16, ...,512. FITC is much more memory-intensive than

SoD (see Table 4.1), so it was impossible to continue experiments with larger m. We

repeated each experiment five times, and report standard error bars.

SYNTH2 (Tables A.9, A.10) FITC’s performance on SYNTH2 reaches good values

quickly, as expected (Figure 6.7). Note that the plots show decreasing perfor-

mance for largest m. This is because of numerical instability present in FITC–

discussed in Section 6.3.1 below. Ignoring the instability, randomly chosen in-

ducing points yield worse results than FPC-chosen inducing points. We suggest

that the reason is the same as in the case of SoD choice - Figure 3.3 shows that

FPC places the inducing points densely in a regular pattern throughout the input

space, while Random fails to do so.

SYNTH8 (Tables A.11, A.12) Also similarly to the SoD case we find that SYNTH8 is

a difficult dataset (Figure 6.8). The learning curves decrease very slowly. An

examination of the numerical values of the results shows that, as with SoD, FPC

does slightly worse than Random in this case, but the difference is negligible.

More interestingly, FITC estimates the SYNTH8 hyperparameter lengthscales

to be slightly larger than the real values, and the noise levels are severely under-

estimated (both FITC-FPC and FITC-Random estimate the noise to be around

exp(−3) = 0.05 while SYNTH8 has noise with σ2
n = 0.001). Because the ex-

periments were repeated five times with random seeds and the hyperparameter

variances over those runs are relatively small, it is unlikely that they result from

a local minimum. In fact, we confirmed experimentally that using FITC with

the true hyperparameters gives slightly worse SMSE and MSLL than using the

estimated hypers. We were unable to fully explain this phenomenon. However,

it is a useful reminder that different approximation might have different optimal

hyperparameters, and thus for example using the SoD method to optimize the

hypers to then be used with another algorithm is not always the best idea.

CHEM (Tables A.13, A.14) Figure 6.9, showing FITC’s performance on CHEM, again

is very similar to Figure 6.5 which shows the performance of SoD on CHEM.

Notably, Randomly chosen inducing points give better results for most m but for

Chapter 6. Results 49

the largest values FPC seems to start outperforming the simpler method SMSE-

wise.

SARCOS (Tables A.15, A.16) FITC’s performance on SARCOS, shown in Figure 6.10,

is also similar to that of SoD.

6.2.4 Local GP

Note on the experiments: Local GP as we implement it has four basic variants

(RRC+Joint, RRC+Separate, RPC+Joint, RPC+Separate). Unfortunately, we did not

manage to perform the full set of five experiment repetitions for each variant, as we did

for all other methods; the full Local GP experiment set is still in progress. In the plots

below we are able to present results from only one experiment per each variant of Lo-

cal GP, hence any conclusions we reach are not very reliable; however, an overall trend

can often be spotted, in particular when comparing Local GP with other methods later

in Section 6.3. In addition, the full experiment set on SYNTH2 is already completed

and the results are qualitatively no different from these presented below.

To use the Local GP approximations one must choose a clustering method. We fo-

cused on two simple alternatives, Recursive Projection Clustering (RPC) and Random

Recursive Clustering (RRC), as described in Section 3.5. The results reported in this

section suggest that there is no clearly visible difference between these algorithm’s

performance. However, choosing the hyperparameter optimization method to be either

joint or separate (Section 3.2 explains this distinction) turns out to be a potentially sig-

nificant choice. In each experiment, we varied cluster size to be m = 32,64, ...,4096.

SYNTH2 (Tables A.17 - A.20) Local GP learns SYNTH2 easily (Figure 6.11), already

for small clusters of size 32. In one case, the RRC+separate, the algorithm re-

turns unreasonable solutions MSLL-wise for both for SYNTH2 and SYNTH8.

This is very likely due to the fact that RRC tends to estimate clusters of size

smaller than the fixed upper bound (more so than RPC), and the separate hy-

perparameter estimation method is unlikely to be able to estimate reasonable

hyperparameters in such small clusters. The hyperparameter tables confirm this

explanation; in Tables A.17, A.18 (SYNTH2, Local with joint estimation) and

A.21, A.22 (SYNTH8, Local with joint estimation) the hyperparameters are

estimated almost perfectly even for clusters of size 32. On the contrary, the

Chapter 6. Results 50

“RPC+separate” Tables A.19 (SYNTH2) and A.23 show some misestimation of

the hypers, while “RRC+separate” Tables A.20 (SYNTH2) and A.24 show hy-

pers severely misestimated on average, with huge variances between the clusters.

SYNTH8 (Tables A.21 - A.24) Similarly to the SoD case we find that SYNTH8 is a

difficult dataset (Figure 6.12). The learning curves decrease very slowly. Again,

joint hyperparameter training works better with this dataset (see the explanation

for SYNTH2’s behavior above).

CHEM (Tables A.25 - A.28) Figure 6.13 shows that for CHEM separate hyperparame-

ter training works better (MSLL-wise) than joint training when the clusters reach

sizes above 256. This is probably because the dataset is taken from real world

data; Local GP with separate hyperparameter training can handle nonstationary

and highly nonlinear data easier than less localized methods. The performance

difference is not visible when we look at the SMSEs. More trials might be nec-

essary to understand the behavior of Local GP on CHEM properly.

SARCOS (Tables A.29 - A.32) Local GP performs very well on SARCOS, indepen-

dent on cluster size (Figure 6.14). This agrees with the experiments conducted

by Ed Snelson in his PhD thesis (Snelson [2001], Section 3.3.2) where it is re-

marked that the Local approximation, using only small block sizes, can achieve

an extremely low MSE and MSLL. In our figure the joint hyperparameter train-

ing method beats separate optimization by far in the small clusters regime. This

can happen for example if the dataset is highly nonsmooth so that it does not have

a SE-ARD-GP-like structure (so it’s hard to approximate with ordinary GP); but

locally it is well approximated by smooth surfaces. If in addition these surfaces

are sampled with similar noise levels, Local GP with small clusters and joint

hyperparameters becomes local linear regression, and can learn the data well.

Figure 6.2 shows that indeed SARCOS has traits of such a dataset. Tables A.29

and A.30 show that Local GP estimates SARCOS’s hyperparameters to be very

similar for all cluster sizes under joint estimation; but the same is not true for

Local on CHEM, Tables A.26 and A.25. We were not able to fully understand

this result, and we would like to look more experiment runs before drawing any

definite conclusions about Local GP’s behavior on SARCOS.

Chapter 6. Results 51

Figure 6.2: Variances of the outputs for clustered datasets. For each dataset, the train-

ing points x1, ...,xn were clustered into m clusters c1, ...,cm. For each cluster, the vari-

ance of the test outputs associated with all the points in the cluster was computed. The

plotted values are mean variances over all clusters (one standard deviation is shown).

As usual, each dataset’s training outputs are normalized to have unit variance. The

plots show that SARCOS’s clusters have relatively very low output variances, which

might explain why Local GP gives good results on this dataset when tiny clusters with

large lengthscales are used– in which case the algorithm approximates local linear re-

gression.

Chapter 6. Results 52

Figure 6.3: SoD: MSLLs and SMSEs for SYNTH2. The best expected possible per-

formance, calculated according to Equations 6.1 and 6.2, is SMSEbest = 9.96× 10−7,

MSLLbest =−6.9095.

Figure 6.4: SoD: MSLLs and SMSEs for SYNTH8. The best expected possible

performance, calculated according to Equations 6.1 and 6.2, is SMSEbest = 0.001,

MSLLbest =−3.449.

Chapter 6. Results 53

Figure 6.5: SoD: MSLLs and SMSEs for CHEM.

Figure 6.6: SoD: MSLLs and SMSEs for SARCOS.

Figure 6.7: FITC: MSLLs and SMSEs for SYNTH2. The best expected possible per-

formance, calculated according to Equations 6.1 and 6.2, is SMSEbest = 9.96× 10−7,

MSLLbest =−6.9095.

Chapter 6. Results 54

Figure 6.8: FITC: MSLLs and SMSEs for SYNTH8. The best expected possible

performance, calculated according to Equations 6.1 and 6.2, is SMSEbest = 0.001,

MSLLbest =−3.449.

Figure 6.9: FITC: MSLLs and SMSEs for CHEM.

Figure 6.10: FITC: MSLLs and SMSEs for SARCOS.

Chapter 6. Results 55

Figure 6.11: Local: MSLLs and SMSEs for SYNTH2. The best expected possible

performance, calculated according to Equations 6.1 and 6.2, is SMSEbest = 9.96×
10−7, MSLLbest =−6.9095.

Figure 6.12: Local: MSLLs and SMSEs for SYNTH8. The best expected possible

performance, calculated according to Equations 6.1 and 6.2, is SMSEbest = 0.001,

MSLLbest =−3.449.

Chapter 6. Results 56

Figure 6.13: Local: MSLLs and SMSEs for CHEM.

Figure 6.14: Local: MSLLs and SMSEs for SARCOS.

Chapter 6. Results 57

6.3 SoD, Local GP and FITC: time-wise comparison

As explained in Chapter 5, we designed experiments showing how much time is needed

to achieve given performances using the different approximations. The results pre-

sented in Section 6.2 helped us to choose which method variants to use. Table 6.2 lists

those variants and briefly comments on the possible reason for why the choice yields

best results.We tested the methods on the four datasets SYNTH2, SYNTH8, CHEM

and SARCOS. The number of trials per each experiment and various ms we use are as

described in Section 6.2 above. (Note again that the results for Local GP are not very

reliable as only one trial was conducted for each variant of the method).

SoD Local FITC

SYNTH2 FPC fills 2D space

densely and regularly.

Joint fits data drawn

from a GP.

FPC (as for SoD)

SYNTH8 Random focuses on

the center of Gaussian

sampled data.

Joint fits data drawn

from a GP.

Random (as for SoD)

CHEM Random finds denser

regions in high di-

mensional data with

little structure.

Separate fits nonsta-

tionary data.

Random (as for SoD)

SARCOS FPC places inducing

points in interesting

regions of structured

input space.

Joint possibly fits

data well approxi-

mated by local linear

regression.

FPC (as for SoD)

Table 6.2: Our choices of approximation flavors that give best performance on different

datasets. Joint and Separate are two different ways of estimating hyperparameters in

Local GP (the clusters can share the hyperparameters or use separate hypers); FPC

and Random are two methods of choosing inducing points either as centers of Farthest

Point Clustering clusters or at random (the table suggests that this choice has similar

consequences for SoD and FPC). Two clustering methods we tested with Local GP

(RRC and RPC) yielded very similar results, hence we don’t mention them in the table.

Chapter 6. Results 58

6.3.1 SYNTH2

Figure 6.15 shows performance of the different algorithms on SYNTH2. SoD, the sim-

plest method, saturates in performance quickly, and is definitely the best method when

hyperparameter training time is important, in which case it achieves stable, good

SMSE and MSLL values quickly. Note that in Figures 6.15(a) and 6.15(b) SoD’s per-

formance is not a function of time in the mathematical sense. This is because for small

inducing point numbers (less than 100) the computational costs are defined by non-

asymptotic factors, as Figure 4.1 exemplified. For similar reasons Local GP’s SMSE

curves are not functions of time. In the case of SYNTH2, for smaller clusters Local

GP’s performance was falling, but runtimes were growing; we exclude these datapoints

from our plots but keep them in mind for later analysis. In the test time plots, FITC and

Local GP do better than SoD. Note a significant and unexpected rise of FITC’s MSLL

at the last time point in Figures 6.15(c) and 6.15(d). This is due to a numerical insta-

bility in the algorithm. After its performance saturates, FITC has problems calculating

log likelihood derivatives. Rasmussen and Nickisch were working on this problem in

the newest GPML version (see Rasmussen and Nickisch [2010]); we have also looked

at the issue but we don’t see it as crucial for our work, as the algorithms will be unable

to saturate in most non-trivial situations (such as on all the other datasets).

Chapter 6. Results 59

(a) (b)

(c) (d)

Figure 6.15: Time-performance plots for GP approximations running on SYNTH2 data.

The best expected possible performance, calculated according to Equations 6.1 and

6.2, is SMSEbest = 9.96×10−7, MSLLbest =−6.9095.

Chapter 6. Results 60

6.3.2 SYNTH8

Figure 6.16 shows that the algorithms have much trouble working with this dataset; the

error curves are very flat, indicating slow convergence to the true solution. However,

the overall trends are similar: SoD gives relatively good results quickest when the

hyperparameter estimation times are taken into account, while FITC and Local work

better with test times. Note that Local GP’s errors are smaller than those of the other

methods; however, because of the non-monotone time behavior of the method it never

runs quickly enough to compare with FITC or SoD in the short time ranges.

(a) (b)

(c) (d)

Figure 6.16: Time-performance plots for GP approximations running on SYNTH8 data.

The best expected possible performance is shown as a gray constant line. The best

expected possible performance, calculated according to Equations 6.1 and 6.2, is

SMSEbest = 0.001, MSLLbest =−3.449.

Chapter 6. Results 61

6.3.3 CHEM

CHEM’s plots (Figure 6.17) show trends similar to those seen on SYNTH8. Again,

SoD does best on training, while FITC and Local GP are more useful during the

testing phase. Local GP seems particularly promising given its test-time SMSEs, but

we see that for small clusters the MNLP variance is huge, and hence the result is not

reliable.

(a) (b)

(c) (d)

Figure 6.17: Time-performance plots for GP approximations running on CHEM data.

6.3.4 SARCOS

SARCOS was perhaps the most interesting dataset to look at. Figure 6.18 shows no

surprises in that again SoD is good in hyperparameter training and FITC/Local do bet-

Chapter 6. Results 62

ter in the test phase. The thing to note is that this time Local GP’s performance is better

with smaller cluster sizes (see Section 6.2 for more discussion on this). Unfortunately,

as we already noted, smaller cluster sizes can require growing resources with Local

GP, hence the odd-looking performance curves.

(a) (b)

(c) (d)

Figure 6.18: Time-performance plots for GP approximations running on SARCOS data.

6.4 Recommendations

The experimental results presented in Sections 6.1, 6.2 and 6.3 allow us to draw con-

clusions as to which method is best used, depending on the situation. The conclusions

presented in this section sum up the whole of the results and analysis presented in this

dissertation, and so it is difficult to provide pointers to specific sections under each

Chapter 6. Results 63

claim. We hope that our recommendations follow clearly from the discussion in the

three experimental results sections bove, which do provide references to specific evi-

dence whenever appropriate. Table 6.3 attempts to sum up our results telegraphically.

6.4.1 Recommendations by computational budget constraint

If a particular computational resource is limited, it appears clearly that some methods

are much better choices for GP regression than others. The list below sums up our

findings in this context.

Test times If a limited test time budget is available but we can afford long and accu-

rate hyperparameter training, then FITC or Local GP are likely to be the best

choice. If the time budget is very limited, FITC allows for the fastest training

with reasonable accuracy. However, at slightly larger test times Local outper-

forms FITC: it is slower but can be much more accurate.

Training times In some cases, only a limited amount of time might be available for

hyperparameter training. All the approximations seem to allow for reasonable

training times (the longest we had to wait was about 12 hours for training Lo-

cal GP with clusters of size 4096 points). However, if care is not taken when

choosing an approximation, there do exist potential pitfalls (consider IFGT’s hy-

perparameter optimization times, Section 4.2.2). In sum, in great majority of

cases in our experiments we see a similar behavior: Local GP gives best results

if one can afford long hyperparameter training time. If only limited training time

is available, it seems clear that SoD should be the approximation of choice.

Storage Space Limited storage space (mobile applications with limited available mem-

ory come to mind) can render potentially interesting approximations useless.

While we don’t provide explicit memory usage vs. performance plots, under-

standing the methods’ space usage is much more straightforward than looking

at their runtime. One might try to optimize for small constant factors, but FITC

will always need to store an m×N covariance matrix in memory. Local GP is

more flexible: first of all, if the test inputs are known on training, one only needs

to keep one local m×m covariance matrix at a time. This suggests that if the

test time is of no concern at all, one can simply wait with training the hyperpa-

rameters till the test points are known. If they arrive in an on-line fashion but

Chapter 6. Results 64

at long intervals, one could re-compute the appropriate local covariance matrix

each time a test point arrives and thus keep the m×m space complexity while

retaining Local GP’s performance - but this requires using the separate hyperpa-

rameter training approach, which yields worse performances with small cluster

sizes. In the end, we can always simply use the Subset of Data method which

always keeps only O(m×m) values in memory and, as we already mentioned,

gives reasonable performances if training time is of concern anyway. In addition,

in the Future Work Section 7.3 we mention a possible extension to FITC that can

make it more useful in limited space regimes.

Above we suggest that SoD does better than FITC training-time-wise, but worse test-

time-wise. Why is that? It turns out that the gap between the amount of computation

FITC and SoD need to do once the model is trained is much smaller than the gap

between the amount of computation FITC and SoD need to do on training. This is

because computing the derivatives of log likelihood under FITC is particularly com-

plicated (Snelson [2001] Appendix C derives the relevant derivatives), much more so

than computing FITC predictive distribution once the hyperparameters are fixed. For

both SoD and Local GP, hyperparameter training is not that much more complex than

prediction.

6.4.2 Recommendations by dataset type

We might be less concerned with specific computational constraints, but simply re-

quire getting as good results as possible in reasonable time and using feasible space.

Section 6.1 shows that again, IFGT is probably not a good choice in any nontrivial

case. However, the other approximations can apply with varying efficiency to different

problems. This section gathers some observations we made regarding the algorithms’

performance on different data.

Input dimensionality The only method that seems to have significant problems with

growing dimensionality is IFGT. However, SoD and FITC are not immune to

the curse of dimensionality. This is because these methods base their prediction

on information flow between a set of inducing points, which are a small subset

of the full data. In high dimensions only the points at the center of the input

space can communicate efficiently with most other data; the points closer to the

edges will only be able to use exponentially less information with growing di-

Chapter 6. Results 65

mension. In case of Local GP the situation is less clear: on one hand, more local

information is retained under this approximation– and only local information is

actually important in very high dimensions. On the other hand, one would ex-

pect to experience even more of the “edge-effect”, that distracts FITC and SoD

from performing well, under this approximation, as Local GP creates clusters

with “edges” all throughout the space, not only on the outskirts of the input sam-

ples. The effect of dimensionality on Local GP seems to be an interesting, but

unanswered, question.

Input set structure As expected, if the input data are not structured (e.g. the SYNTH

datasets), it is better to use random methods for inducing points choice or clus-

tering. In particular, random methods tended to give better results on high di-

mensional datasets in our experiments. This makes sense as the lack of obvious

structure in the data would require the inducing points or the clusters to ideally

be placed in regular patterns in the input space, but in high dimensions this is

usually not feasible. If, on the other hand, we see much structure in the data,

using more sophisticated clustering/inducing point choice methods can point the

approximations at the relevant regions in the input space, improving their perfor-

mance. In addition, the Local approximation seems likely to use strong dataset

structure to achieve good results with little computational effort.

Chapter 6. Results 66

Desideratum Best approximation Notes

Short test and training

times, small memory us-

age

Local GP Only if test data known in

advance and Local imple-

mented efficiently

Short test and training

times

Local GP Test data need not be

known in advance

Short test time, small

memory usage

Local GP Only if test data known in

advance; otherwise, SoD

Short test time FITC

Short training time, small

memory usage

SoD Consider Local GP if test

data known in advance

Short training time SoD

Small memory usage Local GP Recompute the local co-

variance matrices on each

new test point

Need best possible results

in feasible time

Local GP Possibly consider

SoD/FITC, see Sec-

tion 7.2

Table 6.3: Our choices of approximation flavors that give best performance in different

situations. Local GP is particularly attractive when one can afford not storing all the

local covariance matrices (for example, when the test data is available on training time,

or when one can afford recomputing the local covariance matrix on each test point); it

often yields best results for mid- and high- range of the timescale. FITC provides good

results in short test times, but is slow to train and always requires more space than

SoD. SoD is relatively easy to train well. See also Table 6.2 which looks at the methods’

performance on different datasets.

Chapter 7

Conclusions and Future Work

We believe that our work shows that a practical comparison of algorithms is both use-

ful and interesting. Presenting asymptotic complexities is not enough to measure an

algorithm’s usefulness. A theoretical analysis can help understand where an algorithm

applies best, but looking at its performances in practice and in diverse contexts is im-

portant for a full appreciation of the algorithm’s behavior. This chapter sums up our

work in Section 7.1. Section 7.2 mentions several GP approximations which we did

not consider in our experiments and discusses whether our results can shed any light

on these methods’ usefulness. Section 7.3 talks about possible future directions of

research that would extend and clarify our conclusions.

7.1 Summary of completed work

We investigated the practical usefulness of several approximations to the GP regres-

sion algorithm, the theory behind which was explained in Chapter 2. The full algo-

rithm scales cubically in the number of training datapoints and requires storing a ma-

trix of dimension equal to the number of datapoints in memory. Chapter 3 presented

four proposed approximation algorithms: Subset of Data, Local GP, Fully Indepen-

dent Conditional and GP using Conjugate Gradients with approximate Matrix-Vector

Multiplication. These methods have different asymptotic runtimes and can behave

very differently in different contexts (varying datasets or computational constraints);

in particular, we showed that it is important to consider not only theoretical-asymptotic

properties of the algorithms, but also their practical properties in Chapter 4. We have

67

Chapter 7. Conclusions and Future Work 68

created a testing framework that visualizes the practical performance of the methods in

a clear and easy to interpret way; this framework is explained and justified in Chapter

5. Finally, Chapter 6 presented the results of our tests. In the same chapter we con-

sidered a spectrum of possible situations in which one might need to resort to using a

GP approximation algorithm and explain, based on our experimental findings, which

algorithm should work best in each case.

7.2 Other methods

There are several approximation algorithms we know of which we do not consider in

this dissertation. Two interesting algorithms that we feel are worth mentioning are

PITC and SSGP. In addition we shortly discuss an extension to Gaussian Process algo-

rithms called Warped GP.

7.2.1 Partially Independent Conditional

Introduced by Ed Snelson during his PhD research (Snelson [2001]), this approxima-

tion connects the ideas of FITC and Local GP. We saw that FITC approximates the full

GP by using the subset of regressors covariance matrix instead of the full covariance,

but with the full variances on the diagonal (see Chapter 3). Local GP, on the other

hand, approximates the GP by using only block diagonal elements of the full covari-

ance matrix and setting all the other elements to zero. PIC uses the subset of regressors

matrix like FITC, but places the block diagonal with full covariances like Local GP. It

turns out that asymptotically PIC training runtimes are as good as FITC, and we would

expect to be able to gain accuracy by using this interesting covariance. However, Snel-

son [2001] performed experiments similar to ours on FITC, PIC and Local GP, but on a

smaller range of interesting datasets and using pre-computed hyperparameters. These

restricted experiments show that the performance of PIC is very similar to that of Local

GP (Figure 7.1 reproduces the plots from Snelson [2001] that show this). In addition,

PIC requires larger test times than FITC or Local GP.

Chapter 7. Conclusions and Future Work 69

Figure 7.1: Comparison of FITC (blue circles), Local GP (red stars) and PIC (black

crosses), copied from Snelson [2001]. MSE is the unnormalized Mean Squared Error

and NLPD is the negative log predictive density, which is unnormalized version of our

MSLL. In these experiments PIC does marginally better than Local GP on the Abalone

dataset (see Snelson [2001] for more details on this data), and there is no significant

difference on SARCOS. Note that this figure confirms our results from Chapter 6, where

our experiments suggested that SARCOS is easier to learn with smaller clusters in Local

GP.

Chapter 7. Conclusions and Future Work 70

7.2.2 Sparse Spectrum Gaussian Processes

This is a relatively new method, introduced in Lazaro-Gredilla et al. [2010], after we

had been working on this project for a while. SSGP works with the spectral repre-

sentation of the Gaussian Process it approximates, and thus appears to be interestingly

different from the other algorithms we considered. Two characteristics of the method

that we notice immediately are:

• Efficient hyperparameter training methods (maximizing the marginal likelihood)

are developed in the introducing publications, and the algorithm can compute the

full predictive distribution, including the predictive variances.

• The method can only approximate stationary Gaussian Processes.

While the second point means that we can expect SSGP to be less flexible than for ex-

ample Local GP (which does surprisingly well on the difficult SARCOS data), the first

point means that the method can still be potentially useful and interesting to look at.

Lazaro-Gredilla et al. [2010] attempts to compare SSGP with FITC and another related

algorithm. Unfortunately, the reported results appear of little practical significance, as

the paper looks at the methods’ error performance as a function of the “number of basis

functions” - that is, it varies the complexity parameter of each method and reports the

results on a joint plot. We reproduce the plot in Figure 7.2; note that even though plots

appear to suggest that SSGP is better than the other methods, this conclusion does not

actually follow from the figure directly. Unfortunately, we did not manage to include

this method in our experiments on time.

7.2.3 Warped Gaussian Process

Warped GP, introduced in Snelson et al. [2004], is not an approximation method per

se. Instead, it warps the dataset – that is, puts the output values through a nonlinear

transformation – that makes it better modelled by a GP. This warping process could in

principle be applied in the preprocessing stage before any approximation is used, and

hence we do not include this algorithm in our comparison. Snelson et al. [2004] reports

good results of applying the algorithm on several relatively small datasets. The warping

step is automatized and so should not take much effort to use; it seems reasonable to

consider using this algorithm in the preprocessing of the data to get best results with

any GP algorithm.

Chapter 7. Conclusions and Future Work 71

Figure 7.2: Comparison of FITC, two flavors of SSGP and another method which we do

not describe in this thesis. The plots are copied from Lazaro-Gredilla et al. [2010] (the

dataset used for testing is Kin40k, see Lazaro-Gredilla et al. [2010]). The plots shows

that SSGP (with optimized spectral points) gives performances superior to FITC, but it

is unclear how much more computational effort SSGP required to achieve these results.

The figure uses error measures equivalent to the ones used in this thesis (Normalized

Mean Squared Error is our SMSE, Mean Negative Log Probability is our MSLL).

Chapter 7. Conclusions and Future Work 72

7.3 Future Work

We came upon several interesting problems during our investigations. We partially

investigated these problems as they appear very important for a full understanding of

the discussed algorithms’ behavior, but we could not afford putting enough effort into

these side-projects to reach definite conclusions.

7.3.1 FITC on a subset of data

It is possible, and indeed can be reasonable, to connect the FITC and SoD methods.

One could first choose a subset of data of size n < N (where N is the number of training

points available), then run the FITC algorithm on this dataset only, using m < N induc-

ing points. The asymptotic time complexity of this method would thus be O(nm2) and

required storage space O(nm). It seems to us that especially the required space reduc-

tion could be beneficial, as in our tests we were unable to run FITC with more than

about 1000 inducing points due to space restrictions; however, if the subset of data was

chosen in a way that does not delete much useful information, then we could expect

significant gains from being able to use more inducing points on an almost equally

informative dataset.

The important question that we did not attempt to answer in our work is how to choose

the n
m ratio? The interplay of n and m does not seem obvious. We might expect

choosing n < m (so at least some inducing points are outside of the training subset) to

be unreasonable, as the sole function of the m inducing points is to enable approximate

communication between the n datapoints, and simply running the SoD GP on the n

points should give better results. However, even this is not entirely clear, as again we

want to consider the practical performance of the methods, and FITC with m inducing

points on a subset of size n would take O(nm2) time which is less than O(m3) if n < m!

In sum, knowing the optimal n/m ratio could thus possibly make FITC a much more

useful method and we see it as an important open question. (Thanks to Iain Murray for

drawing our attention to this problem!)

Chapter 7. Conclusions and Future Work 73

7.3.2 Local GP efficiency

Section 4.3.2 shows that the Local GP algorithm’s behavior can be counterintuitive:

for very small cluster sizes m the algorithm can actually run slower than for mid-range

cluster sizes (it slows down again with m growing more, as the asymptotic analysis of

the algorithm requires). This behavior is very unfortunate, as we showed in Chapter

6 that Local GP can return accurate predictive distributions, often better than those

computed by other approximations.

We suggested that the reason for this behavior is that doing computations with small

clusters requires much more bookkeeping. For example, using 1000 clusters of size

32 requires shuffling many small arrays in- and out- of memory and calling many

short-lived functions numerous times, which can also create an overhead. It is possible

that Matlab, as an interpreted language whose focus is on large matrix algebra, is

particularly bad at running such segmented algorithms. It would be very interesting to

see if Local GP can be implemented efficiently enough to be even more competitive.

7.3.3 Mixing different methods for training and testing

It is possible to use one algorithm to train the hyperparameters, and another one to

do the test predictions. We have seen that SoD appears to be a good hyperparameter

training method, but other algorithms do better on test time. Can we use the hyper-

parameters estimated by SoD with Local GP or FITC? Looking at the hyperparameter

tables in Appendix A, we spot some regularities - as we already mentioned in Section

6.2.3, FITC appears to choose the hyperparameters in an intrinsically different man-

ner than SoD (and thus full GP) does. SoD and Local GP with joint hyperparameters

also don’t seem to converge to the same hyperparameter values. A more detailed re-

search in this direction would be interesting, and it seems to us that most publications

introducing new GP approximations omit the topic of how the approximations use the

hyperparameters in comparison to the full GP they are meant to approximate.

7.4 Conclusion

There exist many interesting methods for approximate inference with Gaussian Pro-

cesses, but very often their practical usefulness is clear. We believe that focusing only

Chapter 7. Conclusions and Future Work 74

on the theoretical properties of these algorithms is not reasonable; after all, the goal

of approximation algorithms is to make other methods practically useful. We hope

to have shown that performing an unbiased empirical comparison of approximation

algorithms is possible and can bring about both useful conclusions as well as new

interesting questions that can deepen our understanding of the considered methods.

Appendix A

Appendix: Tables

Following are hyperparameter tables as optimized by the different methods (excluding

IFGT). For SYNTH2 and SYNTH8 the “real” lengthscales d1,d2 of the data, as well as

the signal amplitude amp = |σ f |, are all 1. For SYNTH2, The noise level of the training

data is about 10−6 so logσ2
n =−13.47 after normalization. This is only approximate as

we only know the exact noise level for the whole dataset, while in our experiments we

use a randomly chosen half of it for training only. For SYNTH8, the log noise variance

is −6.94.

In any table, entry showing inf means that the particular value exceeded 9999. We

don’t report such large values because the tables would take up too much space. What’s

more, given the dataset variances are all normalized to unity, we doubt there is any

practical distinction between lengthscales of such large values.

The “errorbars” (± values) shown in Local GP separate hyperparameter training are

variances over the hyperparameters in different clusters. Local GP with joint training

uses the same set of hypers for each cluster, so no variance is present.

The errorbars for SoD and FITC are over 5 repeated runs of the experiment for each

different inducing point choice or clustering method.

75

Appendix A. Appendix: Tables 76

64
pt

s
12

8p
ts

25
6p

ts
51

2p
ts

10
24

pt
s

20
48

pt
s

40
96

pt
s

60
00

pt
s

80
00

pt
s

d1
1.

0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d2
1.

0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

am
p

1.
4
±

0.
0

1.
4
±

0.
0

1.
4
±

0.
0

1.
4
±

0.
0

1.
4
±

0.
0

1.
4
±

0.
0

1.
4
±

0.
0

1.
4
±

0.
0

1.
4
±

0.
0

lo
g

σ
2 n
−

10
.3
±

0.
8
−

13
.6
±

1.
2
−

13
.2
±

0.
2
−

13
.2
±

0.
1
−

13
.2
±

0.
0
−

13
.2
±

0.
0
−

13
.2
±

0.
0
−

13
.2
±

0.
0
−

13
.1
±

0.
0

Ta
bl

e
A

.1
:

S
oD

,S
Y

N
TH

2,
FP

C

64
pt

s
12

8p
ts

25
6p

ts
51

2p
ts

10
24

pt
s

20
48

pt
s

40
96

pt
s

60
00

pt
s

80
00

pt
s

d1
1.

0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d2
1.

0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

am
p

1.
7
±

0.
1

1.
6
±

0.
1

1.
5
±

0.
1

1.
5
±

0.
0

1.
4
±

0.
0

1.
4
±

0.
0

1.
4
±

0.
0

1.
5
±

0.
0

1.
5
±

0.
0

lo
g

σ
2 n
−

12
.9
±

0.
3
−

13
.3
±

0.
2
−

13
.2
±

0.
0
−

13
.1
±

0.
1
−

13
.2
±

0.
1
−

13
.1
±

0.
0
−

13
.1
±

0.
0
−

13
.1
±

0.
0
−

13
.2
±

0.
0

Ta
bl

e
A

.2
:

S
oD

,S
Y

N
TH

2,
R

an
do

m

Appendix A. Appendix: Tables 77

64
pt

s
12

8p
ts

25
6p

ts
51

2p
ts

10
24

pt
s

20
48

pt
s

40
96

pt
s

60
00

pt
s

80
00

pt
s

d1
8.

1
±

8.
3

1.
3
±

1.
0

1.
0
±

0.
2

1.
0
±

0.
2

1.
0
±

0.
1

1.
1
±

0.
0

1.
1
±

0.
0

1.
1
±

0.
0

1.
1
±

0.
0

d2
1.

5
±

0.
7

4.
0
±

5.
6

1.
6
±

1.
2

1.
0
±

0.
2

1.
2
±

0.
1

1.
1
±

0.
1

1.
1
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d3
1.

0
±

0.
4

1.
5
±

0.
8

1.
9
±

0.
6

1.
4
±

0.
3

1.
1
±

0.
3

1.
1
±

0.
1

1.
1
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d4
12

.0
±

9.
7

4.
4
±

6.
5

1.
9
±

0.
6

1.
5
±

0.
2

1.
3
±

0.
1

1.
3
±

0.
2

1.
2
±

0.
0

1.
1
±

0.
1

1.
1
±

0.
0

d5
6.

2
±

6.
7

5.
3
±

6.
8

1.
8
±

1.
0

1.
6
±

1.
0

1.
2
±

0.
1

1.
1
±

0.
1

1.
1
±

0.
0

1.
1
±

0.
0

1.
0
±

0.
0

d6
10

.6
±

11
.6

1.
1
±

0.
3

3.
2
±

4.
0

1.
2
±

0.
1

1.
0
±

0.
1

1.
1
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d7
4.

1
±

6.
4

1.
0
±

0.
7

1.
0
±

0.
2

1.
1
±

0.
2

1.
3
±

0.
1

1.
1
±

0.
1

1.
1
±

0.
0

1.
1
±

0.
0

1.
0
±

0.
0

d8
9.

2
±

16
.5

1.
3
±

0.
8

0.
8
±

0.
4

1.
2
±

0.
3

1.
1
±

0.
1

1.
2
±

0.
1

1.
1
±

0.
0

1.
1
±

0.
0

1.
1
±

0.
0

am
p

1.
0
±

0.
1

1.
0
±

0.
0

0.
8
±

0.
1

0.
9
±

0.
1

1.
0
±

0.
1

0.
9
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

lo
g

σ
2 n
−

4.
6
±

1.
7
−

5.
5
±

1.
7
−

2.
0
±

1.
6
−

2.
2
±

1.
2
−

4.
2
±

2.
9
−

1.
6
±

0.
3
−

2.
4
±

0.
2
−

4.
0
±

1.
6
−

3.
7
±

0.
3

Ta
bl

e
A

.3
:

S
oD

,S
Y

N
TH

8,
FP

C

Appendix A. Appendix: Tables 78

64
pt

s
12

8p
ts

25
6p

ts
51

2p
ts

10
24

pt
s

20
48

pt
s

40
96

pt
s

60
00

pt
s

80
00

pt
s

d1
10

.8
±

20
.0

4.
4
±

7.
2

1.
0
±

0.
2

1.
1
±

0.
1

1.
0
±

0.
0

1.
1
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d2
3.

7
±

4.
6

18
.8
±

34
.8

1.
1
±

0.
2

1.
0
±

0.
1

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d3
21

.2
±

38
.6

11
.7
±

12
.7

1.
2
±

0.
2

1.
2
±

0.
2

1.
2
±

0.
1

1.
1
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d4
6.

2
±

7.
8

1.
1
±

0.
4

1.
6
±

0.
8

1.
1
±

0.
2

1.
1
±

0.
1

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d5
45

.9
±

52
.4

10
.3
±

16
.3

1.
2
±

0.
2

1.
1
±

0.
1

1.
1
±

0.
1

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d6
1.

0
±

0.
2

2.
2
±

2.
7

1.
3
±

0.
3

1.
2
±

0.
1

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d7
18

.4
±

22
.9

9.
8
±

18
.2

1.
1
±

0.
4

1.
1
±

0.
1

1.
0
±

0.
1

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d8
6.

4
±

10
.8

3.
9
±

5.
8

1.
0
±

0.
1

1.
0
±

0.
1

1.
0
±

0.
0

1.
1
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

am
p

1.
0
±

0.
1

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
1

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

lo
g

σ
2 n
−

6.
9
±

1.
4
−

5.
1
±

1.
8
−

6.
8
±

0.
8
−

5.
5
±

2.
9
−

4.
4
±

0.
7
−

4.
8
±

0.
6
−

5.
7
±

0.
7
−

6.
2
±

0.
4
−

6.
7
±

0.
0

Ta
bl

e
A

.4
:

S
oD

,S
Y

N
TH

8,
R

an
do

m

Appendix A. Appendix: Tables 79

64
pt

s
12

8p
ts

25
6p

ts
51

2p
ts

10
24

pt
s

20
48

pt
s

40
96

pt
s

60
00

pt
s

d1
55

.9
±

68
.3

3.
6
±

0.
4

32
.1
±

57
.4

2.
9
±

0.
3

3.
2
±

0.
3

3.
6
±

0.
2

4.
4
±

0.
1

4.
7
±

0.
1

d2
5.

8
±

8.
6

10
.9
±

5.
7

21
.3
±

14
.1

30
.8
±

4.
4

28
.6
±

15
.0

7.
0
±

4.
1

4.
5
±

0.
2

4.
6
±

0.
2

d3
21

.2
±

28
.5

3.
6
±

1.
1

3.
6
±

1.
2

2.
3
±

0.
2

2.
1
±

0.
2

2.
1
±

0.
1

1.
9
±

0.
0

1.
8
±

0.
0

d4
10

.6
±

13
.4

1.
9
±

0.
5

3.
4
±

1.
9

1.
5
±

0.
2

1.
3
±

0.
2

1.
4
±

0.
1

1.
4
±

0.
0

1.
4
±

0.
0

d5
62

.3
±

52
.7

25
.7
±

17
.9

20
.0
±

17
.3

41
.0
±

9.
8

10
.9
±

4.
0

7.
1
±

1.
2

7.
4
±

0.
6

7.
9
±

0.
3

d6
20

.5
±

9.
7

1.
1
±

0.
5

7.
5
±

6.
4

3.
4
±

0.
9

3.
5
±

0.
4

3.
0
±

0.
2

1.
3
±

0.
1

1.
0
±

0.
0

d7
27

.3
±

33
.1

36
.7
±

15
.8

15
.8
±

17
.3

2.
1
±

0.
3

2.
1
±

0.
0

2.
5
±

0.
2

3.
2
±

0.
1

3.
3
±

0.
1

d8
21

.5
±

22
.9

26
.6
±

13
.0

15
.6
±

24
.9

2.
6
±

0.
5

2.
5
±

0.
2

3.
1
±

0.
1

4.
1
±

0.
1

4.
5
±

0.
0

d9
6.

2
±

7.
0

9.
7
±

10
.0

1.
9
±

0.
3

3.
1
±

0.
5

2.
9
±

0.
1

2.
8
±

0.
1

2.
5
±

0.
2

2.
3
±

0.
1

d1
0

24
6.

3
±

45
8.

9
37

.9
±

20
.3

36
.0
±

5.
4

46
.4
±

19
.2

23
.5
±

11
.7

7.
6
±

2.
6

4.
1
±

0.
3

3.
0
±

0.
1

d1
1

39
.7
±

21
.6

19
.0
±

25
.4

20
.2
±

15
.6

18
.3
±

5.
4

17
.3
±

10
.4

13
.0
±

3.
9

4.
7
±

0.
2

3.
8
±

0.
1

d1
2

26
.1
±

45
.2

31
.6
±

24
.0

2.
2
±

0.
9

1.
8
±

0.
4

1.
5
±

0.
1

1.
6
±

0.
1

1.
9
±

0.
0

2.
1
±

0.
0

d1
3

33
.3
±

18
.5

35
.0
±

26
.7

32
.8
±

13
.6

2.
3
±

0.
2

2.
7
±

0.
3

3.
0
±

0.
0

3.
8
±

0.
1

3.
8
±

0.
0

d1
4

38
.4
±

44
.4

2.
6
±

1.
3

3.
2
±

0.
9

5.
2
±

0.
4

6.
6
±

1.
2

5.
8
±

0.
3

4.
5
±

0.
2

4.
4
±

0.
1

d1
5

49
.7
±

52
.2

31
.9
±

19
.1

6.
0
±

2.
6

5.
4
±

0.
5

6.
5
±

0.
7

6.
0
±

0.
3

4.
6
±

0.
2

3.
9
±

0.
1

am
p

1.
5
±

0.
1

1.
4
±

0.
1

1.
4
±

0.
1

1.
6
±

0.
0

1.
8
±

0.
1

2.
2
±

0.
0

3.
1
±

0.
1

3.
7
±

0.
0

lo
g

σ
2 n
−

6.
3
±

2.
1

−
3.

1
±

2.
3
−

1.
6
±

0.
4
−

2.
3
±

0.
4
−

2.
2
±

0.
1
−

2.
5
±

0.
2
−

3.
2
±

0.
1
−

3.
9
±

0.
0

Ta
bl

e
A

.5
:

S
oD

,C
H

E
M

,F
P

C

Appendix A. Appendix: Tables 80

64
pt

s
12

8p
ts

25
6p

ts
51

2p
ts

10
24

pt
s

20
48

pt
s

40
96

pt
s

60
00

pt
s

d1
7.

8
±

6.
5

2.
7
±

0.
5

2.
8
±

0.
3

3.
1
±

0.
2

3.
6
±

0.
3

4.
1
±

0.
2

4.
6
±

0.
1

4.
8
±

0.
1

d2
4.

5
±

4.
9

13
.9
±

10
.8

6.
1
±

6.
9

2.
1
±

0.
4

2.
3
±

0.
2

3.
0
±

0.
1

3.
4
±

0.
3

3.
4
±

0.
2

d3
3.

0
±

3.
5

1.
0
±

0.
1

1.
1
±

0.
1

1.
1
±

0.
1

1.
2
±

0.
0

1.
4
±

0.
1

1.
5
±

0.
1

1.
6
±

0.
1

d4
1.

5
±

1.
9

0.
7
±

0.
1

0.
8
±

0.
1

0.
8
±

0.
1

0.
9
±

0.
1

1.
1
±

0.
0

1.
2
±

0.
0

1.
2
±

0.
0

d5
11

.1
±

7.
9

20
.6
±

6.
1

5.
4
±

2.
8

4.
2
±

1.
1

5.
0
±

0.
3

5.
8
±

0.
8

5.
9
±

0.
7

5.
8
±

0.
2

d6
0.

3
±

0.
1

0.
5
±

0.
1

0.
5
±

0.
1

0.
5
±

0.
1

0.
5
±

0.
0

0.
6
±

0.
0

0.
7
±

0.
0

0.
7
±

0.
0

d7
11

.7
±

9.
6

13
.9
±

18
.2

4.
0
±

1.
1

4.
4
±

1.
1

4.
2
±

0.
4

4.
5
±

0.
3

4.
8
±

0.
4

4.
3
±

0.
5

d8
8.

6
±

9.
4

13
.3
±

10
.0

9.
1
±

9.
9

3.
5
±

0.
8

3.
6
±

0.
1

4.
6
±

0.
2

5.
0
±

0.
3

5.
1
±

0.
3

d9
3.

8
±

3.
9

1.
4
±

0.
3

1.
6
±

0.
3

1.
4
±

0.
1

1.
6
±

0.
1

1.
8
±

0.
0

1.
9
±

0.
1

1.
9
±

0.
1

d1
0

10
.1
±

4.
9

21
.8
±

15
.6

8.
3
±

7.
9

4.
5
±

0.
7

3.
1
±

0.
8

2.
4
±

0.
3

2.
4
±

0.
1

2.
3
±

0.
1

d1
1

7.
7
±

5.
4

2.
3
±

1.
4

1.
4
±

0.
3

1.
8
±

0.
2

2.
3
±

0.
6

2.
5
±

0.
3

2.
5
±

0.
2

2.
3
±

0.
2

d1
2

17
.2
±

12
.9

1.
7
±

0.
3

2.
1
±

0.
2

2.
2
±

0.
2

2.
6
±

0.
2

2.
9
±

0.
2

2.
9
±

0.
2

2.
8
±

0.
1

d1
3

2.
6
±

3.
5

1.
8
±

0.
5

2.
0
±

0.
2

2.
3
±

0.
3

2.
7
±

0.
2

3.
3
±

0.
3

3.
4
±

0.
2

3.
1
±

0.
1

d1
4

9.
6
±

10
.4

2.
1
±

0.
4

2.
7
±

1.
1

2.
5
±

0.
5

2.
3
±

0.
2

2.
9
±

0.
3

3.
1
±

0.
2

2.
7
±

0.
2

d1
5

15
.2
±

11
.5

15
.2
±

8.
6

13
.0
±

15
.4

5.
9
±

1.
0

4.
5
±

0.
5

3.
7
±

0.
2

3.
4
±

0.
1

3.
3
±

0.
2

am
p

0.
9
±

0.
1

1.
3
±

0.
1

1.
3
±

0.
1

1.
5
±

0.
1

2.
1
±

0.
2

3.
1
±

0.
2

4.
4
±

0.
3

4.
8
±

0.
4

lo
g

σ
2 n
−

6.
3
±

1.
5
−

5.
1
±

2.
0
−

3.
9
±

1.
6
−

3.
9
±

0.
7
−

4.
9
±

0.
2
−

6.
0
±

0.
1
−

7.
0
±

0.
2
−

7.
8
±

0.
1

Ta
bl

e
A

.6
:

S
oD

,C
H

E
M

,R
an

do
m

Appendix A. Appendix: Tables 81

64
pt

s
12

8p
ts

25
6p

ts
51

2p
ts

10
24

pt
s

20
48

pt
s

40
96

pt
s

60
00

pt
s

d1
9.

4
±

4.
6

6.
7
±

2.
6

6.
8
±

0.
7

7.
1
±

1.
4

8.
2
±

1.
5

6.
2
±

0.
3

5.
2
±

0.
7

4.
1
±

0.
2

d2
66

1.
8
±

30
5.

1
45

57
.8
±

79
96

.5
12

2.
7
±

20
3.

7
7.

7
±

1.
1

7.
2
±

0.
8

7.
9
±

1.
0

5.
8
±

0.
2

6.
1
±

0.
3

d3
42

77
.6
±

78
87

.3
12

22
.7
±

14
62

.2
35

78
.2
±

70
45

.3
56

.8
±

63
.9

23
.0
±

7.
7

27
.6
±

5.
9

13
.1
±

3.
0

9.
5
±

0.
6

d4
16

4.
2
±

17
1.

2
27

.2
±

30
.4

82
.1
±

87
.0

10
.0
±

5.
0

9.
8
±

1.
9

8.
0
±

0.
7

5.
5
±

0.
4

4.
6
±

0.
4

d5
31

22
.9
±

58
98

.4
25

4.
3
±

49
4.

5
39

.9
±

44
.5

10
.4
±

11
.8

3.
4
±

0.
2

2.
5
±

0.
2

2.
0
±

0.
2

2.
0
±

0.
1

d6
37

2.
0
±

40
8.

2
42

9.
1
±

65
8.

2
24

3.
6
±

16
5.

3
25

.7
±

17
.5

15
.4
±

8.
4

34
.9
±

13
.5

16
.1
±

3.
2

13
.8
±

2.
1

d7
25

52
.0
±

48
89

.6
26

2.
2
±

25
8.

3
12

5.
2
±

62
.6

41
.7
±

28
.8

19
.6
±

12
.2

5.
6
±

0.
8

4.
1
±

0.
6

3.
7
±

0.
2

d8
87

2.
7
±

78
3.

3
23

3.
9
±

14
6.

1
13

3.
4
±

14
6.

6
5.

1
±

1.
3

3.
7
±

1.
0

2.
5
±

0.
5

1.
6
±

0.
1

1.
4
±

0.
1

d9
15

06
.7
±

18
84

.2
57

5.
9
±

18
3.

1
68

1.
6
±

57
0.

2
42

.4
±

32
.9

15
.6
±

2.
9

18
.3
±

2.
1

18
.7
±

2.
4

17
.1
±

0.
8

d1
0

10
60

.4
±

82
4.

4
88

0.
6
±

40
2.

0
65

4.
6
±

87
0.

5
16

1.
9
±

39
.9

29
.6
±

8.
3

15
.4
±

3.
0

13
.2
±

3.
4

10
.1
±

1.
3

d1
1

94
7.

6
±

84
3.

1
20

6.
0
±

26
4.

5
52

5.
6
±

64
9.

8
73

.4
±

71
.3

17
.7
±

23
.4

3.
1
±

0.
2

2.
7
±

0.
1

2.
6
±

0.
1

d1
2

19
76

.0
±

17
22

.1
96

3.
6
±

12
21

.4
74

1.
4
±

54
2.

7
12

0.
4
±

56
.1

71
.2
±

29
.0

21
.3
±

8.
1

9.
5
±

1.
8

9.
3
±

1.
1

d1
3

In
f±

0.
0

69
51

.5
±

12
43

6.
4

12
81

.4
±

17
34

.0
17

9.
0
±

11
9.

1
24

.1
±

20
.0

20
.9
±

3.
6

13
.9
±

0.
5

13
.6
±

1.
1

d1
4

27
72

.3
±

26
41

.1
50

2.
8
±

44
1.

1
28

0.
1
±

34
9.

9
6.

4
±

1.
4

5.
6
±

1.
0

2.
9
±

0.
3

3.
0
±

0.
3

2.
7
±

0.
2

d1
5

8.
9
±

5.
6

4.
7
±

2.
0

3.
7
±

0.
8

3.
4
±

0.
4

3.
3
±

0.
3

3.
5
±

0.
3

3.
3
±

0.
2

3.
1
±

0.
1

d1
6

26
6.

2
±

36
6.

0
17

9.
2
±

24
2.

6
19

.8
±

6.
9

50
.3
±

33
.0

22
.7
±

4.
9

15
.4
±

0.
4

14
.6
±

1.
3

12
.5
±

0.
7

d1
7

40
01

1.
8
±

79
69

3.
0

In
f±

0.
0

90
54

.6
±

17
84

5.
0

18
.9
±

6.
6

18
.1
±

3.
2

15
.4
±

2.
3

11
.5
±

1.
5

10
.2
±

0.
7

d1
8

14
.2
±

11
.3

6.
9
±

1.
6

4.
8
±

1.
2

5.
2
±

0.
7

4.
4
±

0.
5

3.
3
±

0.
3

3.
3
±

0.
2

3.
1
±

0.
2

d1
9

12
76

.5
±

15
27

.3
21

6.
6
±

13
9.

5
48

.4
±

74
.6

16
.5
±

5.
1

23
.4
±

14
.7

13
.4
±

3.
7

12
.3
±

1.
8

9.
6
±

1.
0

d2
0

31
6.

6
±

43
2.

6
22

4.
6
±

29
8.

8
26

8.
8
±

32
7.

1
13

4.
3
±

10
4.

2
16

.5
±

2.
9

15
.9
±

1.
8

13
.6
±

1.
0

13
.2
±

0.
7

d2
1

94
.2
±

50
.1

18
8.

3
±

13
0.

7
11

2.
9
±

98
.1

14
.3
±

12
.4

6.
1
±

1.
2

3.
1
±

0.
3

2.
9
±

0.
2

2.
8
±

0.
1

am
p

5.
8
±

3.
0

3.
6
±

0.
9

3.
2
±

0.
7

2.
3
±

0.
3

2.
0
±

0.
1

1.
8
±

0.
1

1.
6
±

0.
0

1.
5
±

0.
0

lo
g

σ
2 n
−

3.
5
±

0.
7

−
3.

3
±

0.
2

−
3.

3
±

0.
4

−
3.

6
±

0.
2

−
3.

7
±

0.
1
−

4.
0
±

0.
1
−

4.
3
±

0.
1
−

4.
4
±

0.
0

Ta
bl

e
A

.7
:

S
oD

,S
A

R
C

O
S

,F
P

C

Appendix A. Appendix: Tables 82

64
pt

s
12

8p
ts

25
6p

ts
51

2p
ts

10
24

pt
s

20
48

pt
s

40
96

pt
s

60
00

pt
s

d1
5.

2
±

3.
2

7.
0
±

2.
5

8.
7
±

2.
3

6.
2
±

1.
9

4.
6
±

1.
8

3.
8
±

0.
6

3.
2
±

0.
4

3.
1
±

0.
2

d2
14

9.
0
±

17
3.

6
24

7.
9
±

19
4.

0
50

.8
±

65
.9

15
.3
±

6.
0

9.
1
±

1.
9

7.
7
±

1.
4

5.
3
±

0.
6

5.
4
±

0.
6

d3
35

03
.1
±

36
56

.5
31

1.
4
±

20
1.

0
29

8.
7
±

25
5.

5
96

.9
±

53
.6

62
.6
±

76
.2

28
.9
±

10
.9

12
.0
±

3.
5

10
.5
±

2.
4

d4
90

.2
±

11
4.

4
77

.1
±

11
5.

4
74

.2
±

71
.1

8.
3
±

3.
3

5.
9
±

2.
6

6.
8
±

2.
4

4.
2
±

0.
9

4.
6
±

0.
4

d5
73

.7
±

56
.4

13
5.

7
±

15
8.

3
15

9.
2
±

14
3.

7
5.

4
±

2.
1

3.
4
±

0.
7

2.
2
±

0.
3

1.
9
±

0.
2

1.
7
±

0.
1

d6
23

5.
8
±

27
5.

5
19

8.
8
±

17
8.

2
16

5.
7
±

17
4.

7
63

.9
±

56
.3

59
.0
±

59
.4

24
.9
±

5.
0

23
.2
±

7.
0

13
.0
±

3.
1

d7
24

2.
4
±

20
8.

0
17

.6
±

16
.1

53
0.

3
±

10
08

.8
54

.5
±

46
.5

19
.9
±

25
.2

5.
2
±

1.
4

4.
6
±

1.
5

3.
2
±

0.
4

d8
10

6.
1
±

14
2.

5
12

2.
1
±

12
8.

4
22

.0
±

15
.7

13
.0
±

9.
8

6.
0
±

1.
3

5.
0
±

0.
9

2.
3
±

0.
7

1.
5
±

0.
4

d9
18

2.
4
±

11
8.

8
15

4.
7
±

11
2.

8
76

.4
±

10
8.

6
73

.0
±

12
3.

4
10

.2
±

2.
3

16
.3
±

2.
0

16
.7
±

3.
2

17
.4
±

2.
7

d1
0

12
5.

9
±

11
9.

8
15

5.
0
±

11
1.

3
34

3.
0
±

29
4.

7
10

1.
8
±

12
4.

8
34

.9
±

25
.1

16
.1
±

3.
1

16
.4
±

5.
5

14
.5
±

1.
5

d1
1

86
.7
±

14
3.

6
34

.5
±

26
.5

90
.9
±

76
.7

17
.4
±

13
.4

12
.1
±

6.
8

4.
3
±

0.
8

2.
9
±

0.
4

3.
0
±

0.
3

d1
2

14
5.

1
±

86
.1

15
6.

4
±

16
9.

5
15

2.
7
±

11
4.

6
67

.6
±

51
.2

34
.8
±

25
.1

16
.6
±

6.
5

10
.2
±

1.
3

12
.0
±

4.
6

d1
3

85
.6
±

86
.1

17
3.

3
±

15
1.

4
13

05
.4
±

25
31

.7
15

2.
9
±

16
7.

6
29

.7
±

26
.7

31
.3
±

13
.7

16
.9
±

2.
2

17
.8
±

2.
6

d1
4

10
1.

8
±

13
1.

0
15

1.
2
±

10
1.

4
19

7.
6
±

17
6.

6
62

.2
±

86
.0

6.
9
±

2.
2

3.
1
±

0.
3

2.
8
±

0.
5

2.
3
±

0.
2

d1
5

2.
5
±

1.
5

4.
2
±

2.
2

5.
3
±

2.
7

3.
2
±

0.
7

2.
7
±

0.
5

2.
5
±

0.
3

2.
3
±

0.
1

2.
3
±

0.
1

d1
6

18
9.

8
±

21
9.

0
14

8.
3
±

10
6.

2
16

4.
4
±

50
.4

10
6.

8
±

66
.4

29
.0
±

16
.8

14
.9
±

6.
0

10
.6
±

2.
8

10
.2
±

1.
1

d1
7

39
.6
±

29
.3

16
1.

8
±

14
6.

7
32

.7
±

33
.5

25
.4
±

21
.6

11
.1
±

4.
2

8.
1
±

1.
1

7.
8
±

1.
0

7.
8
±

1.
1

d1
8

11
.9
±

12
.7

5.
7
±

1.
5

8.
1
±

4.
1

5.
8
±

2.
3

3.
1
±

0.
5

2.
4
±

0.
3

2.
4
±

0.
2

2.
6
±

0.
2

d1
9

63
.2
±

34
.7

87
.4
±

99
.0

96
.2
±

78
.9

11
.8
±

4.
8

12
.7
±

6.
4

6.
7
±

1.
8

6.
0
±

1.
7

7.
9
±

0.
4

d2
0

25
6.

0
±

26
8.

4
16

2.
9
±

13
6.

1
11

4.
4
±

92
.2

60
.9
±

46
.8

14
.5
±

2.
6

13
.5
±

2.
4

12
.5
±

1.
8

12
.8
±

1.
2

d2
1

10
5.

9
±

17
0.

3
14

2.
1
±

12
2.

7
19

3.
6
±

21
6.

1
20

.9
±

29
.1

6.
6
±

4.
7

2.
7
±

0.
4

3.
0
±

0.
3

2.
8
±

0.
4

am
p

2.
3
±

1.
2

2.
7
±

0.
8

3.
7
±

1.
7

2.
1
±

0.
3

1.
7
±

0.
1

1.
5
±

0.
1

1.
3
±

0.
0

1.
3
±

0.
0

lo
g

σ
2 n
−

9.
6
±

6.
3

−
5.

3
±

3.
2

−
3.

4
±

0.
2

−
3.

8
±

0.
1

−
4.

0
±

0.
1
−

4.
2
±

0.
1
−

4.
3
±

0.
0
−

4.
5
±

0.
0

Ta
bl

e
A

.8
:

S
oD

,S
A

R
C

O
S

,R
an

do
m

Appendix A. Appendix: Tables 83

8p
ts

16
pt

s
32

pt
s

64
pt

s
12

8p
ts

25
6p

ts
51

2p
ts

d1
2.

9
±

3.
6

1.
4
±

0.
2

1.
1
±

0.
1

1.
1
±

0.
1

1.
1
±

0.
1

0.
6
±

0.
1

0.
5
±

0.
1

d2
1.

6
±

0.
7

1.
4
±

0.
3

1.
3
±

0.
1

1.
2
±

0.
1

1.
1
±

0.
1

1.
0
±

0.
1

1.
0
±

0.
1

am
p

7.
4
±

13
.2

1.
8
±

0.
5

1.
5
±

1.
2

1.
6
±

1.
2

1.
2
±

0.
0

1.
4
±

0.
0

1.
5
±

0.
0

lo
g

σ
2 n
−

2.
0
±

0.
8
−

3.
6
±

0.
6
−

5.
5
±

0.
7
−

10
.8
±

0.
3
−

12
.8
±

0.
3
−

12
.3
±

0.
5
−

11
.2
±

0.
1

Ta
bl

e
A

.9
:

FI
TC

,S
Y

N
TH

2,
FP

C

8p
ts

16
pt

s
32

pt
s

64
pt

s
12

8p
ts

25
6p

ts
51

2p
ts

d1
1.

0
±

0.
2

0.
8
±

0.
1

1.
0
±

0.
1

0.
6
±

0.
0

0.
5
±

0.
2

0.
3
±

0.
1

0.
4
±

0.
1

d2
1.

0
±

0.
2

1.
3
±

0.
2

1.
1
±

0.
1

1.
0
±

0.
1

0.
9
±

0.
0

0.
8
±

0.
1

0.
9
±

0.
2

am
p

1.
3
±

0.
4

1.
3
±

0.
5

0.
9
±

0.
1

1.
1
±

0.
0

1.
3
±

0.
0

1.
4
±

0.
1

1.
4
±

0.
1

lo
g

σ
2 n
−

6.
4
±

0.
9
−

9.
8
±

0.
9
−

11
.9
±

0.
7
−

10
.7
±

0.
4
−

11
.1
±

0.
6
−

11
.7
±

0.
5
−

10
.9
±

0.
2

Ta
bl

e
A

.1
0:

FI
TC

,S
Y

N
TH

2,
R

an
do

m

Appendix A. Appendix: Tables 84

8p
ts

16
pt

s
32

pt
s

64
pt

s
12

8p
ts

25
6p

ts
51

2p
ts

d1
1.

0
±

0.
0

1.
1
±

0.
2

1.
3
±

0.
3

1.
3
±

0.
1

1.
2
±

0.
1

1.
3
±

0.
0

1.
3
±

0.
1

d2
0.

8
±

0.
1

1.
0
±

0.
2

1.
2
±

0.
2

1.
4
±

0.
2

1.
5
±

0.
1

1.
3
±

0.
0

1.
2
±

0.
0

d3
1.

0
±

0.
1

1.
5
±

0.
5

3.
4
±

4.
0

2.
0
±

0.
4

1.
8
±

0.
1

1.
6
±

0.
2

1.
3
±

0.
1

d4
1.

6
±

0.
3

5.
6
±

7.
7

7.
5
±

6.
1

1.
9
±

0.
2

1.
9
±

0.
4

1.
5
±

0.
1

1.
4
±

0.
2

d5
1.

0
±

0.
1

1.
8
±

0.
5

1.
8
±

0.
4

1.
5
±

0.
2

1.
6
±

0.
3

1.
4
±

0.
1

1.
3
±

0.
1

d6
1.

2
±

0.
2

1.
5
±

0.
2

2.
4
±

1.
6

1.
7
±

0.
3

1.
3
±

0.
1

1.
3
±

0.
0

1.
2
±

0.
1

d7
1.

0
±

0.
1

1.
2
±

0.
2

1.
3
±

0.
3

1.
4
±

0.
1

1.
4
±

0.
1

1.
3
±

0.
1

1.
3
±

0.
1

d8
0.

7
±

0.
0

1.
0
±

0.
3

1.
3
±

0.
3

1.
3
±

0.
1

1.
3
±

0.
1

1.
3
±

0.
0

1.
3
±

0.
0

am
p

0.
9
±

0.
0

0.
9
±

0.
1

0.
8
±

0.
1

0.
9
±

0.
0

1.
0
±

0.
0

1.
1
±

0.
0

1.
1
±

0.
0

lo
g

σ
2 n
−

3.
1
±

0.
2
−

2.
0
±

1.
1
−

1.
3
±

1.
3
−

1.
1
±

0.
1
−

1.
4
±

0.
1
−

2.
7
±

0.
6
−

3.
9
±

0.
5

Ta
bl

e
A

.1
1:

FI
TC

,S
Y

N
TH

8,
FP

C

Appendix A. Appendix: Tables 85

8p
ts

16
pt

s
32

pt
s

64
pt

s
12

8p
ts

25
6p

ts
51

2p
ts

d1
0.

9
±

0.
1

2.
3
±

1.
8

1.
4
±

0.
2

1.
4
±

0.
4

1.
4
±

0.
1

1.
4
±

0.
1

1.
4
±

0.
1

d2
1.

2
±

0.
5

1.
4
±

0.
2

1.
6
±

0.
3

1.
5
±

0.
2

1.
5
±

0.
2

1.
5
±

0.
1

1.
3
±

0.
0

d3
1.

3
±

0.
2

4.
0
±

1.
9

2.
0
±

0.
4

2.
0
±

0.
2

1.
8
±

0.
2

1.
6
±

0.
1

1.
4
±

0.
1

d4
3.

1
±

1.
7

10
.9
±

9.
3

8.
1
±

6.
7

7.
3
±

4.
6

1.
9
±

0.
2

1.
6
±

0.
1

1.
3
±

0.
1

d5
5.

4
±

8.
3

1.
6
±

0.
2

1.
8
±

0.
6

2.
0
±

0.
6

1.
8
±

0.
2

1.
4
±

0.
2

1.
3
±

0.
1

d6
3.

5
±

4.
8

4.
6
±

1.
8

3.
4
±

0.
9

1.
7
±

0.
3

1.
7
±

0.
6

1.
4
±

0.
1

1.
3
±

0.
1

d7
2.

0
±

1.
5

1.
8
±

0.
3

1.
6
±

0.
2

1.
5
±

0.
1

1.
3
±

0.
1

1.
4
±

0.
1

1.
3
±

0.
1

d8
0.

8
±

0.
2

2.
9
±

3.
1

1.
5
±

0.
2

1.
4
±

0.
1

1.
4
±

0.
2

1.
5
±

0.
1

1.
3
±

0.
1

am
p

0.
7
±

0.
1

0.
6
±

0.
1

0.
7
±

0.
1

0.
8
±

0.
0

0.
9
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

lo
g

σ
2 n
−

0.
8
±

0.
4
−

0.
4
±

0.
2
−

0.
6
±

0.
1
−

0.
7
±

0.
1
−

1.
1
±

0.
1
−

1.
4
±

0.
1
−

1.
8
±

0.
0

Ta
bl

e
A

.1
2:

FI
TC

,S
Y

N
TH

8,
R

an
do

m

Appendix A. Appendix: Tables 86

8p
ts

16
pt

s
32

pt
s

64
pt

s
12

8p
ts

25
6p

ts
51

2p
ts

d1
1.

8
±

1.
0

2.
1
±

0.
5

4.
1
±

2.
6

6.
4
±

2.
3

12
.5
±

11
.2

11
.2
±

1.
8

13
.7
±

1.
6

d2
3.

2
±

3.
8

8.
9
±

11
.7

21
.0
±

15
.9

18
.4
±

12
.5

6.
3
±

4.
7

8.
4
±

1.
9

11
.2
±

2.
6

d3
1.

1
±

0.
7

42
.0
±

67
.1

7.
5
±

3.
4

5.
2
±

2.
6

2.
3
±

1.
0

4.
3
±

0.
8

3.
7
±

0.
3

d4
0.

6
±

0.
1

1.
6
±

0.
8

1.
8
±

1.
6

1.
7
±

0.
6

1.
7
±

1.
1

2.
6
±

0.
3

2.
7
±

0.
3

d5
2.

1
±

0.
1

8.
8
±

6.
6

35
.8
±

32
.3

70
.5
±

30
.1

80
.2
±

82
.4

80
.4
±

60
.0

24
.5
±

6.
2

d6
3.

3
±

1.
6

17
.8
±

20
.8

2.
0
±

0.
8

2.
3
±

1.
4

1.
8
±

1.
6

4.
0
±

1.
9

1.
8
±

0.
1

d7
6.

0
±

6.
4

79
.2
±

12
4.

1
24

.7
±

18
.9

11
2.

6
±

17
4.

4
9.

1
±

4.
6

15
.2
±

6.
0

22
.0
±

7.
0

d8
2.

5
±

3.
1

11
.1
±

8.
4

28
.7
±

30
.4

44
.7
±

36
.5

54
.8
±

76
.9

39
.7
±

36
.1

20
.6
±

6.
0

d9
7.

0
±

4.
6

3.
8
±

3.
2

4.
4
±

1.
7

5.
6
±

2.
6

5.
1
±

2.
1

9.
8
±

3.
7

7.
7
±

2.
1

d1
0

3.
3
±

2.
1

9.
3
±

8.
0

21
.4
±

13
.2

84
.1
±

83
.1

45
.2
±

24
.9

23
8.

0
±

15
5.

6
14

.9
±

9.
2

d1
1

0.
7
±

0.
1

17
.8
±

14
.9

25
.2
±

21
.0

31
.9
±

37
.0

19
.0
±

19
.0

12
9.

1
±

16
.2

41
.4
±

27
.6

d1
2

1.
1
±

0.
5

1.
0
±

0.
2

1.
6
±

0.
2

4.
6
±

1.
9

5.
5
±

4.
0

11
.8
±

9.
7

9.
7
±

2.
8

d1
3

3.
8
±

6.
0

1.
5
±

0.
6

95
.1
±

59
.7

43
.3
±

58
.9

8.
5
±

10
.1

13
.8
±

5.
1

14
.6
±

3.
7

d1
4

1.
1
±

0.
5

16
.2
±

18
.1

3.
1
±

1.
2

7.
7
±

5.
1

28
.5
±

26
.9

92
.7
±

36
.8

12
.7
±

4.
1

d1
5

2.
0
±

0.
7

3.
3
±

1.
6

43
.5
±

41
.5

76
.5
±

60
.2

67
.5
±

22
.7

25
7.

2
±

10
0.

8
50

.9
±

38
.1

am
p

0.
9
±

0.
0

0.
7
±

0.
1

0.
8
±

0.
1

3.
7
±

3.
0

7.
5
±

11
.1

28
.7
±

9.
7

44
.9
±

12
.9

lo
g

σ
2 n
−

3.
0
±

0.
6
−

1.
7
±

1.
6

−
0.

8
±

0.
2
−

1.
4
±

0.
5

−
1.

8
±

0.
3
−

1.
9
±

0.
1

−
3.

5
±

0.
5

Ta
bl

e
A

.1
3:

FI
TC

,C
H

E
M

,F
P

C

Appendix A. Appendix: Tables 87

8p
ts

16
pt

s
32

pt
s

64
pt

s
12

8p
ts

25
6p

ts
51

2p
ts

d1
3.

2
±

3.
1

3.
1
±

0.
7

3.
9
±

0.
6

3.
7
±

0.
4

4.
3
±

0.
2

4.
9
±

0.
6

5.
3
±

0.
8

d2
6.

5
±

6.
0

24
.8
±

34
.4

13
.8
±

7.
5

16
.1
±

17
.4

2.
7
±

1.
3

3.
2
±

0.
5

4.
4
±

0.
4

d3
10

.9
±

18
.7

1.
5
±

1.
2

2.
0
±

0.
4

1.
9
±

0.
7

1.
4
±

0.
2

1.
4
±

0.
1

1.
7
±

0.
1

d4
2.

5
±

3.
2

1.
2
±

0.
9

1.
2
±

0.
3

1.
0
±

0.
1

1.
1
±

0.
1

1.
1
±

0.
0

1.
5
±

0.
1

d5
5.

2
±

3.
2

31
.8
±

21
.2

38
.3
±

15
.4

19
.1
±

16
.7

4.
2
±

0.
6

6.
0
±

0.
3

7.
8
±

1.
3

d6
4.

7
±

4.
4

5.
8
±

7.
3

0.
7
±

0.
3

0.
6
±

0.
1

0.
6
±

0.
1

0.
7
±

0.
0

0.
8
±

0.
1

d7
5.

5
±

3.
6

37
.0
±

38
.4

46
.2
±

45
.9

16
.3
±

24
.1

3.
8
±

0.
6

6.
4
±

0.
8

7.
0
±

0.
8

d8
10

.2
±

9.
6

2.
5
±

1.
1

46
.2
±

34
.3

18
.6
±

19
.6

4.
8
±

1.
3

5.
4
±

0.
8

6.
4
±

0.
6

d9
1.

1
±

0.
5

2.
4
±

1.
1

2.
6
±

0.
4

2.
4
±

0.
3

2.
1
±

0.
3

1.
9
±

0.
2

2.
4
±

0.
0

d1
0

9.
9
±

9.
4

19
.9
±

15
.2

50
.0
±

28
.6

12
.2
±

11
.0

11
.0
±

12
.2

5.
3
±

0.
3

3.
9
±

0.
5

d1
1

8.
3
±

9.
8

14
.0
±

19
.6

2.
9
±

0.
6

4.
6
±

2.
9

2.
6
±

0.
9

3.
1
±

0.
4

4.
2
±

0.
6

d1
2

1.
3
±

0.
6

3.
9
±

4.
4

2.
7
±

0.
3

3.
0
±

0.
4

3.
0
±

0.
6

3.
2
±

0.
4

3.
8
±

0.
6

d1
3

2.
3
±

2.
8

2.
8
±

2.
1

2.
6
±

0.
3

3.
0
±

0.
7

3.
0
±

0.
3

4.
2
±

0.
5

4.
6
±

0.
4

d1
4

1.
3
±

0.
5

2.
8
±

2.
1

6.
1
±

1.
5

5.
5
±

3.
4

4.
2
±

1.
5

3.
6
±

0.
8

4.
9
±

0.
6

d1
5

7.
9
±

6.
0

41
.0
±

38
.9

75
.1
±

28
.8

58
.7
±

38
.8

7.
7
±

1.
7

9.
4
±

2.
6

6.
0
±

0.
3

am
p

0.
8
±

0.
0

0.
8
±

0.
1

0.
9
±

0.
0

1.
1
±

0.
1

1.
3
±

0.
1

1.
9
±

0.
1

3.
9
±

0.
3

lo
g

σ
2 n
−

1.
6
±

0.
6
−

1.
4
±

0.
6
−

1.
3
±

0.
1
−

1.
8
±

0.
2
−

2.
7
±

0.
4
−

3.
1
±

0.
1
−

4.
2
±

0.
1

Ta
bl

e
A

.1
4:

FI
TC

,C
H

E
M

,R
an

do
m

Appendix A. Appendix: Tables 88

8p
ts

16
pt

s
32

pt
s

64
pt

s
12

8p
ts

25
6p

ts
51

2p
ts

d1
16

6.
5
±

28
1.

1
23

.8
±

11
.1

20
.0
±

11
.8

27
.8
±

9.
4

15
.5
±

6.
8

10
.7
±

1.
3

6.
6
±

1.
6

d2
11

90
.6
±

19
47

.6
18

4.
4
±

62
.3

47
3.

6
±

26
1.

2
31

.0
±

10
.9

13
.8
±

5.
6

13
.0
±

2.
2

10
.9
±

2.
6

d3
69

3.
8
±

31
5.

7
83

8.
1
±

94
4.

3
29

6.
7
±

16
5.

7
70

.4
±

28
.6

14
6.

1
±

89
.4

14
9.

6
±

65
.6

46
.7
±

17
.9

d4
72

.1
±

63
.7

59
.3
±

35
.3

23
.6
±

9.
2

35
.0
±

24
.9

19
.7
±

11
.9

9.
8
±

1.
9

7.
1
±

2.
8

d5
10

60
.9
±

63
0.

4
59

4.
7
±

46
5.

7
47

5.
5
±

16
7.

0
9.

0
±

4.
2

4.
8
±

0.
6

2.
7
±

0.
5

2.
9
±

1.
0

d6
51

5.
9
±

43
1.

6
40

8.
4
±

34
3.

4
13

9.
5
±

14
8.

1
33

1.
6
±

31
9.

8
13

2.
7
±

97
.0

50
.0
±

22
.3

57
.9
±

13
.5

d7
55

8.
6
±

44
0.

2
28

6.
5
±

34
5.

9
14

5.
2
±

95
.1

19
0.

2
±

11
3.

0
20

2.
8
±

19
5.

0
45

.9
±

20
.9

32
.0
±

12
.3

d8
58

5.
5
±

61
7.

4
17

4.
2
±

22
9.

0
19

9.
4
±

11
5.

9
37

.2
±

44
.4

10
.2
±

4.
2

10
.9
±

1.
3

9.
8
±

3.
8

d9
29

3.
2
±

25
1.

7
29

2.
3
±

26
2.

8
26

2.
3
±

34
7.

2
20

.5
±

6.
6

24
.8
±

13
.2

28
.3
±

6.
3

49
.2
±

23
.2

d1
0

43
5.

8
±

37
4.

2
17

6.
2
±

20
4.

6
24

0.
4
±

20
0.

6
84

.1
±

51
.8

14
2.

1
±

69
.8

76
.7
±

27
.4

38
.2
±

19
.6

d1
1

38
2.

4
±

37
6.

9
57

.4
±

29
.2

91
.2
±

36
.1

45
.4
±

33
.3

49
.7
±

19
.6

7.
1
±

1.
7

8.
8
±

1.
9

d1
2

28
1.

6
±

20
3.

6
11

6.
0
±

69
.8

11
4.

9
±

81
.9

48
.4
±

13
.3

12
8.

6
±

12
8.

7
38

.6
±

13
.9

89
.3
±

81
.9

d1
3

24
01

.4
±

32
76

.9
25

8.
1
±

16
3.

6
19

2.
0
±

10
8.

7
74

.9
±

40
.6

90
.5
±

22
.2

10
4.

4
±

38
.0

38
.9
±

16
.8

d1
4

95
3.

0
±

11
30

.8
17

9.
3
±

97
.3

13
6.

4
±

15
1.

8
24

.5
±

22
.5

9.
9
±

6.
3

3.
9
±

0.
5

5.
8
±

2.
7

d1
5

13
.8
±

2.
2

13
.1
±

6.
3

7.
3
±

2.
3

6.
6
±

1.
4

3.
7
±

0.
8

3.
0
±

0.
6

3.
6
±

0.
8

d1
6

54
3.

6
±

77
9.

2
89

.4
±

10
2.

0
15

.3
±

8.
8

97
.7
±

84
.8

74
.7
±

42
.1

56
.0
±

20
.1

27
.9
±

10
.1

d1
7

30
6.

0
±

36
9.

8
30

.4
±

19
.9

15
.7
±

10
.7

30
.8
±

5.
0

20
.9
±

20
.5

8.
6
±

1.
0

12
.9
±

2.
3

d1
8

72
.0
±

95
.3

5.
7
±

0.
9

10
.8
±

4.
6

7.
0
±

0.
9

5.
6
±

1.
0

4.
4
±

1.
3

3.
0
±

0.
7

d1
9

17
8.

5
±

27
2.

2
75

.3
±

50
.2

15
.7
±

8.
3

17
.4
±

8.
9

11
.0
±

6.
0

7.
4
±

1.
1

19
.2
±

15
.0

d2
0

46
0.

2
±

52
1.

4
12

0.
6
±

78
.3

44
.1
±

11
.1

52
.9
±

15
.2

40
.2
±

23
.2

24
.9
±

9.
0

43
.5
±

17
.8

d2
1

11
7.

9
±

13
3.

5
67

.4
±

71
.2

13
8.

1
±

21
7.

2
16

.7
±

14
.6

4.
0
±

1.
3

4.
1
±

0.
5

3.
0
±

0.
7

am
p

8.
5
±

2.
7

5.
6
±

1.
9

8.
7
±

2.
6

7.
8
±

2.
8

5.
1
±

2.
0

4.
2
±

0.
8

8.
3
±

7.
0

lo
g

σ
2 n
−

4.
1
±

0.
7

−
3.

9
±

0.
2

−
4.

1
±

0.
1

−
4.

1
±

0.
1

−
4.

3
±

0.
1

−
4.

5
±

0.
0

−
4.

5
±

0.
1

Ta
bl

e
A

.1
5:

FI
TC

,S
A

R
C

O
S

,F
P

C

Appendix A. Appendix: Tables 89

8p
ts

16
pt

s
32

pt
s

64
pt

s
12

8p
ts

25
6p

ts
51

2p
ts

d1
85

11
7.

8
±

17
02

15
.0

21
.8
±

9.
4

18
.8
±

8.
2

29
.6
±

30
.8

23
.5
±

10
.6

7.
7
±

4.
0

4.
1
±

0.
8

d2
10

72
.7
±

96
5.

7
12

8.
7
±

96
.7

26
4.

8
±

30
6.

8
11

.5
±

3.
2

24
.0
±

16
.5

13
.4
±

4.
3

10
.5
±

2.
4

d3
In

f±
0.

0
41

3.
0
±

25
0.

1
27

0.
7
±

18
6.

4
89

.8
±

46
.8

62
.3
±

36
.8

34
.9
±

25
.1

37
.7
±

19
.7

d4
45

0.
8
±

82
6.

6
40

.6
±

25
.9

13
7.

3
±

12
8.

3
27

.6
±

20
.5

16
.8
±

10
.0

10
.3
±

8.
8

5.
4
±

1.
0

d5
69

4.
5
±

70
4.

1
17

0.
9
±

16
5.

0
23

.7
±

13
.7

10
.6
±

6.
2

4.
4
±

0.
8

3.
6
±

1.
3

2.
4
±

0.
2

d6
43

4.
1
±

43
1.

5
23

3.
4
±

21
0.

9
35

0.
1
±

32
3.

5
58

.6
±

45
.2

35
.9
±

24
.7

36
.4
±

29
.2

56
.5
±

36
.2

d7
27

1.
3
±

21
2.

5
12

6.
7
±

61
.1

34
.8
±

17
.9

45
.9
±

32
.0

22
.1
±

13
.4

23
.5
±

16
.4

6.
0
±

1.
7

d8
78

2.
9
±

12
53

.2
57

.6
±

47
.3

23
7.

0
±

23
0.

8
14

.3
±

2.
4

16
.2
±

3.
0

10
.7
±

5.
7

5.
4
±

1.
3

d9
25

2.
6
±

25
3.

9
11

2.
1
±

64
.3

19
5.

2
±

17
9.

2
17

.4
±

5.
2

20
.4
±

7.
0

28
.8
±

7.
7

34
.6
±

12
.9

d1
0

75
5.

3
±

10
23

.4
22

8.
6
±

20
5.

8
47

3.
2
±

41
3.

2
13

9.
2
±

75
.2

15
2.

3
±

10
9.

0
40

.4
±

17
.3

30
.5
±

18
.8

d1
1

13
14

1.
0
±

24
75

4.
6

82
2.

8
±

63
0.

3
24

0.
5
±

32
4.

3
81

.7
±

51
.8

48
.4
±

34
.3

7.
1
±

2.
2

4.
7
±

1.
5

d1
2

44
6.

0
±

40
6.

1
20

3.
8
±

20
4.

2
13

3.
4
±

12
0.

3
40

.4
±

15
.5

73
.9
±

14
.3

32
.7
±

10
.5

37
.8
±

17
.1

d1
3

11
72

.8
±

11
89

.8
39

5.
2
±

28
0.

5
65

8.
1
±

35
7.

1
15

5.
2
±

10
9.

8
49

.4
±

29
.6

49
.3
±

59
.3

42
.8
±

13
.9

d1
4

13
77

.1
±

18
84

.7
35

3.
5
±

41
3.

7
58

8.
6
±

54
0.

2
79

.8
±

77
.8

33
.5
±

30
.5

5.
7
±

2.
3

4.
6
±

1.
1

d1
5

14
.6
±

6.
4

9.
6
±

2.
4

10
.9
±

6.
6

7.
9
±

4.
5

4.
6
±

1.
1

3.
6
±

0.
7

3.
5
±

0.
5

d1
6

86
.8
±

51
.1

18
.6
±

11
.5

84
.1
±

11
5.

4
35

.0
±

14
.5

41
.3
±

1.
8

70
.3
±

46
.4

40
.6
±

26
.2

d1
7

37
6.

5
±

40
2.

8
40

.2
±

27
.9

78
.6
±

76
.2

98
.5
±

10
0.

0
28

.6
±

20
.6

12
.0
±

6.
1

20
.3
±

17
.8

d1
8

36
4.

1
±

68
8.

3
15

.4
±

15
.9

6.
9
±

2.
3

10
.4
±

2.
8

6.
3
±

1.
6

3.
0
±

0.
7

2.
9
±

0.
3

d1
9

12
7.

8
±

11
0.

4
30

.8
±

10
.4

96
.1
±

78
.9

44
.4
±

34
.5

26
.2
±

12
.9

13
.4
±

4.
3

18
.7
±

8.
1

d2
0

60
5.

1
±

64
5.

2
16

1.
2
±

13
8.

0
68

.0
±

57
.2

51
.3
±

39
.4

29
.2
±

6.
7

27
.3
±

6.
8

39
.1
±

12
.1

d2
1

97
.3
±

13
6.

1
96

.7
±

92
.8

22
.2
±

12
.7

8.
3
±

3.
1

5.
1
±

2.
3

4.
7
±

0.
9

3.
9
±

0.
6

am
p

6.
0
±

3.
2

4.
6
±

1.
2

8.
0
±

6.
1

4.
5
±

2.
7

4.
2
±

1.
0

2.
3
±

0.
5

2.
1
±

0.
3

lo
g

σ
2 n
−

3.
4
±

0.
8

−
3.

7
±

0.
2

−
3.

6
±

0.
1

−
3.

7
±

0.
1

−
3.

8
±

0.
0

−
4.

0
±

0.
0
−

4.
1
±

0.
0

Ta
bl

e
A

.1
6:

FI
TC

,S
A

R
C

O
S

,R
an

do
m

Appendix A. Appendix: Tables 90

32
p/

c
64

p/
c

12
8p

/c
25

6p
/c

51
2p

/c
10

24
p/

c
20

48
p/

c

d1
0.

9
±

0.
0

0.
9
±

0.
0

0.
9
±

0.
0

0.
9
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d2
0.

9
±

0.
0

0.
9
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

am
p

1.
1
±

0.
0

1.
2
±

0.
0

1.
3
±

0.
0

1.
3
±

0.
0

1.
4
±

0.
0

1.
4
±

0.
0

1.
4
±

0.
1

lo
g

σ
2 n
−

13
.2
±

0.
0
−

13
.2
±

0.
0
−

13
.1
±

0.
0
−

13
.1
±

0.
0
−

13
.1
±

0.
0
−

13
.1
±

0.
0
−

13
.1
±

0.
0

Ta
bl

e
A

.1
7:

Lo
ca

lG
P,

S
Y

N
TH

2,
R

P
C

,j
oi

nt
hy

pe
rp

ar
am

et
er

tra
in

in
g

32
p/

c
64

p/
c

12
8p

/c
25

6p
/c

51
2p

/c
10

24
p/

c
20

48
p/

c

d1
0.

8
±

0.
0

0.
9
±

0.
0

0.
9
±

0.
0

0.
9
±

0.
0

0.
9
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d2
0.

8
±

0.
0

0.
9
±

0.
0

0.
9
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

am
p

1.
1
±

0.
0

1.
2
±

0.
0

1.
2
±

0.
0

1.
3
±

0.
0

1.
3
±

0.
0

1.
4
±

0.
0

1.
4
±

0.
0

lo
g

σ
2 n
−

13
.2
±

0.
0
−

13
.2
±

0.
0
−

13
.2
±

0.
0
−

13
.1
±

0.
0
−

13
.1
±

0.
0
−

13
.1
±

0.
0
−

13
.1
±

0.
0

Ta
bl

e
A

.1
8:

Lo
ca

lG
P,

S
Y

N
TH

2,
R

R
C

,j
oi

nt
hy

pe
rp

ar
am

et
er

tra
in

in
g

Appendix A. Appendix: Tables 91

32
p/

c
64

p/
c

12
8p

/c
25

6p
/

c
51

2p
/

c
10

24
p/

c
20

48
p/

c

d1
22

8.
3
±

In
f

1.
1
±

0.
6

1.
0
±

0.
1

0.
9
±

0.
0

1.
0
±

0.
0

0.
9
±

0.
0

1.
0
±

0.
0

d2
8.

0
±

50
57

8.
9

0.
9
±

0.
1

0.
9
±

0.
0

0.
9
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

am
p

1.
0
±

0.
4

1.
1
±

0.
3

1.
1
±

0.
3

1.
2
±

0.
3

1.
3
±

0.
3

1.
3
±

0.
2

1.
3
±

0.
2

lo
g

σ
2 n
−

13
.2
±

0.
1

−
13

.2
±

0.
0
−

13
.2
±

0.
0
−

13
.2
±

0.
0
−

13
.2
±

0.
0
−

13
.1
±

0.
0
−

13
.1
±

0.
0

Ta
bl

e
A

.1
9:

Lo
ca

lG
P,

S
Y

N
TH

2,
R

P
C

,s
ep

ar
at

e
hy

pe
rp

ar
am

et
er

tra
in

in
g

32
p/

c
64

p/
c

12
8p

/
c

25
6p

/
c

51
2p

/
c

10
24

p/
c

20
48

p/
c

d1
83

3.
9
±

In
f

16
.5
±

In
f

1.
1
±

0.
8

1.
0
±

0.
1

0.
9
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d2
5.

9
±

66
17

.7
39

21
6.

9
±

In
f

1.
0
±

1.
5

0.
9
±

0.
2

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

am
p

1.
0
±

0.
5

1.
0
±

0.
4

1.
1
±

0.
3

1.
2
±

0.
3

1.
2
±

0.
3

1.
3
±

0.
2

1.
3
±

0.
2

lo
g

σ
2 n
−

13
.3
±

1.
4
−

13
.2
±

0.
5

−
13

.2
±

0.
1
−

13
.2
±

0.
0
−

13
.2
±

0.
0
−

13
.2
±

0.
0
−

13
.1
±

0.
0

Ta
bl

e
A

.2
0:

Lo
ca

lG
P,

S
Y

N
TH

2,
R

R
C

,s
ep

ar
at

e
hy

pe
rp

ar
am

et
er

tra
in

in
g

Appendix A. Appendix: Tables 92

32
p/

c
64

p/
c

12
8p

/
c

25
6p

/
c

51
2p

/c
10

24
p/

c
20

48
p/

c

d1
1.

0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d2
1.

0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d3
1.

1
±

0.
0

1.
1
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d4
1.

1
±

0.
0

1.
1
±

0.
0

1.
1
±

0.
0

1.
1
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d5
1.

0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d6
1.

0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d7
1.

0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d8
1.

0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

am
p

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

lo
g

σ
2 n
−

6.
1
±

1.
1
−

5.
5
±

0.
3
−

5.
4
±

0.
3
−

5.
9
±

0.
1
−

6.
0
±

0.
1
−

6.
5
±

0.
1
−

6.
7
±

0.
2

Ta
bl

e
A

.2
1:

Lo
ca

lG
P,

S
Y

N
TH

8,
R

P
C

,j
oi

nt
hy

pe
rp

ar
am

et
er

tra
in

in
g

Appendix A. Appendix: Tables 93

32
p/

c
64

p/
c

12
8p

/
c

25
6p

/
c

51
2p

/c
10

24
p/

c
20

48
p/

c

d1
1.

0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d2
1.

0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d3
1.

1
±

0.
0

1.
1
±

0.
0

1.
1
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d4
1.

1
±

0.
0

1.
1
±

0.
0

1.
1
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d5
1.

0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d6
1.

0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d7
1.

0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d8
1.

0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

am
p

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

lo
g

σ
2 n
−

6.
3
±

0.
9
−

6.
0
±

0.
3
−

5.
6
±

0.
1
−

5.
8
±

0.
5
−

6.
2
±

0.
2
−

6.
3
±

0.
1
−

6.
6
±

0.
2

Ta
bl

e
A

.2
2:

Lo
ca

lG
P,

S
Y

N
TH

8,
R

R
C

,j
oi

nt
hy

pe
rp

ar
am

et
er

tra
in

in
g

Appendix A. Appendix: Tables 94

32
p/

c
64

p/
c

12
8p

/
c

25
6p

/c
51

2p
/

c
10

24
p/

c
20

48
p/

c

d1
15

.4
±

96
1.

1
4.

9
±

17
0.

8
1.

3
±

4.
2

1.
1
±

0.
0

1.
1
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d2
24

.2
±

75
07

2.
1

5.
5
±

14
95

.4
1.

1
±

0.
3

1.
1
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d3
18

.0
±

61
11

.0
5.

6
±

28
8.

9
1.

4
±

2.
3

1.
1
±

0.
0

1.
1
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d4
15

.1
±

15
95

.7
4.

7
±

13
0.

2
1.

6
±

10
.1

1.
1
±

0.
0

1.
1
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d5
16

.2
±

20
39

.6
4.

5
±

17
5.

1
1.

4
±

4.
7

1.
1
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d6
14

.7
±

15
46

.7
4.

5
±

14
0.

4
1.

9
±

38
.3

1.
1
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d7
17

.4
±

29
35

.0
6.

0
±

10
42

.4
1.

2
±

0.
4

1.
1
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

d8
13

.2
±

82
0.

7
6.

1
±

92
3.

0
1.

2
±

0.
2

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

am
p

1.
1
±

0.
1

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

lo
g

σ
2 n
−

6.
4
±

9.
4

−
5.

8
±

6.
8

−
5.

8
±

4.
3
−

6.
4
±

2.
8
−

6.
4
±

2.
1
−

6.
8
±

1.
6
−

7.
2
±

1.
2

Ta
bl

e
A

.2
3:

Lo
ca

lG
P,

S
Y

N
TH

8,
R

P
C

,s
ep

ar
at

e
hy

pe
rp

ar
am

et
er

tra
in

in
g

Appendix A. Appendix: Tables 95

32
p/

c
64

p/
c

12
8p

/
c

25
6p

/
c

51
2p

/
c

10
24

p/
c

20
48

p/
c

d1
19

59
2.

8
±

In
f

In
f±

In
f

12
.0
±

30
29

.2
6.

9
±

16
51

.9
1.

1
±

0.
0

1.
1
±

0.
1

1.
0
±

0.
0

d2
In

f±
In

f
In

f±
In

f
7.

7
±

86
5.

3
4.

6
±

24
4.

0
1.

6
±

10
.4

2.
1
±

57
.0

1.
0
±

0.
0

d3
In

f±
In

f
12

43
9.

1
±

In
f

9.
6
±

23
55

.1
5.

8
±

23
42

.1
2.

3
±

51
.5

1.
0
±

0.
0

1.
0
±

0.
0

d4
In

f±
In

f
11

85
.4
±

In
f

9.
2
±

99
4.

5
4.

8
±

11
84

.6
2.

5
±

59
.9

2.
1
±

61
.9

1.
0
±

0.
0

d5
In

f±
In

f
In

f±
In

f
8.

4
±

11
17

.5
10

.6
±

10
77

6.
4

2.
1
±

51
.8

1.
0
±

0.
0

1.
0
±

0.
0

d6
In

f±
In

f
In

f±
In

f
14

.5
±

22
89

9.
0

10
.7
±

90
99

.3
1.

7
±

40
.3

2.
8
±

13
5.

8
1.

0
±

0.
0

d7
83

.4
±

In
f

10
3.

8
±

In
f

8.
0
±

24
56

.0
17

.1
±

44
68

9.
7

1.
3
±

3.
1

1.
0
±

0.
0

1.
0
±

0.
0

d8
26

81
.1
±

In
f

26
48

.4
±

In
f

8.
1
±

96
6.

0
22

74
.6
±

In
f

1.
3
±

3.
0

1.
1
±

0.
0

1.
0
±

0.
0

am
p

1.
2
±

0.
4

1.
1
±

0.
4

1.
1
±

0.
1

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

1.
0
±

0.
0

lo
g

σ
2 n
−

7.
9
±

16
.3

−
7.

1
±

14
.8

−
6.

2
±

7.
3

−
6.

0
±

6.
1

−
6.

3
±

3.
7
−

6.
3
±

3.
1
−

6.
7
±

1.
5

Ta
bl

e
A

.2
4:

Lo
ca

lG
P,

S
Y

N
TH

8,
R

R
C

,s
ep

ar
at

e
hy

pe
rp

ar
am

et
er

tra
in

in
g

Appendix A. Appendix: Tables 96

32
p/

c
64

p/
c

12
8p

/c
25

6p
/c

51
2p

/
c

10
24

p/
c

20
48

p/
c

d1
1.

8
±

0.
0

2.
1
±

0.
1

2.
6
±

0.
1

3.
1
±

0.
1

3.
8
±

0.
1

4.
7
±

0.
1

5.
2
±

0.
2

d2
1.

9
±

0.
1

2.
2
±

0.
1

2.
0
±

0.
1

2.
1
±

0.
1

2.
4
±

0.
1

3.
0
±

0.
1

3.
4
±

0.
1

d3
0.

7
±

0.
0

0.
8
±

0.
0

0.
9
±

0.
0

1.
0
±

0.
0

1.
2
±

0.
1

1.
3
±

0.
0

1.
5
±

0.
1

d4
0.

5
±

0.
0

0.
5
±

0.
0

0.
6
±

0.
0

0.
8
±

0.
0

0.
9
±

0.
0

1.
0
±

0.
0

1.
1
±

0.
0

d5
3.

2
±

0.
1

3.
8
±

0.
4

3.
8
±

0.
1

4.
0
±

0.
2

4.
6
±

0.
2

5.
7
±

0.
1

6.
5
±

0.
2

d6
0.

3
±

0.
0

0.
4
±

0.
0

0.
4
±

0.
0

0.
5
±

0.
0

0.
5
±

0.
0

0.
6
±

0.
0

0.
7
±

0.
0

d7
1.

8
±

0.
1

2.
5
±

0.
2

2.
8
±

0.
1

2.
8
±

0.
3

3.
3
±

0.
3

3.
8
±

0.
1

4.
0
±

0.
3

d8
2.

2
±

0.
3

2.
9
±

0.
3

3.
0
±

0.
2

3.
3
±

0.
1

3.
7
±

0.
1

4.
4
±

0.
1

5.
3
±

0.
3

d9
0.

9
±

0.
0

1.
0
±

0.
0

1.
2
±

0.
1

1.
6
±

0.
0

1.
8
±

0.
1

1.
9
±

0.
0

2.
0
±

0.
1

d1
0

3.
4
±

0.
4

3.
2
±

0.
4

2.
6
±

0.
1

2.
6
±

0.
1

3.
0
±

0.
2

2.
9
±

0.
2

2.
6
±

0.
1

d1
1

0.
8
±

0.
0

0.
9
±

0.
0

1.
2
±

0.
1

1.
5
±

0.
0

1.
9
±

0.
1

2.
3
±

0.
1

2.
4
±

0.
1

d1
2

1.
1
±

0.
0

1.
4
±

0.
1

1.
7
±

0.
2

2.
0
±

0.
1

2.
1
±

0.
2

2.
4
±

0.
1

2.
5
±

0.
1

d1
3

1.
3
±

0.
1

1.
7
±

0.
0

2.
0
±

0.
1

2.
4
±

0.
1

2.
8
±

0.
1

3.
4
±

0.
1

3.
7
±

0.
2

d1
4

1.
1
±

0.
0

1.
4
±

0.
0

1.
7
±

0.
1

2.
2
±

0.
1

2.
6
±

0.
1

2.
9
±

0.
1

3.
0
±

0.
3

d1
5

3.
0
±

0.
2

3.
5
±

0.
2

3.
5
±

0.
2

3.
9
±

0.
1

4.
6
±

0.
3

4.
7
±

0.
4

3.
8
±

0.
4

am
p

1.
1
±

0.
0

1.
3
±

0.
0

1.
5
±

0.
1

2.
0
±

0.
1

2.
7
±

0.
1

4.
0
±

0.
2

5.
3
±

0.
4

lo
g

σ
2 n
−

12
.2
±

0.
5
−

11
.7
±

0.
3
−

10
.5
±

1.
2
−

9.
7
±

0.
9
−

9.
9
±

1.
0
−

8.
9
±

0.
3
−

9.
1
±

0.
6

Ta
bl

e
A

.2
5:

Lo
ca

lG
P,

C
H

E
M

,R
P

C
,j

oi
nt

hy
pe

rp
ar

am
et

er
tra

in
in

g

Appendix A. Appendix: Tables 97

32
p/

c
64

p/
c

12
8p

/
c

25
6p

/
c

51
2p

/
c

10
24

p/
c

20
48

p/
c

d1
2.

0
±

0.
0

2.
4
±

0.
2

2.
8
±

0.
1

3.
5
±

0.
0

4.
2
±

0.
1

5.
0
±

0.
1

5.
7
±

0.
1

d2
2.

1
±

0.
1

2.
1
±

0.
1

2.
1
±

0.
1

2.
3
±

0.
1

2.
7
±

0.
1

3.
3
±

0.
0

3.
8
±

0.
1

d3
0.

7
±

0.
0

0.
8
±

0.
0

0.
9
±

0.
0

1.
1
±

0.
0

1.
2
±

0.
1

1.
4
±

0.
0

1.
6
±

0.
0

d4
0.

5
±

0.
0

0.
6
±

0.
0

0.
7
±

0.
0

0.
8
±

0.
0

0.
9
±

0.
0

1.
1
±

0.
0

1.
2
±

0.
0

d5
3.

3
±

0.
2

3.
7
±

0.
2

4.
0
±

0.
2

4.
3
±

0.
2

5.
2
±

0.
2

6.
1
±

0.
2

6.
9
±

0.
3

d6
0.

3
±

0.
0

0.
4
±

0.
0

0.
4
±

0.
0

0.
5
±

0.
0

0.
6
±

0.
0

0.
6
±

0.
0

0.
7
±

0.
0

d7
2.

0
±

0.
1

2.
5
±

0.
1

2.
8
±

0.
1

3.
1
±

0.
1

3.
5
±

0.
3

4.
0
±

0.
1

3.
7
±

0.
2

d8
2.

8
±

0.
2

3.
2
±

0.
2

3.
3
±

0.
1

3.
5
±

0.
1

4.
1
±

0.
1

4.
9
±

0.
1

5.
7
±

0.
2

d9
0.

9
±

0.
0

1.
1
±

0.
0

1.
4
±

0.
0

1.
7
±

0.
1

1.
8
±

0.
0

1.
9
±

0.
0

2.
1
±

0.
0

d1
0

2.
9
±

0.
4

2.
7
±

0.
1

2.
7
±

0.
1

2.
9
±

0.
2

3.
0
±

0.
1

3.
1
±

0.
3

2.
7
±

0.
2

d1
1

0.
9
±

0.
0

1.
1
±

0.
1

1.
3
±

0.
0

1.
8
±

0.
1

2.
1
±

0.
1

2.
5
±

0.
1

2.
5
±

0.
1

d1
2

1.
3
±

0.
1

1.
4
±

0.
0

1.
6
±

0.
1

1.
9
±

0.
1

2.
0
±

0.
2

2.
4
±

0.
1

2.
4
±

0.
0

d1
3

1.
6
±

0.
0

1.
9
±

0.
1

2.
2
±

0.
0

2.
6
±

0.
1

3.
0
±

0.
1

3.
6
±

0.
1

4.
1
±

0.
2

d1
4

1.
2
±

0.
0

1.
6
±

0.
0

2.
0
±

0.
1

2.
5
±

0.
2

2.
9
±

0.
1

3.
2
±

0.
2

3.
2
±

0.
3

d1
5

3.
1
±

0.
2

3.
4
±

0.
1

3.
7
±

0.
1

4.
3
±

0.
2

4.
9
±

0.
2

4.
6
±

0.
3

4.
0
±

0.
2

am
p

1.
2
±

0.
0

1.
4
±

0.
1

1.
7
±

0.
0

2.
3
±

0.
1

3.
3
±

0.
1

4.
8
±

0.
2

6.
5
±

0.
3

lo
g

σ
2 n
−

12
.6
±

0.
5
−

11
.7
±

0.
2
−

11
.2
±

1.
1
−

9.
6
±

1.
2
−

10
.5
±

0.
8
−

8.
8
±

0.
1
−

9.
6
±

0.
7

Ta
bl

e
A

.2
6:

Lo
ca

lG
P,

C
H

E
M

,R
R

C
,j

oi
nt

hy
pe

rp
ar

am
et

er
tra

in
in

g

Appendix A. Appendix: Tables 98

32
p/

c
64

p/
c

12
8p

/
c

25
6p

/
c

51
2p

/
c

10
24

p/
c

20
48

p/
c

d1
In

f±
In

f
42

.1
±

28
13

2.
5

11
.7
±

67
7.

6
5.

0
±

6.
9

6.
2
±

12
.0

6.
3
±

9.
1

6.
5
±

5.
5

d2
65

.1
±

In
f

36
.3
±

93
34

.9
41

.7
±

43
66

2.
8

27
.4
±

34
71

.1
26

.6
±

48
96

.1
11

.0
±

44
6.

8
15

.6
±

10
17

.2

d3
55

.8
±

In
f

14
.7
±

48
62

.6
6.

3
±

13
23

.9
2.

3
±

47
.1

1.
6
±

0.
5

1.
6
±

0.
3

1.
6
±

0.
1

d4
33

.5
±

43
99

7.
0

9.
0
±

21
03

.6
3.

9
±

54
2.

7
2.

3
±

18
7.

2
1.

4
±

0.
6

1.
4
±

0.
5

1.
4
±

0.
2

d5
In

f±
In

f
60

.8
±

62
91

0.
3

58
.2
±

41
84

8.
3

39
.7
±

57
60

.3
29

.8
±

38
16

.4
18

.3
±

88
1.

8
12

.6
±

26
0.

9

d6
52

.1
±

In
f

15
.6
±

39
65

.9
17

.7
±

41
08

.0
21

.4
±

33
29

.7
15

.8
±

22
09

.9
6.

5
±

35
4.

4
5.

0
±

17
6.

4

d7
18

6.
0
±

In
f

50
.7
±

68
07

.3
21

88
.5
±

In
f

79
.0
±

In
f

8.
2
±

35
0.

4
5.

2
±

5.
9

5.
4
±

5.
0

d8
10

18
5.

1
±

In
f

53
.6
±

In
f

30
.2
±

23
23

.6
12

.0
±

44
3.

2
6.

5
±

74
.4

5.
8
±

19
.9

6.
3
±

6.
0

d9
58

43
7.

2
±

In
f

34
7.

9
±

In
f

13
.9
±

16
24

.0
14

.0
±

18
46

.4
6.

4
±

14
2.

5
3.

6
±

11
.5

3.
7
±

21
.8

d1
0

53
.9
±

35
12

0.
0

44
.7
±

59
81

.0
46

.2
±

62
01

1.
1

31
.1
±

62
01

.6
30

.0
±

50
77

.5
57

.7
±

In
f

23
.3
±

29
56

.8

d1
1

62
.1
±

In
f

27
.4
±

77
66

.3
26

.8
±

71
49

.2
35

.9
±

78
89

.4
33

.3
±

76
33

.2
11

.7
±

46
2.

1
19

.8
±

26
40

.5

d1
2

25
20

7.
6
±

In
f

38
.3
±

11
82

9.
5

20
.6
±

24
01

.6
8.

1
±

73
4.

6
4.

7
±

16
5.

8
3.

8
±

3.
0

4.
0
±

3.
4

d1
3

86
.6
±

In
f

39
.2
±

69
17

.2
21

.5
±

22
07

.9
10

.8
±

91
2.

9
4.

4
±

6.
5

5.
3
±

63
.0

4.
9
±

3.
7

d1
4

84
00

.5
±

In
f

31
.3
±

61
77

.5
28

.4
±

70
62

.3
31

.9
±

70
29

.5
37

.5
±

10
81

2.
7

31
2.

8
±

In
f

21
.4
±

19
49

.1

d1
5

14
44

.1
±

In
f

52
.4
±

88
12

.4
54

.6
±

75
28

3.
2

38
.3
±

85
88

.5
35

.6
±

63
30

.8
31

.1
±

80
83

.4
16

.5
±

18
08

.7

am
p

1.
6
±

1.
5

2.
2
±

2.
3

2.
9
±

1.
9

3.
8
±

3.
8

5.
4
±

6.
5

7.
1
±

16
.6

10
.0
±

33
.6

lo
g

σ
2 n
−

11
.6
±

42
.0

−
12

.2
±

46
.7

−
13

.8
±

60
.1

−
14

.9
±

57
.9
−

15
.0
±

51
.4

−
14

.8
±

50
.7

−
13

.5
±

30
.9

Ta
bl

e
A

.2
7:

Lo
ca

lG
P,

C
H

E
M

,R
P

C
,s

ep
ar

at
e

hy
pe

rp
ar

am
et

er
tra

in
in

g

Appendix A. Appendix: Tables 99

32
p/

c
64

p/
c

12
8p

/
c

25
6p

/
c

51
2p

/c
10

24
p/

c
20

48
p/

c

d1
In

f±
In

f
In

f±
In

f
17

14
.5
±

In
f

9.
6
±

12
86

.3
7.

2
±

75
.3

6.
8
±

18
.1

7.
6
±

23
.1

d2
In

f±
In

f
In

f±
In

f
49

.7
±

In
f

30
.9
±

56
45

.6
23

.4
±

27
01

.6
17

.4
±

13
24

.2
10

.4
±

47
9.

3

d3
In

f±
In

f
10

2.
8
±

In
f

76
.5
±

In
f

15
.7
±

14
67

1.
9

9.
1
±

22
05

.9
2.

1
±

3.
5

2.
2
±

5.
6

d4
In

f±
In

f
22

.6
±

35
29

3.
7

25
.6
±

In
f

11
.6
±

16
29

9.
6

22
70

6.
7
±

In
f

6.
2
±

12
83

.6
2.

5
±

46
.5

d5
In

f±
In

f
98

.8
±

In
f

75
.7
±

In
f

46
.0
±

22
55

3.
4

29
.2
±

34
21

.2
18

.7
±

12
02

.5
18

.5
±

17
64

.5

d6
53

43
.8
±

In
f

52
.1
±

In
f

14
3.

2
±

In
f

17
.9
±

21
38

.1
17

.9
±

25
03

.7
10

.1
±

85
7.

5
4.

0
±

84
.4

d7
In

f±
In

f
67

.0
±

48
41

8.
4

74
.8
±

In
f

21
.4
±

86
96

.2
In

f±
In

f
8.

0
±

10
1.

0
6.

7
±

60
.1

d8
In

f±
In

f
66

8.
3
±

In
f

20
3.

5
±

In
f

20
.5
±

32
91

.9
15

.3
±

12
48

.5
11

.4
±

82
8.

6
6.

8
±

71
.3

d9
In

f±
In

f
44

.8
±

65
26

6.
9

53
8.

3
±

In
f

27
.2
±

24
14

6.
9

62
.1
±

In
f

5.
9
±

19
9.

4
4.

4
±

83
.2

d1
0

In
f±

In
f

58
3.

9
±

In
f

67
.8
±

In
f

38
.9
±

11
80

7.
0

18
5.

2
±

In
f

27
.6
±

61
67

.3
21

.4
±

19
17

.7

d1
1

In
f±

In
f

In
f±

In
f

63
.0
±

In
f

39
.1
±

10
68

1.
6

94
41

2.
8
±

In
f

32
.5
±

61
83

.6
12

.1
±

51
3.

7

d1
2

In
f±

In
f

30
55

.9
±

In
f

14
8.

1
±

In
f

13
.8
±

33
02

.2
14

.3
±

23
63

.9
7.

7
±

43
5.

9
4.

2
±

3.
8

d1
3

In
f±

In
f

99
.9
±

In
f

54
.0
±

In
f

26
.1
±

33
61

9.
5

In
f±

In
f

15
.1
±

25
99

.5
5.

2
±

4.
9

d1
4

In
f±

In
f

94
.1
±

In
f

52
.0
±

48
85

8.
4

58
.0
±

47
04

5.
4

In
f±

In
f

29
.5
±

60
82

.9
15

.0
±

77
3.

6

d1
5

In
f±

In
f

18
8.

2
±

In
f

96
.0
±

In
f

36
.1
±

11
67

1.
4

In
f±

In
f

22
.6
±

45
47

.8
15

.7
±

10
44

.5

am
p

1.
9
±

3.
4

2.
6
±

3.
7

3.
2
±

3.
5

4.
3
±

6.
7

6.
1
±

11
.8

7.
9
±

25
.7

10
.1
±

65
.8

lo
g

σ
2 n
−

12
.9
±

10
6.

5
−

13
.2
±

59
.1

−
13

.6
±

61
.5

−
14

.6
±

56
.1

−
15

.5
±

91
.2

−
13

.5
±

39
.5

−
14

.1
±

44
.8

Ta
bl

e
A

.2
8:

Lo
ca

lG
P,

C
H

E
M

,R
R

C
,s

ep
ar

at
e

hy
pe

rp
ar

am
et

er
tra

in
in

g

Appendix A. Appendix: Tables 100

32
p/

c
64

p/
c

12
8p

/
c

25
6p

/
c

51
2p

/c
10

24
p/

c
20

48
p/

c

d1
2.

5
±

0.
0

2.
7
±

0.
1

2.
9
±

0.
1

3.
0
±

0.
2

2.
8
±

0.
1

2.
8
±

0.
1

2.
3
±

0.
1

d2
13

.7
±

0.
8

10
.3
±

0.
9

8.
9
±

0.
4

6.
7
±

0.
5

5.
5
±

0.
3

4.
9
±

0.
3

4.
3
±

0.
2

d3
9.

0
±

0.
5

10
.1
±

0.
5

9.
7
±

0.
4

7.
1
±

0.
6

6.
3
±

0.
2

5.
7
±

0.
3

4.
3
±

0.
2

d4
4.

6
±

0.
2

5.
4
±

0.
3

5.
7
±

0.
5

4.
5
±

0.
4

4.
2
±

0.
1

3.
9
±

0.
4

3.
0
±

0.
1

d5
9.

1
±

1.
3

6.
4
±

0.
6

4.
3
±

0.
4

3.
1
±

0.
1

2.
3
±

0.
1

1.
8
±

0.
2

1.
7
±

0.
1

d6
12

.6
±

0.
9

14
.6
±

1.
1

11
.2
±

1.
6

9.
2
±

0.
7

7.
0
±

1.
2

6.
5
±

0.
6

6.
1
±

0.
4

d7
8.

8
±

0.
5

7.
0
±

0.
7

4.
9
±

0.
8

3.
6
±

0.
3

3.
1
±

0.
2

3.
1
±

0.
3

2.
6
±

0.
1

d8
3.

8
±

0.
3

3.
2
±

0.
3

2.
6
±

0.
3

2.
1
±

0.
2

1.
6
±

0.
2

1.
4
±

0.
1

1.
2
±

0.
1

d9
15

.2
±

1.
8

12
.0
±

1.
7

11
.2
±

1.
2

10
.1
±

1.
0

8.
9
±

1.
2

9.
1
±

0.
5

7.
6
±

0.
7

d1
0

7.
3
±

0.
6

7.
2
±

0.
3

6.
8
±

0.
3

5.
9
±

0.
3

5.
4
±

0.
7

4.
7
±

0.
6

4.
5
±

0.
4

d1
1

8.
7
±

1.
2

5.
2
±

0.
4

3.
7
±

0.
1

3.
2
±

0.
1

2.
7
±

0.
2

2.
4
±

0.
2

2.
4
±

0.
2

d1
2

8.
7
±

0.
8

9.
9
±

0.
6

8.
8
±

1.
1

7.
8
±

0.
9

6.
3
±

0.
8

6.
6
±

0.
7

5.
7
±

0.
6

d1
3

17
.2
±

2.
4

16
.1
±

1.
2

15
.4
±

0.
7

13
.3
±

1.
5

13
.5
±

1.
2

12
.9
±

1.
6

12
.4
±

0.
8

d1
4

4.
7
±

0.
2

4.
3
±

0.
3

3.
3
±

0.
1

3.
0
±

0.
1

2.
5
±

0.
1

2.
4
±

0.
2

2.
2
±

0.
2

d1
5

1.
4
±

0.
0

1.
6
±

0.
0

1.
7
±

0.
0

1.
7
±

0.
0

1.
6
±

0.
1

1.
6
±

0.
1

1.
6
±

0.
0

d1
6

8.
0
±

0.
4

7.
8
±

0.
3

7.
5
±

0.
3

7.
2
±

0.
4

6.
5
±

0.
2

6.
4
±

0.
5

6.
1
±

0.
4

d1
7

5.
7
±

0.
0

6.
1
±

0.
2

6.
0
±

0.
4

5.
6
±

0.
3

4.
9
±

0.
3

5.
0
±

0.
3

4.
9
±

0.
3

d1
8

2.
8
±

0.
1

2.
8
±

0.
1

2.
7
±

0.
1

2.
6
±

0.
1

2.
3
±

0.
1

2.
2
±

0.
1

2.
2
±

0.
1

d1
9

7.
8
±

0.
5

8.
0
±

0.
7

7.
4
±

0.
5

7.
3
±

0.
3

7.
0
±

0.
8

7.
3
±

0.
5

7.
3
±

0.
4

d2
0

10
.7
±

0.
7

11
.8
±

0.
8

11
.0
±

1.
1

9.
7
±

0.
6

8.
8
±

0.
7

9.
1
±

0.
8

8.
3
±

0.
5

d2
1

2.
9
±

0.
1

2.
8
±

0.
1

2.
8
±

0.
2

2.
7
±

0.
1

2.
3
±

0.
2

2.
1
±

0.
1

2.
1
±

0.
1

am
p

1.
3
±

0.
0

1.
4
±

0.
0

1.
4
±

0.
0

1.
4
±

0.
0

1.
3
±

0.
1

1.
3
±

0.
0

1.
2
±

0.
0

lo
g

σ
2 n
−

5.
3
±

0.
0
−

5.
2
±

0.
0
−

5.
1
±

0.
0
−

5.
1
±

0.
0
−

5.
1
±

0.
0
−

5.
1
±

0.
0
−

5.
1
±

0.
0

Ta
bl

e
A

.2
9:

Lo
ca

lG
P,

S
A

R
C

O
S

,R
P

C
,j

oi
nt

hy
pe

rp
ar

am
et

er
tra

in
in

g

Appendix A. Appendix: Tables 101

32
p/

c
64

p/
c

12
8p

/
c

25
6p

/
c

51
2p

/c
10

24
p/

c
20

48
p/

c

d1
2.

4
±

0.
1

2.
7
±

0.
1

2.
9
±

0.
1

3.
1
±

0.
1

2.
8
±

0.
1

2.
6
±

0.
1

2.
3
±

0.
1

d2
14

.3
±

2.
3

10
.0
±

0.
7

8.
3
±

0.
5

6.
5
±

0.
4

5.
4
±

0.
3

4.
6
±

0.
3

4.
0
±

0.
3

d3
7.

2
±

0.
6

8.
2
±

0.
4

8.
2
±

0.
2

6.
6
±

0.
3

5.
5
±

0.
3

4.
7
±

0.
4

4.
1
±

0.
4

d4
4.

2
±

0.
0

5.
1
±

0.
4

5.
3
±

0.
7

4.
4
±

0.
3

4.
2
±

0.
6

3.
4
±

0.
2

3.
0
±

0.
3

d5
9.

1
±

2.
0

5.
9
±

0.
4

4.
3
±

0.
2

3.
3
±

0.
2

2.
4
±

0.
2

1.
9
±

0.
2

1.
7
±

0.
1

d6
12

.7
±

1.
2

12
.2
±

1.
7

10
.3
±

0.
9

8.
4
±

0.
6

7.
4
±

0.
8

6.
0
±

0.
4

5.
5
±

0.
5

d7
7.

9
±

1.
1

5.
9
±

0.
6

4.
4
±

0.
2

3.
4
±

0.
2

2.
9
±

0.
2

2.
9
±

0.
1

2.
7
±

0.
2

d8
2.

6
±

0.
1

2.
5
±

0.
1

2.
0
±

0.
1

1.
8
±

0.
1

1.
5
±

0.
1

1.
3
±

0.
1

1.
2
±

0.
1

d9
18

.1
±

1.
2

13
.7
±

1.
8

11
.7
±

1.
7

9.
4
±

0.
4

9.
2
±

0.
7

8.
4
±

0.
6

8.
2
±

0.
6

d1
0

5.
7
±

0.
3

6.
3
±

0.
4

5.
9
±

0.
2

5.
4
±

0.
2

4.
9
±

0.
3

4.
4
±

0.
2

4.
2
±

0.
2

d1
1

4.
9
±

0.
3

3.
8
±

0.
2

3.
3
±

0.
2

2.
8
±

0.
1

2.
6
±

0.
1

2.
4
±

0.
1

2.
3
±

0.
1

d1
2

8.
3
±

0.
2

9.
1
±

0.
8

9.
1
±

0.
8

7.
3
±

0.
6

6.
6
±

1.
2

6.
2
±

0.
2

5.
8
±

0.
2

d1
3

14
.1
±

1.
9

14
.7
±

2.
5

14
.3
±

1.
2

14
.8
±

0.
8

13
.2
±

1.
3

12
.9
±

0.
3

12
.5
±

0.
9

d1
4

3.
9
±

0.
1

3.
5
±

0.
2

3.
1
±

0.
1

2.
8
±

0.
1

2.
6
±

0.
1

2.
3
±

0.
1

2.
2
±

0.
1

d1
5

1.
4
±

0.
0

1.
5
±

0.
1

1.
6
±

0.
1

1.
7
±

0.
1

1.
6
±

0.
0

1.
6
±

0.
1

1.
6
±

0.
1

d1
6

7.
5
±

0.
3

7.
1
±

0.
2

6.
7
±

0.
4

6.
8
±

0.
3

6.
5
±

0.
2

6.
2
±

0.
3

5.
9
±

0.
2

d1
7

5.
0
±

0.
2

5.
7
±

0.
3

5.
9
±

0.
3

5.
5
±

0.
4

5.
0
±

0.
2

4.
8
±

0.
3

4.
8
±

0.
3

d1
8

2.
7
±

0.
1

2.
8
±

0.
1

2.
8
±

0.
1

2.
7
±

0.
1

2.
4
±

0.
1

2.
3
±

0.
1

2.
1
±

0.
1

d1
9

7.
5
±

0.
2

7.
5
±

0.
5

7.
4
±

0.
6

7.
4
±

0.
5

7.
3
±

0.
2

7.
4
±

0.
4

7.
2
±

0.
4

d2
0

10
.2
±

0.
8

11
.6
±

0.
2

11
.1
±

0.
7

9.
9
±

0.
5

9.
5
±

1.
0

8.
7
±

0.
6

8.
3
±

0.
7

d2
1

2.
7
±

0.
1

2.
8
±

0.
0

2.
8
±

0.
1

2.
5
±

0.
1

2.
2
±

0.
1

2.
0
±

0.
1

1.
9
±

0.
1

am
p

1.
2
±

0.
0

1.
3
±

0.
0

1.
4
±

0.
0

1.
4
±

0.
0

1.
4
±

0.
0

1.
3
±

0.
0

1.
3
±

0.
1

lo
g

σ
2 n
−

5.
4
±

0.
0
−

5.
2
±

0.
0
−

5.
2
±

0.
0
−

5.
1
±

0.
0
−

5.
1
±

0.
0
−

5.
1
±

0.
0
−

5.
1
±

0.
0

Ta
bl

e
A

.3
0:

Lo
ca

lG
P,

S
A

R
C

O
S

,R
R

C
,j

oi
nt

hy
pe

rp
ar

am
et

er
tra

in
in

g

Appendix A. Appendix: Tables 102

32
p/

c
64

p/
c

12
8p

/c
25

6p
/

c
51

2p
/c

10
24

p/
c

20
48

p/
c

d1
27

0.
1
±

In
f

52
.4
±

33
35

5.
9

54
.3
±

In
f

13
.0
±

84
8.

5
12

.0
±

56
43

.6
4.

0
±

8.
2

3.
0
±

2.
8

d2
48

14
.4
±

In
f

17
3.

9
±

In
f

21
8.

8
±

In
f

13
9.

4
±

In
f

30
.0
±

11
28

1.
5

16
.2
±

10
14

.1
6.

5
±

40
.6

d3
In

f±
In

f
28

1.
4
±

In
f

11
69

.9
±

In
f

84
.2
±

59
59

4.
5

36
.8
±

56
75

.6
26

.5
±

15
36

.9
7.

9
±

56
.1

d4
18

4.
2
±

In
f

10
1.

3
±

In
f

30
4.

2
±

In
f

46
.4
±

19
33

5.
3

30
.8
±

13
05

6.
9

9.
1
±

12
9.

1
5.

7
±

20
.8

d5
14

1.
7
±

In
f

10
3.

8
±

In
f

14
7.

1
±

In
f

31
.2
±

25
99

.4
21

.5
±

10
35

9.
5

11
.7
±

77
2.

5
2.

5
±

3.
4

d6
63

3.
0
±

In
f

12
2.

9
±

In
f

10
9.

2
±

In
f

46
.2
±

12
46

1.
9

46
.0
±

55
14

2.
0

20
.3
±

55
8.

5
7.

5
±

44
.1

d7
93

47
.5
±

In
f

13
1.

9
±

In
f

86
.0
±

In
f

53
.6
±

69
72

5.
6

33
.0
±

70
32

.1
11

.8
±

61
1.

8
5.

5
±

64
.8

d8
In

f±
In

f
19

7.
0
±

In
f

67
.2
±

62
23

6.
5

84
.3
±

In
f

6.
2
±

94
.0

3.
2
±

57
.6

1.
6
±

0.
8

d9
21

5.
2
±

In
f

19
6.

8
±

In
f

10
0.

3
±

In
f

49
.1
±

47
86

.8
19

.6
±

44
9.

6
16

.7
±

49
0.

8
14

.9
±

26
5.

2

d1
0

39
3.

5
±

In
f

17
4.

1
±

In
f

15
3.

1
±

In
f

27
8.

1
±

In
f

34
.8
±

60
15

.6
22

.1
±

38
93

.2
13

.2
±

43
2.

8

d1
1

19
2.

2
±

In
f

14
4.

5
±

In
f

31
4.

0
±

In
f

89
.6
±

In
f

22
.4
±

48
16

.8
10

.3
±

38
8.

0
4.

6
±

41
.4

d1
2

15
6.

2
±

In
f

11
9.

7
±

In
f

27
8.

5
±

In
f

52
.8
±

13
94

7.
6

49
.9
±

27
33

1.
9

15
.3
±

30
8.

3
10

.6
±

91
.7

d1
3

64
07

7.
2
±

In
f

19
8.

5
±

In
f

33
4.

9
±

In
f

12
4.

3
±

In
f

71
.9
±

68
49

0.
1

35
.7
±

49
24

.4
26

.3
±

75
3.

1

d1
4

49
9.

4
±

In
f

99
.6
±

In
f

99
.8
±

In
f

69
.3
±

In
f

12
.1
±

25
6.

4
8.

2
±

15
4.

5
4.

2
±

21
.7

d1
5

13
4.

7
±

In
f

5.
8
±

45
4.

8
2.

8
±

26
.8

2.
4
±

5.
7

2.
2
±

3.
7

2.
1
±

2.
6

1.
6
±

1.
0

d1
6

84
8.

3
±

In
f

19
1.

2
±

In
f

15
2.

2
±

In
f

11
6.

8
±

In
f

29
.4
±

37
22

.0
18

.6
±

61
7.

1
8.

6
±

35
.9

d1
7

17
84

.2
±

In
f

42
05

5.
7
±

In
f

13
1.

5
±

In
f

82
.3
±

37
03

0.
8

67
.7
±

In
f

22
.8
±

30
57

.5
6.

2
±

26
.9

d1
8

34
6.

0
±

In
f

65
.3
±

In
f

46
.9
±

83
46

8.
1

13
.3
±

61
7.

1
6.

7
±

30
3.

7
3.

2
±

5.
4

2.
5
±

1.
5

d1
9

36
2.

4
±

In
f

17
30

7.
5
±

In
f

11
8.

9
±

99
56

0.
2

65
.1
±

98
34

.2
86

.4
±

In
f

69
.5
±

69
30

4.
1

17
.2
±

25
9.

3

d2
0

In
f±

In
f

20
4.

4
±

In
f

22
8.

6
±

In
f

12
3.

3
±

In
f

92
.7
±

In
f

29
.2
±

16
99

.5
17

.8
±

26
2.

0

d2
1

In
f±

In
f

85
.1
±

In
f

97
.1
±

In
f

18
.0
±

16
50

.7
11

.1
±

60
0.

6
5.

7
±

66
.2

2.
8
±

4.
5

am
p

1.
3
±

1.
2

1.
5
±

1.
6

1.
6
±

1.
4

1.
7
±

2.
1

1.
5
±

0.
7

1.
4
±

0.
6

1.
3
±

0.
1

lo
g

σ
2 n
−

8.
6
±

18
.1

−
6.

8
±

5.
2

−
6.

2
±

1.
9

−
5.

9
±

1.
5

−
5.

8
±

1.
1

−
5.

6
±

1.
0

−
5.

5
±

0.
4

Ta
bl

e
A

.3
1:

Lo
ca

lG
P,

S
A

R
C

O
S

,R
P

C
,s

ep
ar

at
e

hy
pe

rp
ar

am
et

er
tra

in
in

g

Appendix A. Appendix: Tables 103

32
p/

c
64

p/
c

12
8p

/c
25

6p
/c

51
2p

/
c

10
24

p/
c

20
48

p/
c

d1
26

86
.1
±

In
f

17
8.

4
±

In
f

11
6.

3
±

In
f

72
.7
±

In
f

17
.7
±

50
69

.9
23

.8
±

20
43

9.
2

3.
9
±

12
.1

d2
In

f±
In

f
18

08
6.

5
±

In
f

19
19

.5
±

In
f

84
.7
±

In
f

29
.5
±

23
10

.8
24

.4
±

17
52

.1
17

.6
±

91
0.

0

d3
In

f±
In

f
33

3.
1
±

In
f

27
70

.4
±

In
f

14
6.

4
±

In
f

38
.2
±

35
70

.4
23

.8
±

34
98

.4
19

.7
±

16
24

.5

d4
In

f±
In

f
17

3.
4
±

In
f

In
f±

In
f

50
.2
±

13
49

1.
5

31
.1
±

26
94

.9
20

.1
±

21
80

.8
14

.5
±

54
1.

1

d5
34

6.
5
±

In
f

13
9.

8
±

In
f

10
0.

7
±

In
f

37
.7
±

64
35

.8
22

.3
±

28
04

.1
12

.3
±

78
6.

6
8.

2
±

15
4.

8

d6
In

f±
In

f
10

2.
7
±

In
f

87
5.

7
±

In
f

61
.6
±

15
55

5.
5

31
.6
±

18
35

.8
25

.6
±

28
05

.0
16

.2
±

33
0.

1

d7
In

f±
In

f
19

78
.7
±

In
f

57
9.

8
±

In
f

51
.4
±

12
91

7.
4

29
.7
±

29
45

.1
18

.7
±

22
99

.1
15

.0
±

75
7.

1

d8
13

48
2.

6
±

In
f

45
35

.7
±

In
f

78
.8
±

39
09

1.
3

52
.4
±

16
89

1.
7

17
.4
±

24
20

.2
4.

8
±

16
4.

2
7.

9
±

62
8.

9

d9
In

f±
In

f
13

45
.3
±

In
f

40
2.

6
±

In
f

20
4.

2
±

In
f

42
.5
±

15
13

9.
6

20
.7
±

17
48

.0
18

.6
±

87
1.

8

d1
0

In
f±

In
f

In
f±

In
f

23
6.

6
±

In
f

21
6.

2
±

In
f

47
.1
±

14
25

5.
5

20
.8
±

83
6.

4
42

.7
±

95
85

.3

d1
1

In
f±

In
f

42
55

1.
4
±

In
f

22
7.

3
±

In
f

71
.2
±

59
01

7.
8

26
.3
±

32
85

.5
13

.9
±

12
59

.7
21

.9
±

23
17

.5

d1
2

In
f±

In
f

12
9.

2
±

In
f

13
4.

7
±

In
f

83
.9
±

71
07

3.
6

37
.2
±

33
35

.5
22

.8
±

94
1.

6
22

.1
±

79
6.

0

d1
3

In
f±

In
f

10
42

.5
±

In
f

80
79

5.
7
±

In
f

18
4.

1
±

In
f

86
.6
±

76
85

5.
0

47
9.

9
±

In
f

40
.5
±

31
99

.5

d1
4

In
f±

In
f

13
20

.7
±

In
f

16
5.

5
±

In
f

56
.0
±

21
01

8.
7

20
.9
±

19
50

.1
28

.5
±

23
41

3.
4

18
.4
±

14
53

.8

d1
5

In
f±

In
f

14
67

6.
0
±

In
f

74
.4
±

In
f

6.
0
±

52
5.

9
2.

7
±

7.
5

2.
2
±

4.
3

2.
8
±

13
.6

d1
6

In
f±

In
f

35
8.

1
±

In
f

91
69

.2
±

In
f

13
1.

0
±

In
f

44
.9
±

50
70

.8
33

.7
±

71
02

.9
37

.9
±

67
73

.9

d1
7

In
f±

In
f

17
97

.6
±

In
f

65
9.

4
±

In
f

42
6.

4
±

In
f

13
4.

9
±

In
f

39
.5
±

14
63

7.
0

41
.0
±

56
62

.4

d1
8

In
f±

In
f

30
19

.9
±

In
f

10
2.

9
±

In
f

28
.2
±

42
93

.6
15

.5
±

13
46

.5
5.

2
±

56
.0

6.
7
±

30
5.

5

d1
9

In
f±

In
f

78
7.

3
±

In
f

97
1.

4
±

In
f

12
62

.4
±

In
f

81
.7
±

94
68

5.
3

60
.1
±

21
10

5.
6

49
.6
±

53
16

.0

d2
0

In
f±

In
f

40
4.

9
±

In
f

10
27

.0
±

In
f

49
3.

0
±

In
f

76
.3
±

18
23

6.
4

21
6.

0
±

In
f

45
.0
±

57
99

.1

d2
1

In
f±

In
f

In
f±

In
f

16
7.

5
±

In
f

16
1.

9
±

In
f

21
.8
±

26
26

.9
24

.9
±

10
52

2.
7

5.
7
±

86
.8

am
p

1.
2
±

1.
1

1.
4
±

1.
6

1.
6
±

2.
3

1.
8
±

3.
5

1.
7
±

1.
6

1.
6
±

1.
6

1.
8
±

1.
5

lo
g

σ
2 n
−

9.
5
±

61
.4

−
7.

7
±

18
.6

−
6.

9
±

14
.0

−
6.

1
±

2.
0

−
5.

8
±

1.
3

−
5.

8
±

1.
1

−
5.

6
±

0.
8

Ta
bl

e
A

.3
2:

Lo
ca

lG
P,

S
A

R
C

O
S

,R
R

C
,s

ep
ar

at
e

hy
pe

rp
ar

am
et

er
tra

in
in

g

Appendix B

Appendix: The Code

This appendix describes the code we have used and created: it is intended as a guide

should anyone want to repeat or modify the experiments we have performed. Figure

B.1 presents the (pruned to contain only the useful information) directory tree of our

codebase. The following two sections describe the contents of the two main directories

containing the approximation implementations (Section B.1 and the experiments code

(Section B.2).

104

Appendix B. Appendix: The Code 105

/
code

drtoolbox
figtree-0.9.3
gpml
project

inducing
iterative
local
sod

evaluations
SYNTH
CHEM
SARCOS
analysis

SYNTH2
SYNTH8
CHEM
SARCOS
SoD
Local
FITC
IFGT
clusters
dissertation

Figure B.1: Directory tree containing the code for approximation algorithms and experi-

ments discussed in this dissertation. The contents of the most important directories are

discussed in this appendix.

Appendix B. Appendix: The Code 106

B.1 /code: approximation implementations and exter-

nal source code

This directory contains some open source code written by other researchers, as well as

our own code:

drtoolbox : Matlab Toolbox for Dimensionality Reduction, v.0.7.2 (van der Maaten

[2010]) that we used to project the datasets we use into two dimensions.

figtree-0.9.3 : FIGTree, v0.9.3 (Morariu [2010]) that implements the Improved
Fast Gauss Transform and Farthest Point Clustering algorithms.

gpml : GPML, v.3.1 (Rasmussen and Nickisch [2010]) that implements the full

Gaussian Process Regression algorithm, the Squared Exponential covariance

function and the FITC approximation.

project : Our code, implementing the Subset of Data, Local GP and GP with
CG/fast MVM approximations. This code relies on the packages listed above.

In addition, this directory contains inducing, where we implemented Ran-
dom Recursive Clustering, Random Projection Clustering and three induc-

ing points choice methods: Recursive Random, FPC centers and Informative
Vector Machine (these are all described in Chapter 4).

B.2 /evaluations: the experiment and analysis frame-

work

The dataset-named directories contain the full datasets we use. It is not clear whether

we can release CHEM, SYNTH2 or SYNTH8 to the public yet, so only SARCOS should

be included with this code at the moment. evaluations also contains scripts that

automatize testing the methods, as well as scripts that perform analysis and plotting on

the gathered data:

evaluations the main test scripts: testSod.m, testLocal.m, testFITC.m,
testIFGT.m are here. They demonstrate how to use the code in code directory

to perform approximate GP regression with varying accuracy/complexity trade-

offs, and store the data gathered in this way for use with our analysis scripts.

Appendix B. Appendix: The Code 107

analysis The directories named after the datasets contain scripts that plot the algo-

rithms’ time vs error performance on each dataset.

The directories named after the methods plot each method’s complexity vs error
performance (that is, plot the SMSE and MSLL as a function of the inducing

points count, cluster size, or allowed MVM error).

clusters contains scripts that look at some cluster characteristics of the data.

Note that more of those is contained in the Local directory (understanding the

Local GP approximation required looking at data clustering in some detail).

Finally, dissertation contains the source code for this dissertation, in case

anyone needs to find the sources for any of the figures we included in this work.

Bibliography

F. J. Anscombe. Graphs in Statistical Analysis. The Americal Statistician, 27(1):17–

21, 1973.

C. Archambeau, D. Cornford, M. Opper, and J. Shawe-Taylor. Gaussian Process Ap-

proximations of Stochastic Differential Equations. In JMLR: Workshop and Confer-

ence Proceedings 1: 1-16, 2007.

C. M. Bishop. Patter Recognition and Machine Learning. Springer Science+Business

Media, 2006.

M. Gibbs and D. J. C. MacKay. Efficient Implementation of Gaussian Processes, 1997.

Technical Report.

T. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical

Computer Science, 38:293–306, 1985.

E. Jackson, M. Davy, A. Doucet, and W.J.Fitzgerald. Bayesian Unsupervised Signal

Classification by Dirichlet Process Mixtures of Gaussian Processes. In IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing, 2007.

A. Krause. Near-optimal sensor placements in Gaussian Processes. ICML, 2005.

N. D. Lawrence, M. Seeger, and R. Herbrich. Fast Sparse Gaussian Process Meth-

ods: The Informative Vector Machine. Advances in Neural Information Processing

Systems, 15, 2003.

M. Lazaro-Gredilla, J. Quinonero-Candela, C. E. Rasmussen, and A. R. Figueiras-

Vidal. Sparse Spectrum Gaussian Process Regression. Journal of Machine Learning

Research, 11, 2010.

D. J. C. MacKay. Information Theory, inference, and learning algorithms. Cambridge

University Press, 2003.

108

Bibliography 109

M. Malshe, L. Raff, M. Rockley, M.Hagan, P. M. Agrawal, and R. Komanduri. Theo-

retical investigation of the dissociation dynamics of vibrationally excited vinyl bro-

mide on an ab initio potential-energy surface obtained using modified novelty sam-

pling and feedforward neural networks. II. Numerical application of the method.

The Journal of Chemical Physics, 127, 2007.

V. Morariu. FIGTree: Fast Improved Gauss Transform with Tree Data Structure ver-

sion 0.9.3, 2010. URL http://www.umiacs.umd.edu/˜morariu/figtree/.

V. Morariu, B. V. Srinivasan, V. Raykar, and R. Duraiswami. Automatic online tuning

for fast Gaussian summation. Advances in Neural Processing Systems, 2008.

I. Murray. Gaussian processes and fast matrix-vector multiplies, 2009. Presented at

the Numerical Mathematics in Machine Learning workshop at the 26th International

Conference on Machine Learning (ICML 2009), Montreal, Canada. URL http:

//www.cs.toronto.edu/˜murray/pub/09gp_eval/ (as of March 2011).

D. Nguyen-tuong, J. Peters, M. Seeger, and B. Schlkopf. Learning Inverse Dynamics:

a Comparison. In Proceedings of 16th European Symposium on Artificial Neural

Networks, Bruges, Belgium, 2008.

J. Quinonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate

Gaussian Process regression. Journal of Machine Learning Research, 6:1939–1959,

December 2005.

J. Quinonero-Candela, C. E. Rasmussen, and C. K. I. Williams. Large Scale Kernel

Methods, chapter Approximation Methods for Gaussian Process Regression. MIT

Press, Cambridge, MA, 2007.

C. E. Rasmussen. The Gaussian Process Web Site, 2011. URL http://www.

gaussianprocess.org.

C. E. Rasmussen and H. Nickisch. Gaussian Process Regression and Classifica-

tion Toolbox version 3.1, 2010. URL http://www.gaussianprocess.org/gpml/

code/matlab/doc/.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.

MIT Press, 2006.

V. C. Raykar and R. Duraiswami. Fast large scale Gaussian Process regression using

http://www.umiacs.umd.edu/~morariu/figtree/
http://www.cs.toronto.edu/~murray/pub/09gp_eval/
http://www.cs.toronto.edu/~murray/pub/09gp_eval/
http://www.gaussianprocess.org
http://www.gaussianprocess.org
http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.gaussianprocess.org/gpml/code/matlab/doc/

Bibliography 110

approximate matrix-vector products. In Learning workshop, San Juan, Puerto Rico,

2007.

V. C. Raykar, C. Yang, R. Duraiswami, and N. Gumerow. Fast computation of sums

of gaussians in high dimensions, 2005. Technical Report CS-TR-4767, Dep. of

Computer Science, University of Maryland, College Park.

B. Scholkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002.

E. Snelson. Matlab code for Sparse pseudo-input Gaussian processes (SPGP), 2006.

http://www.gatsby.ucl.ac.uk/˜snelson/SPGP_dist.tgz.

E. Snelson, C. E. Rasmussen, and Z. Ghahramani. Warped Gaussian Process. In

Advances in Neural Information Processing Systems, volume 14, 2004.

E. L. Snelson. Flexible and efficient Gaussian process models for machine learning,

2001. DPhil dissertation, University of London.

N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian Process Optimization in

the Bandit Setting: No Regret and Experimental Design. In Proceedings of the 27th

International Conference on Machine Learning, Haifa, Israel, 2010.

L. van der Maaten. Matlab Toolbox for Dimensionality Reduction, v0.7.2,

2010. URL http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_

Dimensionality_Reduction.html.

L. van der Maaten and G. Hinton. Visualizing Data using t-SNE. Journal of Machine

Learning Research, 9:2579–2605, 2008.

V. N. Vapnik. An Overview of Statistical Learning Theory. IEEE Transactions on

Neural Networks, 10(5), 1999.

C. Yang, R. Duraiswami, and L. Davis. Efficient Kernel Machines Using the Im-

proved Gauss Transform. In Advances in Neural Information Processing Systems,

volume 17, 2004.

http://www.gatsby.ucl.ac.uk/~snelson/SPGP_dist.tgz
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html

	Introduction
	Motivation
	Related Work
	Outline of the dissertation

	Theoretical Background
	Regression
	Linear Regression
	Gaussian Process Regression
	Extending linear regression
	Basic GPR: Training and Testing
	Hyperparameter Estimation

	GPR Approximations
	Subset of Data
	Local GP
	Fully Independent (Training) Conditional
	Improved Fast Gauss Transform MVM
	Clustering
	Recursive Projection Clustering (RPC)
	Recursive Random Clustering (RRC)

	Choosing the Inducing Points
	Random subset
	Farthest Point Clustering
	Differences between Random and FPC

	Implementation
	GPML
	SoD and Local GP
	FITC

	Figtree
	IFGT predictive variances
	IFGT hyperparameter optimization

	Complexity in practice
	Space/time complexity
	Local GP Time behavior
	IFGT complexity

	Clustering and Inducing Points
	Tests and additional scripts

	Empirical Comparison Setup
	Datasets
	Error Measures
	Time Measures
	Theory vs. Practice

	Results
	Problems with IFGT
	SoD, Local GP and FITC: performance as a function of m
	Best expected performance
	SoD
	FITC
	Local GP

	SoD, Local GP and FITC: time-wise comparison
	SYNTH2
	SYNTH8
	CHEM
	SARCOS

	Recommendations
	Recommendations by computational budget constraint
	Recommendations by dataset type

	Conclusions and Future Work
	Summary of completed work
	Other methods
	Partially Independent Conditional
	Sparse Spectrum Gaussian Processes
	Warped Gaussian Process

	Future Work
	FITC on a subset of data
	Local GP efficiency
	Mixing different methods for training and testing

	Conclusion

	Appendix: Tables
	Appendix: The Code
	/code: approximation implementations and external source code
	/evaluations: the experiment and analysis framework

	Bibliography

