Empirical evaluation of Gaussian Process

approximation algorithms

Krzysztof Chalupka

Master of Science
School of Informatics

University of Edinburgh

2011

Abstract

Many large datasets are becoming available as technology advances. The fast devel-
opment of the Internet makes creating huge databases of interesting data more feasible
than ever; similarly, scientific simulations on modern computers can produce large
amounts of information that needs to be analyzed. Machine Learning uses methods
developed in Computer Science and Mathematics to deal with challenges posed in the
context of such large scale data analysis. As the Bayesian framework became more
popular, many flexible and theoretically elegant methods have been developed in the
field. One such Bayesian framework uses Gaussian Processes to perform the two basic
Machine Learning tasks, regression and classification. As it turns out, regression with
Gaussian Processes is particularly elegant and analytically tractable. However, it scales
badly with the size of the dataset which makes it infeasible for use in most interesting
situations. Several approximation algorithms were developed to deal with this issue.
While there were attempts to analyze and compare these approximations theoretically,
not much has been done to present an unbiased and useful empirical evaluation of
the algorithms. In this dissertation we create a solid framework for such comparison
and perform experiments that allow us to analyze the practical usefulness of Gaussian

Process approximation algorithms.

Acknowledgements

I am very grateful to Chris Williams for being the most helpful and patient mentor—
him guiding me through this project has been a truly educative experience. I thank Iain
Murray for many useful ideas and critical comments without which my understanding
of the issues discussed here would be much narrower. I am also indebted to Andreas
Krause who first sparked my interest in Machine Learning through his enthusiastic
attitude towards research. Finally, none of this work would happen without the loving

support of my mother- dziekuje za wszystko, mamo.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is
my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Krzysztof Chalupka)

Table of Contents

1 Introduction
1.1 Motivation
1.2 RelatedWork
1.3 Outline of the dissertation

2 Theoretical Background
2.1 Regression. e e e e
2.2 LinearRegression
2.3 Gaussian Process Regression
2.3.1 Extending linearregression.
2.3.2 Basic GPR: Training and Testing
2.3.3 Hyperparameter Estimation

3 GPR Approximations
3.1 SubsetofData.
32 Local GP
3.3 Fully Independent (Training) Conditional
3.4 Improved Fast Gauss TransformMVM
3.5 Clustering o . oo e e e e e
3.5.1 Recursive Projection Clustering (RPC)
3.5.2 Recursive Random Clustering (RRC)
3.6 Choosing the Inducing Points
3.6.1 Randomsubset
3.6.2 Farthest Point Clustering
3.6.3 Differences between Random and FPC

4 Implementation

W N —

00 N 3 O

4.1

4.2

4.3

4.4
4.5

GPML e
411 SoDandLocalGP
412 FITC e
Figtree e
4.2.1 IFGT predictive variances
4.2.2 IFGT hyperparameter optimization
Complexity inpractice
4.3.1 Space/time complexity
43.2 Local GP Time behavior
433 IFGTcomplexity
Clustering and Inducing Points
Tests and additional scriptso

5 Empirical Comparison Setup

S.1 Datasets e e e e e e
5.2 ErrorMeasures e e
5.3 TimeMeasures e e e
5.4 Theoryvs. Practice
6 Results
6.1 Problems with IFGT
6.2 SoD, Local GP and FITC: performance as a functionofm
6.2.1 Bestexpected performanceo
6.22 SoD
6.2.3 FITC e
6.24 Local GP
6.3 SoD, Local GP and FITC: time-wise comparison
6.3.1 SYNTH2
632 SYNTHS8
633 CHEM e
6.3.4 SARCOS e
6.4 Recommendations.

6.4.1 Recommendations by computational budget constraint

6.4.2 Recommendations by datasettype

7 Conclusions and Future Work

35
36
39
40
41

42
43
45
45
46
48
49
57
58
60
61
61
62
63
64

67

7.1 Summary of completed work L oL 67

7.2 Othermethods. 68
7.2.1 Partially Independent Conditional 68

7.2.2 Sparse Spectrum Gaussian Processes 70

7.2.3 Warped Gaussian Process 70

73 FutureWorko 72
7.3.1 FITConasubsetofdata 72

7.3.2 Local GPefficiency 73

7.3.3 Mixing different methods for training and testing 73

7.4 Conclusion L e 73

A Appendix: Tables 75
B Appendix: The Code 104
B.1 /code: approximation implementations and external source code . . . 106
B.2 /evaluations: the experiment and analysis framework 106
Bibliography 108

vi

Chapter 1

Introduction

This short introductory chapter serves to motivate our work (Section 1.1) and present
related research that we are aware of (Section 1.2). We also outline the rest of this

dissertation in Section 1.3.

1.1 Motivation

The field of Machine Learning (ML) is concerned with creating methods that extract
useful information from data. The often encountered need to deal with with large
datasets suggests using statistical methods, and such statistical inference has been per-
haps the predominant paradigm in the field in recent years' . In particular, Bayesian
methods have grown in popularity due to their great flexibility and theoretical optimal-
ity (see Bishop [2006], a popular recent book investigating Bayesian methods in some
depth and significant breadth). In this thesis we look at one Bayesian framework, based
on the Gaussian Process (GP) formalism, in more detail. Gaussian Process algorithms
can be useful in many different settings. The most obvious application is in the offline
regression problem, which we describe in much detail in 2; but the flexible nature of
Bayesian algorithms in general and Gaussian Processes in particular makes them ap-
pear in such contexts as sensor placement (Krause [2005]) and experimental design
(Srinivas et al. [2010]), in approximating stochastic differential equations (Archam-

beau et al. [2007]) or incorporated into Dirichlet Processes (Jackson et al. [2007]).

We will first explain how and why Gaussian Process algorithms can be useful and then

"'Vapnik [1999] provides an overview of the theory behind statistical learning.

Chapter 1. Introduction 2

proceed to investigate the main point of concern: their space and time complexity. It
turns out that Gaussian Processes suggest a useful but slow class of algorithms. The
Machine Learning community has developed numerous approximation algorithms that
try to lighten these computational requirements. While many publications investigate
interesting theoretical properties of GP approximations , a fair practical comparison
of their usefulness has not been published to our knowledge. This is not a satisfactory
state of matters. After all, the goal of introducing an approximation algorithm is to
make another method practically useful; hence it would be very useful to explicitly
state how the new approximation’s performance relates to that of other, already existing
methods. In this dissertation we develop a clear and practical way of evaluating the
approximations’ usefulness and demonstrate experimentally which method, and why,

the potential user should choose for their particular task.

1.2 Related Work

Throughout this thesis we will refer to many publications introducing new GP approx-
imation algorithms. Very often these papers evaluate the new methods’ performances
in ways that are hard to compare explicitly. More research has been done to look at the
theoretical properties of the different GP approximations. We refer to some of these
publications extensively throughout our work. The list below gives short overview of

some of these papers.

e Quinonero-Candela and Rasmussen [2005] provides a unifying framework that
shows how several seemingly different approximations can be represented using

very similar formalisms.

e Snelson [2001] is a PhD thesis introducing several related methods (FI(T)C,
PI(T)C and Warped GP - we will encounter each of them in this dissertation). It
also provides interesting insights into the workings of several other algorithms
and presents a limited practical comparison of the different flavors of FITC that

Snelson [2001] introduces.

e Quinonero-Candela et al. [2007] is similar to Quinonero-Candela and Rasmussen
[2005] but wider in scope, as it mentions more methods and looks both at regres-

sion and classification settings.

Chapter 1. Introduction 3

1.3 Outline of the dissertation

Our ultimate goal is to understand which GP approximation, and why, is best used in
a particular setting. Even though our evaluation focuses on empirical performance,
some theoretical background is necessary to develop and understanding of the issues

involved both in creating the evaluative framework and analyzing the results.

e Chapter 2 develops the basic Machine Learning background and relates one of
the simplest ML algorithms, linear regression, to Gaussian Process regression.
It also looks at GPs as algorithms working in the function space. Understand-
ing this material is important, as the mathematical formulation of GP inference

shows explicitly how the algorithm scales badly with growing amounts of data.

e In Chapter 3 we describe four Gaussian Process approximation algorithms that
we feel would best represent the different kinds of approximations currently

available.

e Chapter 4 elaborates on the implementation phase of this project, in which we
gathered already-existing code and modified it for our purposes, as well as put
significant amounts of work into implementing some algorithms ourselves. Im-
portantly, we also elaborate on the practical complexity of the algorithms in some
detail; as it turns out, the practical differences in different algorithms’ runtime
and space requirements can be significant, which is not visible during theoretical,

asymptotic analysis.

e We then decide on the framework for empirical algorithm performance compari-
son in Chapter 5. Several alternative approaches to the problem are discussed in
this chapter. The choices that needed to be made include what datasets to test on
and how to quantify the performance of the algorithms in a way general enough

to enable us to compare the different approximations fairly.

e Chapter 6 presents the practical results of our work: we show, from several dif-
ferent points of view, how the algorithms perform in practice. Discussing these
practical results encourages tackling some interesting questions about the nature
of the algorithms. Finally, in this chapter we explain which approximations can

work best given a particular task.

e Chapter 7 concludes this thesis and presents possible future directions for related

research. It also mentions several GP approximations we do not analyze in this

Chapter 1. Introduction 4

dissertation and relates them to our results.

In addition, we provide two Appendices that should make our work more useful for
any interested party. Appendix A lists all the hyperparameter tables, one important
output of our tests (the concept of hyperparameters in the context of GP algorithms is
explained in Chapter 2). Appendix B presents a guide to our codebase, which should
make reproducing our results easy for anyone interested in using the code we have

written.

Chapter 2

Theoretical Background

This chapter presents the basic theory needed to understand the remaining parts of the
dissertation. We do not assume the reader is familiar with machine learning theory, but
some knowledge of probability theory and statistics, basic linear algebra, and calculus

is necessary to follow the discussion below.

Sections 2.1 and 2.2 introduce the problem of regression and perhaps the most basic
regression model, linear regression. This model is then expanded using the kernel trick
to introduce Gaussian Process Regression (GPR) in Section 2.3. The latter section also
derives the GPR model from a different point of view, providing a wider perspective
for understanding the material. We complete Section 2.3 and the chapter by looking in
some detail at different phases of working with the model in the Bayesian framework:

training the parameters and hyperparameters and producing posterior predictions.

2.1 Regression

In Machine Learning, the regression problem is to predict values of a function given
only a limited amount of information about it. More formally, given a dataset { (x;,y;) }}_,
of d-dimensional input points x; and scalar output values y; = f(x;) + €; (Where €; is a
noise term), the goal is to predict the value of f(x,) for some test point X, not in the

input set.

Chapter 2. Theoretical Background 6

rTrrrrJ1r 1

llllllllll

0 v Ly v by Ly | O_J||||||||||:||||||||
o] 5 10 15 20 [o] 5 10 15 20

[[
10— 10—
B -
S5 5[—_
p P
Z L
0|||||||||||||||||||| oilLlllllllllllllllLJ
(0] 5 10 15 20 (0] 5 10 15 20

Figure 2.1: Even though the four simple datasets shown above have very distinct char-
acteristics (linear outputs with Gaussian noise, smooth nonlinear outputs, linear outputs
with little noise and an outlier, strongly clustered outputs with an outlier), all of them
have the same linear best squared error fit. Linear regression seems to work best in
the top left example, where the data follows the assumption of a linear relationship be-
tween the inputs and the outputs, with added Gaussian noise. Figure adapted from
Anscombe [1973].

2.2 Linear Regression

Regression algorithms work by making assumptions about the function f and search-
ing a hypothesis space - the space of all functions fulfilling these assumptions - for
the best fit to the data. In linear regression only functions of form f(x) = x’ w +wyq
(w € R? and wy is a bias term) are considered. The task reduces to finding the best
value of the parameters w,wy, often by minimizing some loss function such as Mean
Squared Error MSE = <(yl~ — XiTW)2> (triangular brackets indicate the average in this
dissertation. Usually it should be clear which vales we average over, like the (y;,x;)
tuples in this case). Linear regression is very simple and easily interpretable, but has
little expressive power. Figure 2.1 shows four very different datasets that all have the
same best linear fit. As evident, much information about the structure of the data can
be lost when using simple regression techniques. The first step we will take to define
more interesting regression algorithms is to look at linear regression from a probabilis-

tic standpoint.

Chapter 2. Theoretical Background 7

If we assume that the noise term is Gaussian and the same for every i, so that y; =
f(x;) +&,e~ N(0,62), we get a likelihood model of the data. Defining a prior over
the parameters w, for example p(w) ~ A[(0,X,,-) where X,,, is the prior covariance
matrix, completes a probabilistic Bayesian model for linear regression. Rasmussen
and Williams [2006] shows that under this model, the posterior over the parameters is

again Gaussian,
r _
POWIX,y) ~ N(ZA™ Xy, A7), @1

n
where A = 6, °XXT + Z;alr. We see that the Bayesian model yields a probabilistic
distribution over the output hypotheses. In particular, for a test input x, the estimated
output value f; is shown to be
1 _ _
P£if%e X, y) ~ N(3xA™ Xy, X[ATIx,). (22)

n

Such predictive distribution can be very useful and makes Bayesian algorithms partic-
ularly attractive. Gaussian Process Regression is a fully Bayesian algorithm which can
be seen as Bayesian linear regression with nonlinear basis functions. The next sections
discuss this idea in more detail. For more on Bayesian linear models in general, see
Bishop [2006].

2.3 Gaussian Process Regression

2.3.1 Extending linear regression

We can add nonlinearity to the Bayesian linear model by redefining f(x) = ¢(x)"w

where ¢ : RY — RP is a nonlinear basis function mapping the inputs into a feature
space RP. This model is otherwise the same as Bayesian linear regression (if we make
Gaussian assumptions on noise and the parameters) and as shown in Rasmussen and

Williams [2006], Equation 2.2 now becomes

p(felx, X,y) ~ N(q)zzparq)(K‘chl)ily?
07 Zpars — 0L Zpr @K +030) '@ Ep000). (23)

Above, we use the notation ¢, = ¢(x,),® = ®(X),A = 620" + ¥ | K =Ty, P.

par’

This is same as equation 2.2 with every x substituted with ¢(x), rewritten in a way

that suggests the possibility of using the kernel trick (Scholkopf and Smola [2002]).

Chapter 2. Theoretical Background 8

Because X, as a covariance matrix, is positive definite, we can always find its square
root Z},ﬁ (so that Z},{,EZ},{I% =X ,qr) and define y(x) = 2},{3¢(x) so that (x;) T Eperd(x;) =
dot(Y(x;),y¥(x;)) where dot denotes the usual vector dot product. Looking back at
Equation 2.3, we see that it can now be formulated in terms of a kernel function that is

defined by this dot product, k(x;,X;) = dot (W(x;), W(X;)):
p(f* ‘X*7X7 Y) ~ N(K*I(Kﬂf + Grztoisel)_lyv K*;* - K*f(Kﬁf + Grztoisel) _lKﬂ*)' (24)

In this equation, K, ¢ signifies the vector with entries (X, X1),k(X«,X2), ..., k(X«,Xy)
and Kg¢ is a matrix with i 7 entry equal to k(x;,x ;). It is possible and indeed often
useful to implicitly define the dot products in terms of a kernel function; in this case, the
algorithm can work with dot products in high (or infinite) dimensional spaces without

explicitly computing the dot products feature-by-feature.

We have now formulated kernelized Bayesian linear regression, which shifts the data
into a possibly infinite dimensional feature space and efficiently finds a linear fit to
the data in that space, enabling nonlinear predictions in the original input space. The
feature space is fully defined by the kernel k. This function is called a covariance
function in Gaussian Process (GP) literature. It turns out that kernelized Bayesian
linear regression is equivalent to GP regression, which we now describe from a more

direct point of view.

2.3.2 Basic GPR: Training and Testing

In this short introduction to GP regression (GPR) from the function space perspective
we mostly follow the concise overview in Quinonero-Candela and Rasmussen [2005];

for a detailed treatment of Gaussian Processes see Rasmussen and Williams [2006].

A Gaussian Process is a generalization of the Gaussian distribution to stochastic pro-
cesses. Instead of finite dimensional vectors, a GP is defined over functions; this exten-
sion becomes intuitive if functions are seen as vectors of infinite (often uncountable)
dimension. If we have a collection of random variables { f(x)}; such that any finite

number of them has a joint Gaussian distribution, we write
f(x) ~ GP(m(x),k(x,x'))

where m is a mean function and k is a covariance function which specifies how closely

Chapter 2. Theoretical Background 9

correlated or similar any two random variables are!

. Intuitively, if we draw func-
tions from this distribution we are most likely to get functions “similar” to m on aver-
age, with any additional assumptions like smoothness, stationarity, local independence
etc. encoded by k. The covariance function specifies correlations between random
variables which in case of regression will be the latent function values f(x;) on inputs
x;. However, these covariances will often be functions of distances between the input
points, so that k(f(x;), f(x;)) = h(x;,X;) where is some function from the input space
into the real line. As a consequence, we will often write simply k(x;,X;); it should be

remembered, however, that we not try to model the input distribution here.

The above defines a GP distribution over functions. This distribution can be used
in Bayesian regression as a prior. If the likelihood (that models the observation noise)
takes the common form of Gaussian noise, many of the usual Bayesian integrals can be
solved analytically. This fortunate behavior makes GPR a simple and useful method.
Formally, assume again that we are given a data set D = {(x;, y,-)}f.\': | of inputs x; and

outputs y; and make the standard independent Gaussian noise assumption,
yi = f(x;) +¢€;, where & ~ N(0,62,..,).
Crucially, we set the prior to a Gaussian Process (with zero mean):
p(fx1,%a, -+, xn) = N(0, Ky)

where f = [f(x1), f(x2),--, f(x)] is a vector of function values and K¢y is a covari-
ance matrix defined as in Section 2.3.1.. To predict the values f, of the generative

function on a set of test points we calculate the joint posterior

p(f.£.)p(y|f)
p(EL]y) = ——=— (2.5)
(FEly) p(y)
and marginalize the latent training functions values:
1
p(kly) = [pERlydr= o [p(sinp(E8ar 6

We defined both the likelihood and the prior to be Gaussians so the solution is a Gaus-
sian too. After going through some linear algebra (again, see Rasmussen and Williams

[2006] for the details) we get the posterior

p(f* |Y) = N(K*af<Kf-,f + Gﬁoisel)_ ! Y, K*7* - K*f(Kf,f + G%oisel)_ ! Kf~,*) . (27)

IThe covariance function must be positive semi-definite, as any covariance matrix is. Section 2.3.1
shows that this is necessary for GPR to be equivalent to kernelized linear regression.

Chapter 2. Theoretical Background 10

This exactly repeats Equation 2.4. Note the form of the mean prediction vector. The
predicted value on each test point is a weighted sum of the training output values. The
weights are fully determined by the covariance function, which specifies the influence
of each training point on the test variable, and the (noisy) precision matrix. The prior
predictive uncertainty on any test point (K,) is decreased by the amount of informa-
tion the training points should give us about the test case K, ¢(Kprt+ Gﬁoisel)_le,*'
Note that this term is independent of any output values in a GP, but it does not have
to be for stochastic processes in general. Figure 2.2 shows a toy regression problem
and its GPR predictive distribution. Comparing with Figure 2.1, we see that GPR with
an appropriate kernel allows for highly nonlinear predictions; furthermore, the predic-
tive distribution estimates the certainty of prediction, suggesting regions in input space
that the algorithm has little reliable information about. This makes the algorithm very
flexible and usable in all kinds of non-standard settings some of which we already

mentioned in Section 1.1.

2.3.3 Hyperparameter Estimation

An important aspect of Bayesian inference is the availability of a general process for
choosing any hyperparameters present in the model. In the case of GPR, the hyperpa-
rameters are any parameters used by the covariance function, and the noise variance
of the data. A commonly used covariance, which we also use in the experiments pre-
sented in this dissertation, is the Squared Exponential function

(Xa,i — xdu‘)z)

lﬁ (2.8)

1
k(xi,X;) = OFexp (—525:1

where [; specifies how far the influence of a point reaches in the d'" dimension of in-
put space and G} is the squared amplitude of the signal. In the Bayesian framework
the hyperparameters can be chosen to maximize the likelihood of the data. This has
the fortunate effect of favoring models of just-right complexity, the so called Bayesian
Occam’s Razor (see for example MacKay [2003], Chapter IV). The log marginal like-

lihood to be minimized is

1 1 N
log p(y|X) = —EyT (K+o2) 'y — 5 log|K+ oal| — - log2m, (2.9)
and its partial derivatives with respect to the hyperparameter
d 1 oK
—1 X,0) = ~tr((0! —K)=~ 2.10
sa- oEplyI¥.6) = 5or %) 210

Chapter 2. Theoretical Background 11

350 350
3 3r A
250 -
2 +
> >
3 150 N 3
3
I ++ e
0.5 . +
0 + + + R
}
ol
05+ +
15 1 0.5 0 05 1 15
input, x
(a) (b)

Figure 2.2: Example data drawn from a Gaussian Process with a Squared Exponential
covariance with lengthscale [= 0.25 and noise standard deviation 6,, = 0.1 (a) and re-
sulting predictive distributions (b), (c). In (b) we make GPR predictions using the correct
hyperparameters; the mean prediction is shown as a continuous curve. Also shown is
one standard deviation of the Gaussian distributed expected error on each test point.
As expected, the confidence of the predictions falls away from the datapoints. In (c) we
set the hyperparameter lengthscale to be 1 (Section 2.3.3 discusses GP hyperparame-
ters), hence the prediction is much smoother. However, we did not adjust the noise level
(it stays at 6, = 0.1). This particular hyperparameter misestimation makes some of the
training point values to be outside of one predictive error standard deviation. This illus-
trates the need for good hyperparameter optimization. The plots are generated using

modified code from Rasmussen and Nickisch [2010].

Chapter 2. Theoretical Background 12

with o« = K~y and 7 calculates the trace of a matrix (see Rasmussen and Williams
[2006], Chapters 2 and 5). Gradient descent techniques can thus be used to minimize
—log p(y|X,0), in hope any bad local minima will be skipped and hyperparameters
fitting the data well are found.

Chapter 3

GPR Approximations

Chapter 2 showed that Gaussian Processes can be used as Bayesian priors over func-
tions in the regression task. Equation 2.7 formulates the predictive distribution calcu-
lated in such model (with stationary Gaussian noise). Calculation of the mean and vari-

ance of the predictive distribution on any test point requires using the inverted “noisy
2

—1
oisel) - Similarly, each iteration of gradient descend hy-

covariance matrix” (Kt +©
perparameter optimization will require inversions of K. Since K is of size N X N, to
run the exact Gaussian Process Regression algorithm we need O(N?) time and O(N?)
space, where N is the number of training points. This is prohibitive for datasets larger
than several thousand points, which are not difficult to obtain. Many approximation
algorithms were created to deal with this issue; the Gaussian Processes web site (Ras-
mussen [2011]) picks thirty-one publications on approximation algorithms as of Febru-
ary 2011. Our goal is to clarify which approximations are useful in practice, why, and
in what situations. We have chosen four algorithms to focus on, as they are represen-
tative of four different approaches to the approximation process. Sections 3.1 - 3.4
discuss the basic ideas behind these algorithms, and are complemented by Sections
3.5 and 3.6 which elaborate on two algorithmic choices that need to be made before
some of the methods are used. Chapter 4 elaborates on our implementations of the
approximation algorithms, including a more detailed (not asymptotic) time and space

complexity analysis.

13

Chapter 3. GPR Approximations 14

3.1 Subset of Data

The Subset of Data (SoD) method is a simple way of speeding up Gaussian Process
Regression. Given N training datapoints, the method chooses a subset of m points
(which we will call inducing points) and performs inference as usual, using this subset

only. The SoD predictive distribution (compare with Equation 2.7) is then

PSoD (f* |y> = N(K*»fSoD (KfSUDafSUD + Gioisel) - YsoD, Ki s« — K*afSoD (KfSoD7fS()D + Gioisel) - KfS(}D7*>)

where K, 1, , is the covariance vector between the test value f(xX.) and the m latent

function values { f(x;)|x; € SoD} and Ky, t,,, is the m x m covariance matrix on the

fSoD
points in the chosen subset of data SoD. ys,p are the training outputs on the points in

the chosen subset of data.

The running time of the method is O(m?) for training and O(m?) per test point for
computing the posterior distribution (means and variances). The space complexity is
O(m?) for storing the covariance matrix over the chosen data subset. Figure 3.1(b)

shows SoD solving a toy dataset.

An additional choice one has to make to use SoD is how to choose the inducing points.
This turns out to be a more general issue valid for other approximations as well. We

discuss it in some detail in Section 3.6.

SoD is the simplest approximation we consider. It might seem wasteful to simply
throw away data without retaining any information about it. However, in the limit of
having infinite data at our disposal, throwing some of it away might be a necessity. In
fact, one might be forced to connect another approximation with SoD to be able to use

it effectively. In particular, we discuss such connection with later in this dissertation.

3.2 Local GP

The local approximation divides the training set (with N training points) into clusters of
size at most m each. Each cluster is then treated as a separate inference problem; in case
of Gaussian Process Regression, the full GPR algorithm is performed on each cluster
separately, with no information transfer between the clusters. If the hyperparameters

are shared between the clusters, the full GP predictive distribution from Equation 2.7

Chapter 3. GPR Approximations 15

is now approximated by

PLocal (f* |Y) — N(KL(;'CGZ (KfL’chal + (52 I) —ly7 Kffkcal _ Kf}cal (Ké,tqcal + G2 I) —lKégcal)’

*, noise noise

where Ké‘l’f“l is a block diagonal covariance matrix with blocks of size at most m x m

(see Equation 3.2 below).

The time cost of training Local GPR is O(m® x &) = O(Nm?). The test time is O(m?)
per test case- with precomputed m-dimensional Cholesky factors one triangulated lin-
ear system in m variables has to be solved per test case to get predictive variances. The
space required is O(mz)— one cluster covariance matrix needs to be stored at any one

time.

Local GP is not a stand-alone approximation. One needs to choose the underlying clus-
tering method— an important choice elaborated on in Section 3.5 where we describe Re-
cursive Projection Clustering (RPC) and Recursive Random Clustering (RRC). Addi-
tionally, two obvious hyperparameter training variants are possible. The hyperparame-
ters can be chosen separately for each cluster, or a joint optimization can be performed
(so that the hyperparameter gradient is taken to be the sum of the gradients of cluster
hyperparameter variables). In case joint hyperparameter optimization is performed, we

can model Local GP as full GP Regression using a modified kernel

Kool (x x) k(x;,x;) if X;,X; in the same cluster
Lyax)]) — .
0 otherwise

In this case the covariance matrix is block diagonal, as in Equation 3.2. For example,

if m = 2 then the “joint-Local” covariance is:

kg ki O
koi kzp O
0 0 k3 ks
ka3 ks
glocal _
0 . . . kvoinN-1 kN-IN
0 0 . . . kyn-i Ky N

where k; j = k(x;,X;) for brevity. If the hyperparameters differ between the clusters,

each block will in practice use a different covariance function and the algorithm can

Chapter 3. GPR Approximations 16

not be seen as performing GP regression. However, we can expect such model to have
more expressive power. Figure 3.1(c) shows the results of running Local GP with
joint hyperparameters on a toy dataset. Note the discontinuities in the overall good

prediction.

3.3 Fully Independent (Training) Conditional

FITC is a version of Ed Snelson’s Sparse Pseudo-Input Gaussian Process (SPGP)
method described in detail in Snelson [2001]. It was integrated into a general GP
approximation framework and renamed in Quinonero-Candela and Rasmussen [2005].
Let u be a set of m inducing points, ideally chosen so that every test point is close
to this set!. Let k(x;,u) denote the m element row vector of covariances between X;
and the inducing points; and let Ky y denote the m x m matrix of covariances between
the inducing points. As Quinonero-Candela and Rasmussen [2005] shows, FITC is

performs GP regression using a modified covariance function
krire(Xi,Xj) = ksor(Xi, X)) + 8; j[k(Xi, X ;) — ksor (Xi, X;)]
where k is the original covariance function used in the GP to be approximated and
ksor (Xi,X;) = k(x;,u)Ky ok (u, X;)

is the Subset of Regressors (SoR) covariance function. Intuitively, ks g allows any
two points in the input space to communicate only through the m inducing points.
krrrc 1s similar but keeps the self-covariances of the data intact. Quinonero-Candela
and Rasmussen [2005] gives a detailed discussion on the two functions. Using krjrc
instead of k reduces the runtime from O(n?) to O(m?n) in the training phase and O(m?)
in the test phase, thanks to a clever use of the matrix inversion lemma (see Snelson
[2001], Sections 1 and 2). Figure 3.1(d) shows FITC regression used on a simple toy
problem. In the figure, FITC is closer to the full GP prediction than SoD, but fails to

capture information about the one datapoint far away from all inducing points.

!Originally, Snelson proposed to optimize the locations of the inducing points during hyperparameter
optimization. This extension makes the algorithm scale worse with dimensionality, but improve its
performance. In this dissertation we consider only the apparently more popular version of the algorithm
where the inducing points are chosen by simpler methods as described below.

Chapter 3. GPR Approximations 17

3.4 Improved Fast Gauss Transform MVM

IFGT (Raykar et al. [2005]) is a fast matrix-vector multiplication (MVM) method de-
veloped specifically for Gaussian potentials. It uses power expansion truncation and
subdivision of input space to evaluate the potentials approximately. It was suggested by
Morariu et al. [2008] that it can speed up Gaussian Process Regression if the Squared
Exponential kernel is used. As already noted in Gibbs and MacKay [1997], the co-
variance matrix inversion performed in GPR, (K¢ + Gﬁoisel)*ly (see Section 2.3.2),
can be done using Conjugate Gradients methods. The covariance matrix is positive
definite so CG is readily applicable, and one could stop the CG algorithm after m < N

iterations. More importantly, during CG iterations, as well as when computing the final
2

noise

output values on the test points . = K, g0 where o = (Kgg + 62,;,,1) 'y, almost all

computational cost comes from matrix-vector multiplications (MVMs).

The algorithm itself is complicated. Below we roughly sketch the procedure, basing
on Yang et al. [2004]. Note that the authors were unable to compress a full description
of the algorithm into the 8-page NIPS limit, and hence their description does not fully
define all the terms, referring the reader to technical reports. We do not hope to be
able to condense the algorithm’s description better than the experts, but we hope the
reader can get an idea behind the basic procedure used in IFGT, and how it can help in

working with Gaussian Processes, from the short description below.

Assume X, is a test point and ¢; is the ith element of the weight vector o = (K¢ +
2

noise

X., assuming the Squared Exponential covariance with lengthscale / is used, with a

o2 . 1)~y from Equation 2.7. IFGT will then compute the mean GP prediction on
bounded error. The error guarantee is based on a complicated error function; the reader
needs only to assume that it is possible to bound the error of the IFGT approximation

E based on the radii of the created data partitions and accuracy of power expansions.

1. Required: compute the approximate value of the summation

pe = YN | oyexp (—[x; — x.|?/1?), with absolute error at most €.

2. Procedure: Perform Farthest Point Clustering (Section 3.6.2) to partition the
datapoints (x); into k clusters. Choose k so that each cluster’s radius is smaller

than |/

p, where p is a term that influences the error bound in the next step.

3. 2. Choose p - which determines the order of the power expansion of the Gaussian

in the next step - large enough for the error bound to guarantee E (u,) < €.

Chapter 3. GPR Approximations 18

4. For each cluster, compute a truncated (above the pth degree) multivariate Taylor

series around the cluster’s center, using only the points in the cluster.
5. Sum the results of computations for each cluster.

Of course, the procedure presented above can be used for any MVM involving- in our
case- a covariance matrix K. It turns out that the IFGT MVMs in CG can be performed
in a progressively more inexact manner to speed up the process and the algorithm still
converges, as shown in Raykar and Duraiswami [2007]- that is, the allowed MVM
error € can grow with CG iterations in a well-defined manner. Figures 3.1(e) and 3.1(f)
show IFGT solving a simple toy regression problem. The prediction can be very bad if
the relative allowed MVM error is too large, but it is hard to predict how the results will
be wrong; in comparison, with SoD, FITC, and Local GP we understand fairly well

how the predictive inaccuracies relate to the choice of the inducing points or clusters.

3.5 Clustering

We use two simple clustering methods with Local GP. We deliberately do not use
the Farthest Point Clustering method (which we do use to choose inducing points for
SoD and FITC, see Section 3.6) with Local GP. This is because the method’s time
complexity scales as O(m*N) where m is the number of points in the largest cluster.
FPC provides no guarantees on the maximum cluster size. The methods presented
below are less complex and will likely not exploit the structure of the data as well as
FPC, but they are guaranteed to produce clusters smaller than a given constant, and

choose the cluster sizes to be roughly uniform under the maximum size constraint.

3.5.1 Recursive Projection Clustering (RPC)

This method, suggested by lain Murray (personal communication), performs the fol-
lowing recursive procedure.

Initiation Given dataset {x;,---,Xy} and constant m, define A = {xy,--- ,Xn}.

If |A| > m: recursive step. Choose two points uniformly at random from A.

Draw a line through these points and calculate the orthogonal projection of all

points from A on the line.

Chapter 3. GPR Approximations 19

Split A into two equal size subsets: Ay, the points to the left of the median

projection and A, the points to the right of the median.
Repeat the recursive step, with A < Ay first and A «— Ag second.

If |A| < m: termination. Add A to the clusters set. Terminate this branch of recur-

sion.

3.5.2 Recursive Random Clustering (RRC)

This method proceeds semi-recursively - the top recursion level is similar but not iden-
tical to lower levels. Starting from the full dataset of size N and given m - the maximum

cluster size:
1. Choose | X | cluster centers uniformly at random from the data.

2. Assign each point in the dataset to the closest center, producing L]n—\;J clusters C;.

Add these to the clusters list C.

3. For each C; € C with |Gj| > m:

4. Remove C;’s from C.
5. Choose two points in C;— new cluster centers— uniformly at random.
6. Assign each point in C; to the closer of the two points, creating two clusters

Ci,C;. Add Cr and C; to C.
7. If any of the two new clusters has size > m, repeat steps 4-7 on this cluster.

By construction, RPC produces clusters of almost uniform size, equal C:n1211_iL;1< mn2_c
where ¢ is a natural number and the actual cluster sizes are rounded to closest natural
numbers. RRC’s clusters are less uniform in size. Figure 3.2 compares the two cluster-
ing methods graphically . The figure shows that in general, RRC’s clusters are smaller
than RPC’s, as expected. This can have a slightly detrimental effect on Local GP’s

performance if all other factors are ignored.

Chapter 3. GPR Approximations 20

3.6 Choosing the Inducing Points

The SoD and FITC approximations require that a set of inducing points is defined in
the input space. In both cases, these points are taken to be somehow representative
of the whole training input set. We saw in Figure 3.1 that both algorithms give better
predictions close to the inducing points set. Snelson [2001] proposes that the locations
of inducing points be optimized in the likelihood as hyperparameters. We decided to
take simpler approaches that do not depend on the dimensionality of the problems;
otherwise, a general comparison of FITC with the remaining methods would be more
difficult. Instead, we used two less computationally demanding approaches to inducing

points’ selection. Assume we need to obtain a set of m inducing points.

3.6.1 Random subset

The first approach is choosing a random subset of data and was also used in Rasmussen
and Williams [2006]. Note that this might not be as bad an option as it seems at first:
random choice will respect the structure of the data in the sense that the denser areas
(which therefore contribute more to the errors and are perhaps less likely to contain

outliers) will have more inducing points placed in them.

3.6.2 Farthest Point Clustering

The second method we consider is to use the set returned by the Farthest Point Clus-
tering (FPC) algorithm as the centers of m clusters. Gonzalez [1985] proves that this
algorithm is the best possible approximation to the NP-hard problem of finding a clus-
tering with the smallest maximum intracluster distance. Thus we can hope that the set
of inducing points placed at the centers of such chosen clusters is in a way as close to

all other data as possible. This simple algorithm chooses k data clusters as follows:
1. Choose a point, ¢y, at random. This will be the center of the first cluster.
2. Fori=2,--- k
3. ¢; < the point farthest from the set {c1, -+ ,ci—1}.

4. Move each datapoint x; to cluster / € {1,--- ,k}, whose center ¢; is closest to xi.

Chapter 3. GPR Approximations 21

We also experimented with the [IVM method which greedily chooses the subset of data
that decreases uncertainty on training data most (Lawrence et al. [2003]), but the results
seemed very similar to when FPC was used. This makes intuitive sense: for stationary
kernels (where covariance is a function of inter-point distances only) and small data
subsets, a point farthest from a subset will also decrease the overall uncertainty the
most. We did not run all the experiments using IVM because of this and do not report

on the method further.

3.6.3 Differences between Random and FPC

Figure 3.3 illustrates some differences between these two methods when used on the
SYNTH?2 dataset (Section 5.1 describes this and other datasets we use in our experi-
ments). The figure shows that in low dimensionalities FPC is able to choose inducing
points regularly across the input space, while Random is more sensitive to irregulari-
ties in data structure. However, in higher dimensions many more points are needed to
fill up space, and FPC fails to produce a regular coverage of the space. Random, on
the other hand, will still focus on the more important data regions; in high dimensions
Random will ignore less dense regions which can reduce accuracy of the inference
methods we use (which will then ignore those regions), but this seems the only feasi-
ble option in high dimensionalities when the data has little structure. The bottom plots
in the Figure plot the inducing point’s standard deviation when they are chosen by FPC
and Random respectively, as a function of growing subset size. For large subsets both
methods converge to the full dataset variance. For small subsets, however, the methods

behave very differently in 2 and 8 dimensions, as explained above.

Chapter 3. GPR Approximations 22

output
SoD output

Local GP output
FITC output

IFGT output
IFGT output

Figure 3.1: Toy data drawn from a Gaussian Process (same as in Figure 2.2) and re-
sulting predictive distributions calculated using approximate GPR algorithms and the
correct hyperparameters. Figure (a) shows the full GP prediction. (b) The Subset of
Data approximation predicts badly away from the inducing points (shown as circles),
but the predictive variances are adjusted accordingly. (c) Local GP introduces discon-
tinuities on the edges between clusters (each cluster marked by different symbols) but
doesn’t ignore any data regions. (d) FITC can do better than SoD in some regions. (e)
IFGT, with a high maximum allowed MVM error; the prediction seems to follow the over-
all trend in the data. (f) In this case, the allowed MVM error is very small and the IFGT
prediction is almost identical to the full GP. IFGT does not yield predictive variances
efficiently, hence they are not shown here (Chapter 4 discusses this and other issues
with IFGT).

Chapter 3. GPR Approximations

Number of points per cluster

45001

40001

35001

30001

25001

20001

15001

1000

5001

0 1000

Cluster sizes in Recursive Random clustering

——SARGOS
----- SYNTH2
m SYNTHS

====CHEM
—*—|deal

2000 3000
Desired number of points in a cluster

.
4000

45001

4000

Actual number of points per cluster

5001

Cluster sizes in Recursive Projection clustering

35001

3000

—— SARGOS S
----- SYNTH2 g
v SYNTHS g

2500

2000

1500

1000

23

1000 2000 3000
Desired number of points per cluster

4000

Figure 3.2: Cluster sizes for RPC and RRC. Note almost perfectly linear cluster size

growth. The solid black crossed line shows the ideal behavior - clusters of size exactly

m as chosen by the user. The values are means taken over 10 trials for each m. The

error bars show, for RRC, one standard deviation. RPC’s cluster size variance is negli-

gible. RPC’s cluster sizes are a deterministic function of the dataset’s size only. For the

SYNTH datasets, where the training set size is a power of 2, RPC produces clusters

of exactly the desired size— as expected. RRC produces clusters of variable size; the

sizes are nondeterministic but influenced by the structure of the data.

Chapter 3. GPR Approximations 24

FPC Random All data

SYNTH2 SYNTH8

19 12

1.8
1.15

17 —FPC
=16 N | T Random 5 11]
= e Al data E
g1° S 105,
214 2 AN
a a N

13 sy

12 0.95 —FPC

T T Random

P P aiant o 0.9 weene Al data

102 103 104 102 103 104

Subset size Subset size

Figure 3.3: FPC and Random subset choice. The average of standard deviation over
the data dimensions is shown. Top on low dimensional datasets (SYNTH2 here) FPC
places the cluster centers on a regular pattern which covers the whole space well. In
this case, random subset choice largely ignores the exterior of the data distribution. The
SYNTH dataset inputs are sampled from a Gaussian distribution, hence Random has
much more points to choose from in the center. In the plots 128 points were chosen
by each algorithm from among 32000 training cases shown on the right. Bottom the
situation is different in high dimensions, where it is more difficult to populate the space
densely. The left plot shows that for 2 dimensional SYNTH2, Random consistently
chooses subsets with variance around one (the mean of standard deviations across
all dimensions is shown). FPC for small subsets chooses points roughly on a regular
pattern, also on the outskirts of the sample distribution (top left plot), but for larger
subset sizes it must start converging to the true data distribution- hence the variance
is falling towards value one. The plot on the right, on the contrary, shows that in eight
dimensions it takes more time for FPS to yield wide subsets. In eight dimensions there
is much more volume on the exterior of the distribution. By its nature, FPC will first
place points on the exterior, largely ignoring the interior of the sample distribution. This
is prone to create thin subspaces with small average variance for small subset sizes
(an 8 dimensional hypercube has 28 = 256 faces), and only for large subsets FPC is
starting to cover a decent share of the space. The variance starts decreasing when,
as in the two dimensional case, FPC is placing more points in accordance with the real

data’s normal distribution.

Chapter 4

Implementation

Our goal is to compare the GP approximations described in Chapter 3 empirically. To
do this, we needed code implementing the approximations, as well as any of the addi-
tional algorithms used for clustering etc. Part of our work had already been done by
other researchers, and we use their implementations whenever possible. This chapter
describes in some detail the programming work we have done, and attributes outside
code that we use to its creators. Section 4.1 describes the implementation of the core
approximations. We note that using external code was not trivial: we had to put much
work into integrating some of the code into our framework, and we dealt with some
more and less important bugs present in outside source code. Some of our fixes have

been incorporated into the original projects.

This chapter also looks at the actual complexity of the algorithms as we have them
implemented, in Section 4.3. These practical (as opposed to asymptotic) complexities
will be important in practice when in later chapters we compare the results of running
the algorithms on actual complex datasets. The time/space analysis here is still ap-
proximate, skipping some important details such as calculating kernel function values,
and some less important details like vector-vector operations (matrix-vector operations
constitute most of complexity of these algorithms). We hope that such approximate
analysis can give the reader an appreciation that asymptotic complexities can ignore

significant differences in actual runtimes.

Finally, Sections 4.4 and 4.5 look at some additional code we wrote to be able to work

with the GP approximation algorithms.

Appendix B describes the structure of our codebase in more detail, so the code can be

25

Chapter 4. Implementation 26

reused easier should anyone desire to do so.

41 GPML

The most important codebase we use is the Gaussian Processes GPML package (Ras-
mussen and Nickisch [2010]). The GPML project went through a major revision
halfway through our work and we updated our code accordingly, which was a ma-
jor change especially for the SoD and Local approximations. The current GPML was
created by Carl Edward Rasmussen and Hannes Nickisch, the earlier version by C. E.

Rasmussen and Chris Williams. Most GPML code is written in Matlab.

41.1 SoD and Local GP

The most recent GPML toolbox — version 3.1 — can perform full Gaussian Process Re-
gression and Classification, using a variety of covariance functions as well as several
likelihood models. In our experiments, we use the Squared Exponential covariance
function and Gaussian likelihood, both of which are implemented in the GPML pack-
age. Thus to perform SoD (Section 3.1), once the inducing points are chosen (see

below), we simply use GPML’s full GP regression on this subset of data.

In case of Local GP (Section 3.2) with separate hyperparameters, once the training
data is clustered (see below), each cluster uses GPML to perform GP inference. Local
GP with joint hyperparameters is slightly more tricky if it is to be done efficiently. We
extended the GPML package to handle this situation, so that Maximum Likelihood
hyperparameter estimation can use the sum of the gradients of all clusters on each

iteration.

While implementing Local GP, we have spotted an efficiency issue in the GPML code-
base. Fixing it speeds regression up, in some cases by over 90% (Section 4.3.2 talks
about other issues appearing in the situation where this bug was spotted, that is Local

GP with small clusters). Our fix was incorporated in the newest GPML version'.

ISee http://www.gaussianprocess.org/gpml/code/matlab/doc/changelog.

http://www.gaussianprocess.org/gpml/code/matlab/doc/changelog

Chapter 4. Implementation 27

41.2 FITC

Originally we used Ed Snelson’s implementation of his SPGP method (Snelson [2006]).
This required modifications as Snelson assumes the user wants to optimize the pseu-
doinput locations in the likelihood, which we don’t (Section 3.3). However, halfway
through the project a new version of GPML was released which implemented FITC
as we need it. Thus we modified our code accordingly, and currently we use GPML’s
FITC routine. As it turned out, this fresh implementation contained a simple but seri-
ous bug which we fixed; our fix again is incorporated in the newest version of GPML
code. Since we don’t optimize the inducing point locations, we choose these locations

using other methods which we implemented ourselves, described below.

4.2 Figtree

The Improved Fast Gauss Transform is implemented in the C++ Figtree package by
Vlad Morariu (Morariu [2010] — the package includes Matlab wrappers which we use).
This, however, is just a fast Matrix-Vector Multiplication method. We have imple-
mented a progressively more inexact Conjugate Gradient algorithm that uses Figtree
for MVM (the idea described in Raykar and Duraiswami [2007]). We then imple-
mented Gaussian Process Regression that uses our CG routine to invert the necessary

matrices.

4.2.1 IFGT predictive variances

It is relatively easy to implement mean GPR prediction using CG with IFGT. However,
a problem so far ignored by the proponents of IFGT is that it is not clear how to
use fast MVMs to estimate the hyperparameters and compute the solution predictive
variances efficiently. The predictive distribution variance of full GPR on test point x,
is computed as

K*,* - K*,f(Kf,f + G%oisel) 71Kf7*7

where f symbolizes all the N training inputs. Our implementations of SoD, Local and
FITC store Cholesky factors of relevant covariance matrices. The factors are precom-
puted during the training phase; then, during test time, the covariance matrix needs not

be inverted again. Instead, a triangular linear system is solved, one for each test point.

Chapter 4. Implementation 28

IFGT on the other hand does not precompute partial solutions to matrix inversion. The

obvious approach to computing the predictive variances requires re-solving the linear
2

2 1) 71Kt . for each test point x, with respective training-test covari-

system (Kgf+ 0
ance vector Kg,. This seems impractical even for small datasets, in our experience.
In Raykar and Duraiswami [2007] and Murray [2009] the authors focus on IFGT’s
MSE performance only and skip the variance problem. Gibbs and MacKay explicitly
note that the cost of such approximate variance prediction is larger than of full vari-
ance prediction (Gibbs and MacKay [1997]). We suggest that for the algorithm to be
considered useful, a way of efficiently computing the variances should be found. This
of course applies to any iterative method for solving GPR. We have implemented the
obvious method of computing the variances, but don’t report the IFGT variance results

in the following chapters as the time costs, which are larger than for the full GP, are

prohibitive for nontrivial problems.

4.2.2 IFGT hyperparameter optimization

Hyperparameter computation is also problematic with IFGT. In full GP, to estimate
the hyperparameters using the MLE method, likelihood derivatives respective to each
hyperparameter need to be computed:
d 1 oK

—1 X,0)=—tr((e =K 1)=— 4.1

o 0Epy1x.0) = 5rr %) @)
where oo = K _1y (see Rasmussen and Williams [2006] for a derivation). This allows
for a precomputation of the weight vector o which is also used for mean prediction
computation. However, this simplified form of the likelihood derivative seems unsuit-

able for computations with IFGT. This is because IFGT only works with Gaussian

potentials. We can in principle split the computation in two parts:

oK
_1 el
K 30, 4.2)
oK
T
ool FT 6, 4.3)

where computation 4.2 is computed using n conjugate gradient runs (as with the vari-
ances, the full n x n linear system needs to be be solved each time K~! is multiplied
by a matrix column or a vector). Because it doesn’t involve Gaussian potentials, com-

putation 4.3 has to be solved exactly. One way to approach the problem is to expand

Chapter 4. Implementation 29

Equation 4.1:

d 1 0K 1 0K
—1 X.0)=-vK ' Kk ly— (k1 —
3, ogp(y|X,0) 5y 3, y=3 r(3,

)

where this time we can avoid storing large matrices if each time we compute the deriva-
tive matrix column by column to perform the relevant IFGT MVM’s. Also storing
K1 %K]_ is not necessary. Gibbs and MacKay [1997] show that trace of a large matrix
can be computed approximately with low error using the following simple randomized
method. If

oK
T —1
T=d K —aejd 4.4)

where d is a vector of zero mean, unit variance Gaussian variables then
oK

E[t]=tr(K lﬁj)'
Equation 4.4 again can be computed using IFGT for inversion of K. For large n sev-
eral samples of T can suffice to estimate the expectation reasonably. It should be clear
by now that if no better methods are proposed, likelihood optimization is not feasible
using IFGT or any MVM method. The covariance matrix needs to be re-inverted using
CG numerous times for each derivative computation; the partial derivatives matrix also
needs to be recomputed column by column several times unless enough space to store
it is available. Furthermore, as with all computations, IFGT would only apply in low
dimensional cases where it is much simpler and likely equally efficient to use less so-
phisticated methods. Alternatively, SoD might be used for hyperparameter estimation

and IFGT for MSE computations using SoD-estimating hypers.

4.3 Complexity in practice

4.3.1 Space/time complexity

Once we have the concrete implementations of the approximation algorithms, we can
look more closely at their actual runtimes. It is possible (and indeed true, as we show
in later chapters) that the asymptotics do not kick in until the number of datapoints N
reaches several tens of thousands, and hence a less abstract time and space complexity
analysis can prove valuable in assessing an algorithm’s usefulness. Tables 4.1 and 4.2
compare approximate complexities of Full GP, SoD, Local GP and FITC as imple-

mented using modified routines from the GPML package. Our modifications mostly

Chapter 4. Implementation 30

Asymptotic Space Actual Space

SoD/Full GP* O(m?) 4m?
Local GP O(m?) 4m? or max(4m? ,mN)?
FITC O(mN) max(3Nm -+ 5m? 4Nm +3m? 5Nm + 2m?)

“SoD and full GPR have the same complexity as SoD is just GPR with reduced training set size.
bThe latter if Cholesky factors for each cluster need to be stored, when test data is unknown at the

time of training.

Table 4.1: Space usage by method. Note the asymptotic data can give very different re-
quired storage in practice. In each case we report Actual Space as the largest number
of doubles stored in Matlab matrices at any time during the algorithms’ run. Tempo-
rary space needed for linear algebra operations (Cholesky decomposition, Gaussian
elimination, matrix multiplication) is ignored, but since only one such operation is per-
formed at once the difference should not be significant. We also ignore the costs of
storing single vectors. For IFGT, our progressively more inexact Conjugate Gradient
implementation (based on Matlab’s pcg routine) stores at most ten n-element vectors

at a time; for almost all practical cases IFGT will use the least memory.

reduce GPML’s space complexities by cleaning memory whenever possible, but don’t
change the core GPML code in other significant ways. Our code should be available
together with this dissertation for anyone interested. The reported complexities take
any matrix-vector and matrix-matrix (with matrices of size N X N and N-dimensional
vectors) multiplications into account, which arguably use almost all time resources re-
quired by the algorithms. The table makes it clear that while all of SoD, FITC and
Local GP have the same asymptotic complexities, they will require significantly dif-
ferent resources in practice. These additional resources could potentially be used for
example to make SoD competitive by taking the size of the subset mg,p larger than
the number of FITC inducing points mp;rc. One of the goals of our empirical experi-
ments, reported in following chapters, was to evaluate whether such manipulations can

be of much practical use.

4.3.2 Local GP Time behavior

An interesting behavior of Local GP that we observed during the experiments (see

Chapter 6) is that the algorithm has a convex time curve - it runs slower for tiny cluster

Chapter 4. Implementation 31

Chol Gauss Mult
SoD m? m?(4m) -
Local m?*(X) m?(4N) -

FITC m?3 m?(2N+4m>+3) (mN x Nm)2+ (m?> x m?)
+(m* x mN) +d [3(mN x Nm) +2(m?* x mN)]

Table 4.2: Time usage for SoD, FITC and Local during the training phase. Chol
row indicates how many Cholesky decompositions of matrices are needed, for ex-
ample m?3 indicates three decompositions of m x m matrices. Gauss indicates how
many Gaussian eliminations of triangulated linear systems are needed. For example
m?(2N + 4m? + 3) indicates a number of operations equivalent to that needed when

2. Mult indicates the number

solving (2N + 2m? + 3) triangulated systems of size m
of matrix-vector and matrix-matrix multiplications needed. This excludes element-wise
multiplications written X. xY etc in Matlab. For example, 2(mN x Nm) indicates two
multiplications AB where A is of size m x N and B is of size N X m. d is the number of
partial derivatives to be computed. These are all lower bounds on the time complexity
of the methods; times needed for example for the computations of kernel values, data
clusters and many others are not included. d is dimensionality of the data, which indi-
cates the number of lengthscale derivatives the SQ-ARD covariance needs to compute.
Note that only FITC requires per-derivate operations that are complicated enough to be

included in this table.

Chapter 4. Implementation 32

sizes, reaches the best speed somewhere in the middle and again runs slowly for larger
cluster sizes. Such behavior does not agree with the estimated time complexity from
Table 4.2, which indicates that the time requirement should be a growing function of m.
It turned out the reason is that because for small clusters, most time is spent repeating
trivial operations on each of the thousands of clusters: setting up/erasing memory,
creating namespaces and other bookkeeping etc. Matlab works fast with vectorized
algorithms but the smaller the clusters, the less vectorized Local GP is. Figure 4.1
gives a concrete example of how concave time curves such as Local GP’s can come
about in Matlab. This behavior is unfortunate, as we will see that Local GP appears to
be an interesting approximation method in terms of error performance. Implementing
optimized Local GP in a lower level language like C could be very useful. However,
Local GP is only suited for some applications, which do not require continuity of the
regressed function; thus it is useful to have Local GP available in a more general GPR
package, and the optimized C implementation would best come with other flavors of

GP approximations as well.

4.3.3 IFGT complexity

We have not included IFGT complexity in our tables. This is because IFGT does not
have one parameter that controls its runtime and space requirements and thus compar-
ison to the other methods in one table would be difficult. As in any iterative method,
one can reduce the number of iterations k& (of CG in this case) to be smaller than N,
the dimensionality of the CG problem we want to solve. In this case, IFGT requires
O(kN?) training time. More interestingly, one might also increase the allowed MVM
error on each CG iteration; this would further speed up the process. Raykar and Du-
raiswami [2007] shows that the maximum MVM error can grow with CG iterations
and can be automatically inferred from the CG residuals, given a parameter 8 which
controls the final accuracy of the CG procedure (see Equation 16 in Raykar and Du-
raiswami [2007]). We employ the automatic procedure as suggested in the paper, and
hence it is difficult if not impossible to say exactly what the actual time complexity
of the method will be. Raykar and Duraiswami [2007] shows that asymptotically CG
with progressively more inexact IFGT takes O(N) time for training; in our experience,
however, there are no actual speedups present on real datasets, and the behavior of
the algorithm is sensitive to additional factors. These are analyzed in more detail in
Chapter 6.

Chapter 4. Implementation 33

Code Calls Total Time % Time Code Calls Total Time % Time
C = bsxfun(@plus,sum(a.*a,1)',... 2048 0.192 s 46.3% C = bsxfun(@plus,sum(a.*a,1)',... 128 0.022 s 66.7%
mu = mean(a,2); 2048 0.131s 31.7% mu = mean(a,2); 128 0.011s 33.3%
bsx = exist('bsxfun', 'builtin'... 2048 0.030 s 7.3% C = max(C,0); % numer... 128 O0s 0%
C = max(C,0); % numer... 2048 0.010 s 2.4% if bsx ... 128 O0s 0%
if bsx ... 2048 0.010 s 2.4% b=a;m=n; 128 Os 0%
0.040 s 9.8% 0s 0%
0.4
Code Calls Total Time % Time 0.35¢
C = bsxfun(@plus,sum(a.*a,1)',... 1 0.358 s 73.5% 031
o 025
C = max(C,0); % numer... 1 0.119 s 24.5% e
= 02r
bsx = exist('bsxfun','builtin'... 1 0.010 s 2.0% ? 015k
if bsx o] 0s 0% 01r
0.05F
b=a;m=n; 1 Os 0%
0
0s 0% 10" 10 10° 10° 10"

Cluster size

Figure 4.1: Time profiles for running sq_dist, a simple function included with and used
by the GPML code, that computes squared Euclidean distances between each pair of
elements in a vector. Top Left sq_dist run on vectors of size 2, 2048 times. Top
Right 128 vectors of size 32. Bottom Left sgq_dist run on a 4096 element vector
once. Bottom Right As in Local GP, for each “cluster size” m we run sq_dist N/m
times. Asymptotically this requires %mz = Nm operations, so the plot should be linear.
Instead, for small cluster sizes non-asymptotic factors dominate the computation time.
bsxfun is the quadratic operation in this code. For smaller clusters, where all operations
must be repeated many times, there is much overhead from setting up the functions’
namespaces, stacks etc. That's why in absolute terms, 2048 runs of bsxfun on 2-
vectors in the first table take almost ten times as much time as 128 runs on 32-vectors

in the second table do.

Chapter 4. Implementation 34

4.4 Clustering and Inducing Points

We have implemented both simple clustering algorithms, RRC and RCP (described in
Section 3.5) in Matlab. We tried to make the code simple to ensure it’s bug-free, as
opposed to optimizing its efficiency, as clustering data using these simple approaches
takes negligible time compared to relevant matrix inversions or hyperparameter opti-

mizations.

Section 3.6 describes several methods of choosing the inducing points set. We im-
plemented the trivial random choice. We also implemented the entropy maximizing
data subset choice, described in (Rasmussen and Williams [2006] Section 8.3.3) effi-
ciently. The third method of choosing inducing points we use is picking cluster centers
returned by the Farthest Point Clustering algorithm. This algorithm is also used in the

IFGT package (Morariu [2010]); we integrated that implementation into our code.

4.5 Tests and additional scripts

We have also written scripts to perform testing of the algorithms and scripts to ex-
tract and present data gathered during these tests. In addition, many small experiments
needed to be implemented to understand some behaviors of the algorithms (described
later in this thesis). All this is mostly our own code, with the exception of dimensional-
ity reduction code implementing the t-SNE algorithm (see van der Maaten and Hinton
[2008]) which was implemented in the Matlab Toolbox for Dimensionality Reduction
(van der Maaten [2010]) by Laurens van der Maaten.

Chapter 5

Empirical Comparison Setup

The main goal of our work is to compare the practical usefulness of the GP approxima-
tions described in Chapter 3. However, it is not immediately clear what the best way
to compare approximations like this should be. We wanted to focus on the practical,
not theoretical characteristics of the algorithms, hence first of all we needed to decide
which datasets to use in our tests. We tried to pick data with different characteristics
and of various difficulties. Our choices are discussed in Section 5.1. Once the data is

chosen, several different bases of comparison come to mind.

One might care about how well each method approximates the full Gaussian Process—
the word “approximation” suggests it would be good to get as close to the exact solu-
tion as possible. However, it is not obvious this would actually be a desired behavior
in itself. We do not expect real data to be drawn from a Gaussian Process, so the full
GP is an approximation itself, which we can only hope to be good if we have enough
domain knowledge about the problem to specify good covariance function structures.
Hence one might imagine that an approximation to the full GP could possibly do better
than the full algorithm itself, if it broke some wrong assumptions present in the latter.
As we will see in the next chapters, some approximations can in fact possess more

flexibility than the original algorithm.

A different idea, which we decided to follow, is to look at some kind of performance
measure of the algorithms. We decided to focus on Standardized Mean Squared

Error and Mean Standardized Log Loss described in Section 5.2.

The four different approximations we analyze can be controlled for the accuracy vs.

time/space complexity tradeoff. SoD, Local GP and FITC each use a parameter con-

35

Chapter 5. Empirical Comparison Setup 36

sistently called m in literature (and in our Chapter 3); IFGT can control the magnitude
of the allowed MVM multiplication error. Since each approximation can in theory
control the achievable errors up to some degree, it is still not clear how to use error
measures to perform a comparison. We have decided to look at time vs. error plots.
We can vary the value of the complexity parameter in each algorithm and do regression
using these values, keeping track of algorithm runtimes; we then measure the error in
prediction on a test set, as described below. We can then plot the time it took each
algorithm to achieve resulting error values on each dataset. Plotting such performance
of all algorithms on the same plot for each dataset and error measure should allow for a
fair comparison of their usefulness. However, there might be different kinds of runtime

the user cares about. Section 5.3 examines this issue.

5.1 Datasets

We want to use datasets large enough to pose a computational challenge for the GP
approximations. The sets we chose are of differing dimensionalities and difficulties
(more/less nonlinear, more/less uniformly sampled). We describe those datasets in

some detail in this section.

SYNTH2/SYNTHS8 Synthetic data created by Carl Edward Rasmussen, generated
from a GP with zero mean and isotropic Squared Exponential covariance (length-
scale one in each direction) in 2 and 8 dimensions respectively. We split the data
at random into 30543 training points and 30544 test points. SYNTH?2 has noise
variance 107®, SYNTHS was originally noiseless but we added 0.001 variance
independent Gaussian noise to it. In both cases the training input locations are
sampled from a Gaussian distribution. Figure 5.1(a) shows SYNTH8 embedded
in two dimensions. It is evident that the training and test points cover the space
well, with no obvious structure. The same is true of SYNTH2 (not shown in the
Figure). SYNTH?2 is the easiest dataset we use. Its low dimensionality and GP

origin make it perfectly suited for GP regression.

The situation is more complicated in 8 dimensions, even though our model will
fit the data well. The generating GP’s lengthscales are all equal to 1. Consider
a point far away from the origin, say on the surface of the hypersphere with ra-

dius 1 centered at the origin. In eight dimensions, this hypersphere intersects

Chapter 5. Empirical Comparison Setup 37

much smaller proportion of the high-density data regions than it would in the
two dimensional space. As a result, the further a point is from the center of the
sampling distribution the faster its regression difficulty will grow with dimen-
sionality: the GP algorithms will not be provided with enough data from those
regions of input space in which the outputs are well correlated with the test point.
The fact that in SYNTH datasets the sampling is Gaussian, so there is much less
data on the outskirts of the distribution than on the easier inside region, makes

the situation even more complicated.

CHEM consists of physical simulations data related to electron energies in molecules,
provided by Tucker Carrington from Queen’s University (Canada). Thanks to
Tain Murray for help with access to this set. The inputs have 15 dimensions (the
outputs are scalar as usually), and we split the data into 31535 training cases and
31536 test cases. CHEM consists of one large cluster of input points and several
smaller ones added for coverage (Figure 5.1(b)). This dataset was sampled in a
complicated way and in several stages involving both analytic calculations and

neural network simulation (see Malshe et al. [2007]).

SARCOS is a dataset representing the inverse kinetics of a robotic arm. The inputs
have 21 dimensions and we use 44484 training points and 4449 test points. This
dataset is often used in literature to assess regression algorithm’s performance
(for example in Rasmussen and Williams [2006] or Raykar and Duraiswami
[2007]; also see Nguyen-tuong et al. [2008] for a more general treatment of
inverse dynamic problems and Machine Learning). SARCOS is freely available
on the GPML website!. A projection in two dimensions, shown in Figure 5.1(c),
suggests that SARCOS’s inputs are sampled along disconnected trajectories of
the robotic arm. Figure 5.1(d) also shows one view of a three dimensional em-
bedding of SARCOS data. The 3D embedding, when looked at from different
angles, clearly consists of many disconnected, straight paths. This disconnected
sampling structure can influence the way the problem is learned significantly. As
we will see, the results of running different approximations on SARCOS will be

interesting, most likely partially due to its very structured input space.

Inttp://www.gaussianprocess.org/gpml/data as of March 2011.

http://www.gaussianprocess.org/gpml/data

Chapter 5. Empirical Comparison Setup 38

K Test points

% X * Training Points

1007

501

=501

X Test points 100k *
Training Points

-100 -50 0 50 100 150

(a) SYNTHS (b) CHEM

X Test points
* Training Points

100

501

507

=501

-1001

-50 7

50 0 -50 -100

(c) SARCOS, 2D projection (d) SARCOS, 3D projection (only training inputs)

Figure 5.1: Low dimensional embedding of the datasets. We used the t-SNE
algorithm (see van der Maaten and Hinton [2008]) for embedding. SYNTHS,
CHEM and SARCOS are shown in 2D. Plot (d) shows SARCOS in 3D viewed
from an angle that emphasizes many separate trajectories. SYNTH2, sampled in

2D from a Gaussian, is not shown.

Chapter 5. Empirical Comparison Setup 39

5.2 Error Measures

We use two distinct error measures to assess algorithms’ performance. One of them,
SMSE, takes only the mean prediction into account and can be used with most regres-
sion algorithms. The second measure, MSLL, also looks at the predictive variances:
intuitively, if an algorithm makes an error and is very confident in this prediction we
would like to penalize it more than when it makes an error but admits wider predictive
variance. These two measures are also standardized to make them invariant to data
input/output variances. A more formal description follows, in which we use notation

D to symbolize the training data used to compute the predictive mean and variance
2

+.ain Indicate the variance of the test

f(xs;) and Gi’i on the test point X, ;. 6%, and &
and training set outputs respectively; . and g4, for the respective mean values;
and (X, i, y«,;) 18 a test input/output pair and (x;,y;) is a training input/output pair. On
some occasions we will also denote the mean using a bar to avoid using confusingly

many angle brackets, e.g. y is the mean training output and y, is the mean test output.

Standardized Mean Squared Error The usual Mean Square Error (often used in-

stead of an absolute error as it is differentiable) is

((yei — F(xe))%), (5.1)

the average of squared differences between the test output values and the pre-
dicted mean value f(x, ;). We want to normalize this so that our error measure
is invariant to output scaling. Imagine a trivial method of guessing the output val-
ues - fixing all test values to the mean training output values, i.e. f(X.;) =y ; for
all i. Instead of computing the “absolute” MSE, we can normalize the quantity
from 5.1 by the MSE achieved by such trivial guessing method. This normaliz-
ing MSE is

NMSE = ((y.i—5)°)
= (i =V +%—9)%)
= (i =50)2) =20 = ¥5) (e — Yo + (T — %))
= Gpy + (F—0) (5.2)

If our datasets are normalized to zero output mean y = 0, then we have SMSE =

MSE __ 1 . F)2
NMSE ~ o2+, (i = (%)) 7)-

Chapter 5. Empirical Comparison Setup 40

Mean Standardized Log Loss To include the predictive variances in error assess-
ment we can look at the negative log likelihood of y, given the training and test
data and the Gaussian noise assumption (we use negative likelihood to obtain a

loss, as higher likelihood indicates a better fit so smaller error/loss):

-~ F(x.))>

. (5.3)

1
—log p(y«|D,x,) = Elog(chﬁ) +

Again, we want to normalize this quantity. This time our trivial prediction

method is to use the mean training output value as the constant mean prediction,
2

and training output variance Oy,

as the predictive variance (we use the same
values for each test prediction). This model would give the following Mean Log

Loss:

(== 3)%)
262

train
Ofost + (F—¥3)?

2)
2Gtmin

1
NMLL = ~log (2n62 i) +

1
= 5 1Og (2chl2rain) + (54)

where 5.4 follows similarly to 5.2. We can use this loss as a normalizing con-
stant; the Mean Standardized Log Loss compares the actual loss under the model

to this trivial model’s loss. If the training variance is 1 and training mean 0, then

MSLL has the simple form
MSLL = —(logp(y«,ldata,x,)) — NMLL
1 o f Xx,i 2 O + 12
— 5<10g (Gii) + (y) Gé())) > . (test 5 ‘utest). (55)

*,1

5.3 Time Measures

Chapter 2 suggests that there are several distinct time measures of GPR that one might
care about. First of all, we might have a limited budget of time altogether, in which
case the hyperparameter training time will be of most concern. To train the hy-
perparameters, one will typically run a gradient descent algorithm on the negative log
likelihood of the model; each computation of this likelihood will take O(N?) time
(Chapter 2 gives more details on this and other theoretical properties of GP mentioned
in this section). In addition, it could be beneficial to optimize the hyperparameters sev-
eral times starting from different initial values to avoid bad local minima. If we have

enough time available for the hyperparameters to be of no serious concern, computing

Chapter 5. Empirical Comparison Setup 41

the parameters- that is, inverting the covariance matrix- will not pose a challenge, as
this training time is roughly as long as one iteration of likelihood-optimizing gradient

descent.

However, one might also imagine a situation where fast online predictions must be
made, that is the test time needs to be short, while the training time budget is of
less concern (online exploration in the bandit setting comes to mind, see Srinivas et al.
[2010] for theory). The test time scales differently than the training time, taking O(N?)

for computing the predictive variances if the relevant Cholesky factor is precomputed.

Taking this into account, we decided to look at the hyperparameter training times
and test times per test point of the approximation algorithms. As parameter training
times are roughly proportional to hyperparameter training times, they don’t introduce

any additional useful information for the purposes of inter-algorithm comparison.

5.4 Theory vs. Practice

As explained above, we decided to base our comparison on hyperparameter train-
ing/test time vs. SMSE/MSLL graphs. Chapter 4 notes that the practical runtimes
of approximations can differ significantly, even if they are asymptotically the same;
hence we feel that using actual runtimes as a basis for comparison makes sense. All

our tests are run on the same machine, and force Matlab to use only one CPU core.

One might argue that it is never clear if the approximations are implemented as effi-
ciently as possible. Indeed, it is conceivable that our comparison is unfair in that we
use a much less efficient implementation of for example FITC than IFGT. However,
all of SoD, Local GP and FITC implementations we look at are written in Matlab;
while IFGT is uses C++ modules, we will see that it is not a competitive algorithm
anyway. Since SoD, Local GP and FITC all use common base code from the GPML
package, we might say with some confidence that our comparison framework is not

terribly biased.

Chapter 6

Results

This chapter presents the main results of our work: time-performance plots comparing
the different approximation methods on several datasets. Section 6.1 treats the IFGT
approximation separately, as it turned out it is not feasible to use it on most datasets —
it isn’t amenable to our comparison methods. Section 6.2 looks at how the approxima-
tions behave when we vary their complexity parameter m (inducing set size or cluster
size). This will help us choose the best variant of each method (for example, which
clustering method is best suited for use with Local GP on SARCOS). We can also ex-
pect that looking at this m-dependent behavior can help us understand the results of
Section 6.3, which discusses the time-performance plots of the approximations. This
section presents the most important practical result in this dissertation. Finally, Sec-
tion 6.4 discusses the significance and consequences of our findings and concludes

with recommendations on which approximations to use depending on the situation.

Occasionally we refer to hyperparameter tables in this chapter. These can be found
in Appendix A. The Appendix shows mean hyperparameter values (lengthscales for
each dimension, noise variance, signal amplitude) estimated by each algorithm on each
dataset in our experiments, with standard errors also shown. We don’t comment on
every table explicitly in this thesis; we decided to provide the full tables as they can
potentially contain interesting information that we never use in our analysis of the

algorithms.

42

Chapter 6. Results 43

6.1 Problems with IFGT

As Tain Murray suggested in Murray [2009], it is not clear whether IFGT can be of
use in practical hyperparameter regimes. In particular, the method is likely to bring
speedups only for impractically long data lengthscales, with useful bandwidths scaling
as v/d with data dimensionality. We wanted to check if indeed the method cannot give
speedups on our datasets. To do this, we use IFGT to multiply the Squared Exponential
covariance matrix on randomly chosen 5000 training points with a 5000 element vector
of random 1i.i.d. elements (sampled from U|0, 1]), for each of the four datasets. Figure
6.1 shows that the method is practical only for the 2D SYNTH?2 data. Already for 15d
CHEM, the bandwidth of the data would have to be of the order of 100 for IFGT to be
of use. We don’t know the real hyperparameters of the data, but estimating these with

the other methods strongly suggests much shorter lengthscales (on the order of 1).

We tried running GPR using IFGT with progressively more inexact MVM’s on SYNTH?2.
We have found that it was difficult for the algorithm to converge. Because of this we
stopped the run after 1000 iterations. We also wanted to check whether any iterative
method could possibly be useful on more serious data, like SYNTHS. Figure 6.1 shows
that IFGT offers no speedups for SYNTHS, hence we used exact MVM with Conju-
gate Gradient. The advantage of this method over standard GP is that it does not keep
the whole covariance matrix in memory, so CG — in theory — allows one to perform
exact GP regression notwithstanding the size of the problem, given unlimited compu-
tation time budget. Because of time constraints we stopped the algorithm after 10000
iterations. In both cases (SYNTH2 and SYNTHS) we set the hyperparameters to their
exact correct values. We did not compute the predictive variances (Section 4.2 explains
why this would be difficult). Our results are presented in Table 6.1. The table shows
that the MVM methods can give reasonable SMSE values on low dimensional data. In
addition, compared to the other methods analyzed in the reminder of this chapter the
truncated CG approximation gave the best MSE on SYNTHS. However, the result is
of little practical importance as it took over five days to run the algorithm, with pre-set

hyperparameters.

Chapter 6. Results 44

10 10
2 2
o o
el 0 W(-)(-x D 0
% 10 - o % 10
o xQ o
g = N g, 2
=10 D00 =10 -
= —*— Exact Matlab 3(--%-__)(= —*— Exact Matlab =X
= -*=IFGT = -*=IFGT
4| e Auto 4| e Auto
10 ‘ : 10
5 0 5 5 0 5
10 10 10 10 10 10
Characteristic bandwidth Characteristic bandwidth
(a) SYNTH2 (b) SYNTHS
2 2
10 10
=) (o} =)
% 10 \‘ % 10
o ¥ o
0@ -2
£ 10 %o x £ 10
= —*— Exact Matlab E —*— Exact Matlab
= - -
2 IFGT 2 IFGT
4| e Auto 4| e Auto
10 ‘ : 10
5 0 5 -5 0 5
10 10 10 10 10 10
Characteristic bandwidth Characteristic bandwidth
(c) CHEM (d) SARCOS

Figure 6.1: IFGT used for fast matrix vector multiplication at different bandwidths. In all
plots, both axes are logarithmic. In each case we chose 5000 points from the dataset at
random and multiplied the Squared Exponential covariance matrix on these points with
a random (uniform on [0, 1]°°%%) vector v. We used three MVM methods on all sets:
Exact Matlab where the whole matrix was stored in memory and multiplied by v using
Matlab matrix multiplication (the complexity of which is, as expected, independent of
data dimensionality), IFGT where the Improved Fast Gauss Transform was used and
Auto which was proposed by Raykar and Duraiswami [2007] as a way to speed up the
IFGT MVM in some regimes. The plots show no difference between the latter two, apart
from a small constant overhead. The plots seem to confirm that IFGT can only be useful

in low dimension or at large lengthscales.

Chapter 6. Results 45

Dataset SYNTH2 SYNTHS

MSE 0.2346 0.1845
Time [s] 12396 (approx. 4 hours) 434420 (approx. 5 days)

Table 6.1: GP using CG. For SYNTHZ2, we used IFGT for approximate MVM. The Conju-
gate Gradients algorithm had difficulties converging. For SYNTH8 we used exact MVM
but stopped CG after 10,000 iterations.

6.2 SoD, Local GP and FITC: performance as a function

of m

This section examines the approximations’ behavior as we vary their complexity, con-
trolled by a parameter we call m in each case. We later use these results to choose
particular implementations of the algorithms for the time-wise comparison in Section
6.3. Note: in all the plots shown in this section the x-axis uses the log scale. In all
the SMSE plots, the y-axis also uses the log scale, but all the MSLL plots have linear

y-axes.

6.2.1 Best expected performance

SYNTH2 and SYNTHS are datasets created from Gaussian Processes with known hy-
perparmaters. Because we know the data noise levels G,%, we can calculate the best
possible expected performance of any regression method on these data. As explained
in Chapter 2, GP Regression predicts the value f (x,) of a function f on a test point
X.. We measure approximation error by comparing these estimates to test outputs y,;
where y, = f(x.) + A[(0,062) if we assume Gaussian observation noise (which we do
in GPR). Thus even if our regression method knows exactly what the function f is (so

that f(x,) = f(x.)) and reduces predictive variances to noise levels 6> = 62, we still

Chapter 6. Results 46

expect the errors to be nonzero:

1 N
SMSEpy = ———5—{(yui— F(x:))?
“ Gtzest+ﬂzzest< o o >

1
= —5——5((f(x) + N(0,0,) — f(x+0))?
Gtzest +nul26st < >
1
= —5——5((N(0,5,))
Gtzest +:utzest < >
2
(0}
= "5, (6.1)
Gtzest +:utzest

1
MSLLbest - 5 <10g (Gii) +

1 2 ca (Gtz t+‘ut2 t)

n

(y*ﬂ' - f(X*J))Z > B (Gtzest +:utzest)

2
G*,i 2

2 2 '

Above, we derive Equation 6.2 using Equation 6.1 to reduce the squared-error factor

in the log loss.

Thus we expect any method to yield Standardized Mean Squared Errors proportional
to the noise variance at best, and Mean Squared Log Loss proportional to the log of
noise variance. In the approximation performance figures below we computed these
baseline values for SYNTH2 and SYNTHS and note them in relevant figure captions

for comparison with actual method performances.

6.2.2 SoD

As explained in Chapter 3, running the SoD approximation requires choosing a method
to pick a data subset representative of the full dataset; we experimented with choosing
the subset using the Farthest Point Clustering algorithm and at random. We varied
the subset size to be m = 2,4,...,4096,6000 (using m = 8192 was problematic due
to memory and time constraints, but we did run this test in several particularly inter-
esting cases) and repeated the experiments five times for each inducing points choice
method (standard error bars are shown in the plots). We only report results for m > 128

as the error bars for smaller m were very large. The description of each algorithm’s

Chapter 6. Results 47

performance on each dataset is accompanied by pointers to tables showing the hyper-
parameters the method estimated on this dataset. We found the following facts useful

in understanding SoD’s behavior.

SYNTH2 (Tables A.1, A.2) As will be the case for all other methods, SYNTH2 was
an easy dataset to learn. The tables show that the hyperparameters are learned
almost perfectly, with very little variance over the trials. The plots in Figure
6.3 show a steadily falling learning curve for both Random dataset selection and
the FPC algorithm. The MSLL performance saturates after using 256 induc-
ing points, which constitutes 1_é8 of all data available. Note that Random never

reaches FPC’s MSE level. This behavior was already explained in Figure 3.3.

SYNTHS (Tables A.3, A.4) This eight-dimensional dataset is very difficult to learn.
Table A.3 shows that the hyperparameter estimation is possible with 256 in-
ducing points already, but MSE and MSLL are far from optimal. In this case
Random does slightly better than FPC at estimating the hyperparameters and
gives slightly smaller errors. Figure 3.3 suggests that this is because in high
dimensions FPC places too many points on the exterior of the sample distribu-
tion. As in SYNTH2 experiments, the learning curves have negative slopes as

expected, but this time error reduction is much slower.

CHEM (Tables A.5, A.6) The CHEM dataset (Figure 6.5) behaves similarly to SYNTHS8
in that Random does better than FPC clustering for most of the time. This sug-
gests that there is no structure in the inputs that would make using FPC benefi-
cial. Thus Random does better, as it simply places more inducing points in the

denser data regions with high probability.

SARCOS (Tables A.7, A.8) For SARCOS FPC gives better results than Random clus-
tering (Figure 6.6). Similar behavior is encountered when Local GP algorithm
is used. In Section 5.1 we saw that there are strong indicators that SARCOS
inputs are not sampled uniformly, but rather have a strong structure that can be
well used by the GP approximations. As expected, FPC recognizes this structure

better than random subset choice.

Chapter 6. Results 48

6.2.3 FITC

In FITC we can vary the number of inducing points m, which we try to choose using
FPC or randomly, similarly to choosing SoD’s active set. We varied the number of
inducing points to be m = 8,16,...,512. FITC is much more memory-intensive than
SoD (see Table 4.1), so it was impossible to continue experiments with larger m. We

repeated each experiment five times, and report standard error bars.

SYNTH?2 (Tables A.9, A.10) FITC’s performance on SYNTH2 reaches good values
quickly, as expected (Figure 6.7). Note that the plots show decreasing perfor-
mance for largest m. This is because of numerical instability present in FITC—
discussed in Section 6.3.1 below. Ignoring the instability, randomly chosen in-
ducing points yield worse results than FPC-chosen inducing points. We suggest
that the reason is the same as in the case of SoD choice - Figure 3.3 shows that
FPC places the inducing points densely in a regular pattern throughout the input

space, while Random fails to do so.

SYNTHS (Tables A.11, A.12) Also similarly to the SoD case we find that SYNTHS is
a difficult dataset (Figure 6.8). The learning curves decrease very slowly. An
examination of the numerical values of the results shows that, as with SoD, FPC
does slightly worse than Random in this case, but the difference is negligible.
More interestingly, FITC estimates the SYNTHS8 hyperparameter lengthscales
to be slightly larger than the real values, and the noise levels are severely under-
estimated (both FITC-FPC and FITC-Random estimate the noise to be around
exp (—3) = 0.05 while SYNTHS has noise with 62 = 0.001). Because the ex-
periments were repeated five times with random seeds and the hyperparameter
variances over those runs are relatively small, it is unlikely that they result from
a local minimum. In fact, we confirmed experimentally that using FITC with
the true hyperparameters gives slightly worse SMSE and MSLL than using the
estimated hypers. We were unable to fully explain this phenomenon. However,
it is a useful reminder that different approximation might have different optimal
hyperparameters, and thus for example using the SoD method to optimize the

hypers to then be used with another algorithm is not always the best idea.

CHEM (Tables A.13, A.14) Figure 6.9, showing FITC’s performance on CHEM, again
is very similar to Figure 6.5 which shows the performance of SoD on CHEM.

Notably, Randomly chosen inducing points give better results for most m but for

Chapter 6. Results 49

the largest values FPC seems to start outperforming the simpler method SMSE-

wise.

SARCOS (Tables A.15, A.16) FITC’s performance on SARCOS, shown in Figure 6.10,

is also similar to that of SoD.

6.2.4 Local GP

Note on the experiments: Local GP as we implement it has four basic variants
(RRC+Joint, RRC+Separate, RPC+Joint, RPC+Separate). Unfortunately, we did not
manage to perform the full set of five experiment repetitions for each variant, as we did
for all other methods; the full Local GP experiment set is still in progress. In the plots
below we are able to present results from only one experiment per each variant of Lo-
cal GP, hence any conclusions we reach are not very reliable; however, an overall trend
can often be spotted, in particular when comparing Local GP with other methods later
in Section 6.3. In addition, the full experiment set on SYNTH?2 is already completed

and the results are qualitatively no different from these presented below.

To use the Local GP approximations one must choose a clustering method. We fo-
cused on two simple alternatives, Recursive Projection Clustering (RPC) and Random
Recursive Clustering (RRC), as described in Section 3.5. The results reported in this
section suggest that there is no clearly visible difference between these algorithm’s
performance. However, choosing the hyperparameter optimization method to be either
joint or separate (Section 3.2 explains this distinction) turns out to be a potentially sig-

nificant choice. In each experiment, we varied cluster size to be m = 32,64, ...,4096.

SYNTH?2 (Tables A.17 - A.20) Local GP learns SYNTH2 easily (Figure 6.11), already
for small clusters of size 32. In one case, the RRC+separate, the algorithm re-
turns unreasonable solutions MSLL-wise for both for SYNTH2 and SYNTHS.
This is very likely due to the fact that RRC tends to estimate clusters of size
smaller than the fixed upper bound (more so than RPC), and the separate hy-
perparameter estimation method is unlikely to be able to estimate reasonable
hyperparameters in such small clusters. The hyperparameter tables confirm this
explanation; in Tables A.17, A.18 (SYNTH2, Local with joint estimation) and
A.21, A.22 (SYNTHS, Local with joint estimation) the hyperparameters are

estimated almost perfectly even for clusters of size 32. On the contrary, the

Chapter 6. Results 50

“RPC+separate” Tables A.19 (SYNTH2) and A.23 show some misestimation of
the hypers, while “RRC+separate” Tables A.20 (SYNTH2) and A.24 show hy-

pers severely misestimated on average, with huge variances between the clusters.

SYNTHS (Tables A.21 - A.24) Similarly to the SoD case we find that SYNTHS is a
difficult dataset (Figure 6.12). The learning curves decrease very slowly. Again,
joint hyperparameter training works better with this dataset (see the explanation
for SYNTH2’s behavior above).

CHEM (Tables A.25 - A.28) Figure 6.13 shows that for CHEM separate hyperparame-
ter training works better (MSLL-wise) than joint training when the clusters reach
sizes above 256. This is probably because the dataset is taken from real world
data; Local GP with separate hyperparameter training can handle nonstationary
and highly nonlinear data easier than less localized methods. The performance
difference is not visible when we look at the SMSEs. More trials might be nec-

essary to understand the behavior of Local GP on CHEM properly.

SARCOS (Tables A.29 - A.32) Local GP performs very well on SARCOS, indepen-
dent on cluster size (Figure 6.14). This agrees with the experiments conducted
by Ed Snelson in his PhD thesis (Snelson [2001], Section 3.3.2) where it is re-
marked that the Local approximation, using only small block sizes, can achieve
an extremely low MSE and MSLL. In our figure the joint hyperparameter train-
ing method beats separate optimization by far in the small clusters regime. This
can happen for example if the dataset is highly nonsmooth so that it does not have
a SE-ARD-GP-like structure (so it’s hard to approximate with ordinary GP); but
locally it is well approximated by smooth surfaces. If in addition these surfaces
are sampled with similar noise levels, Local GP with small clusters and joint
hyperparameters becomes local linear regression, and can learn the data well.
Figure 6.2 shows that indeed SARCOS has traits of such a dataset. Tables A.29
and A.30 show that Local GP estimates SARCOS’s hyperparameters to be very
similar for all cluster sizes under joint estimation; but the same is not true for
Local on CHEM, Tables A.26 and A.25. We were not able to fully understand
this result, and we would like to look more experiment runs before drawing any
definite conclusions about Local GP’s behavior on SARCOS.

Chapter 6. Results 51

Output variances in RPC Output variances in RRC
= 15 = 15
2 2
E 5 E !
3 » 3
° i R / ° W /
2 TOHT Lt M Seeagss
£ : c .
c 05 l , 0.5 | |
gL [| g 0] |
© X © K
2 0 /I ——SARCOS 2 0 ——SARCOS
Q L o L
g CHEM = CHEM
E —S—SYNTHS E —S—SYNTHS
> -05 : : : : > -05 : : : :
32 128 512 2048 35000 32 128 512 2048 35000
Points per cluster (approximate) Points per cluster (approximate)

Figure 6.2: Variances of the outputs for clustered datasets. For each dataset, the train-
ing points x1, ..., X, were clustered into m clusters cy,...,c;,. For each cluster, the vari-
ance of the test outputs associated with all the points in the cluster was computed. The
plotted values are mean variances over all clusters (one standard deviation is shown).
As usual, each dataset’s training outputs are normalized to have unit variance. The
plots show that SARCOS’s clusters have relatively very low output variances, which
might explain why Local GP gives good results on this dataset when tiny clusters with
large lengthscales are used— in which case the algorithm approximates local linear re-

gression.

Chapter 6. Results

52

2
. 10 +
-5.9¢ \\\ FPC E\\\\E ——FPG
* o -3 --==-Rand
\ Random 10"} F. andom
61 oy
g = 107 b
6.3 @ \ff
5 K
10 +
6.5 T
128 512 2048 6000 128 512 2048 6000
SoD size SoD size

Figure 6.3: SoD: MSLLs and SMSEs for SYNTH2. The best expected possible per-

formance, calculated according to Equations 6.1 and 6.2, is SMSEp.;; = 9.96 X 1077,

MSLLy,y = —6.9095.

MSLL

-0.8;| 7 FFC :
-7==-Random 55\ 08
' ‘ ‘ = 10
128 512 2048 6000
SoD size

——FPG =
-—<-- Random 5‘6\
128 512 2048 6000

SoD size

Figure 6.4: SoD: MSLLs and SMSEs for SYNTH8. The best expected possible
performance, calculated according to Equations 6.1 and 6.2, is SMSE}.,; = 0.001,

MSLLpss = —3.449.

Chapter 6. Results

MSLL

MSLL

MSLL

o PO Sy
‘I‘*" Random | | :'_‘\:F
128 512 2048 6000
SoD size

——FPC
~~*=-Random

128 512 2048

SoD size

Figure 6.5: SoD: MSLLs and SMSEs for CHEM.

——FPC
-~¢=-Random

247

128 512 2048

SoD size

6000

SMSE

0.1

0.05

0.025

——FPC
-~~~ Random

0.0125

6000

2048

128 512

SoD size

Figure 6.6: SoD: MSLLs and SMSEs for SARCOS.

At
2t
3t
4}
5t
——FPG
-6[| -==-- Random

8 32 128
Number of inducing points

512

6000

-1
10 ¢
-2
10 ¢ .
N,
-3
10]
-4
10
5l ——FPGC
10 | --=--Random
8 32 128 512

Number of inducing points

53

Figure 6.7: FITC: MSLLs and SMSEs for SYNTH2. The best expected possible per-
formance, calculated according to Equations 6.1 and 6.2, is SMSEp.; = 9.96 X 1077,
MSLLp,; = —6.9095.

Chapter 6. Results

MSLL

-0.05¢

-0.15¢

-0.25¢

-0.35¢

——FPC
==¢=-Random \a:
8 32 128 512

Number of inducing points

SMSE

0.9

0.75

0.625

0.5208

54
——FPC \
--<-- Random =
8 32 128 512

Number of inducing points

Figure 6.8: FITC: MSLLs and SMSEs for SYNTH8. The best expected possible
performance, calculated according to Equations 6.1 and 6.2, is SMSEj.;; = 0.001,
MSLLy.s; = —3.449.

MSLL

MSLL

SMSE

0.8

0.5333

0.3556

0.237

——FPC
-=¢=-Random

8 32 128
Number of inducing points

512

Figure 6.9: FITC: MSLLs and SMSEs for CHEM.

-0.3
-0.6
-0.9¢
| ——FPG N
1.2 Random \\
T L L b 4
8 32 128 512
Number of inducing points
-1.3}
-1.5¢
-1.7¢
——FPG
-1.9¢| -==--Random
8 32 128 512

Number of inducing points

0.12}

0.0757

0.0293(

——FPC
====-Random

8 32 128
Number of inducing points

512

Figure 6.10: FITC: MSLLs and SMSEs for SARCOS.

Chapter 6. Results 55

-6.2;

—*— RRC-sep
—*--RRGC-joint
I —6— RPC-sep
6.3 X, ~0- RPC-joint
—
—
D)
= 6.4/
8 -*--RRC-joint
65! 10 ;| —® RPC-sep
-@--RPC-joint
32 128 512 2048 32 128 512 2048
Points per cluster (approximate) Points per cluster (approximate)

Figure 6.11: Local: MSLLs and SMSEs for SYNTH2. The best expected possible
performance, calculated according to Equations 6.1 and 6.2, is SMSE}.;; = 9.96 x
1077, MSLLpe; = —6.9095.

1
J_ —*— RRC-sep 10'0'2 I —*— RRC-sep
| X | -*— RRG-joint --*—- RRC-joint
0.5 —©— RPGC-sep —©—RPC-sep
--0--RPG-joint = --@--RPG-joint
= ol %J 10-0.4 Sy
7 I
2 7
0.518=ma, B |
0.6
10 |
-1 . ‘ ‘ ‘ ‘ >
32 128 512 2048 32 128 512 2048
Points per cluster (approximate) Points per cluster (approximate)

Figure 6.12: Local: MSLLs and SMSEs for SYNTH8. The best expected possible

performance, calculated according to Equations 6.1 and 6.2, is SMSEj.; = 0.001,
MSLLy,o = —3.449.

Chapter 6. Results 56

0.4/ —*— RRC-sep
—*-—-RRC-joint
—9— RPC-sep
0.2} --0--RPC-joint
- %)
2 &
017
-~ RRC-joint
-4| —° RPG-sep
--e-- RPC-joint ‘ , 0.05) ‘ ‘ ‘
32 128 512 2048 32 128 512 2048
Points per cluster (approximate) Points per cluster (approximate)

Figure 6.13: Local: MSLLs and SMSEs for CHEM.

—>*— RRC-sep
—*~— RRG-joint 0.04+
-1.5] —©—RPG-sep
-©--RPG-joint
- L
@ -2 2
= n 0.02¢
P
25 - . %~ RRC-joint
//%’ —&—RPC-sep
) . ‘ 0.01 % ‘ -6 RPG-oint
32 128 512 2048 32 128 512 2048
Points per cluster (approximate) Points per cluster (approximate)

Figure 6.14: Local: MSLLs and SMSEs for SARCOS.

Chapter 6. Results 57

6.3 SoD, Local GP and FITC: time-wise comparison

As explained in Chapter 5, we designed experiments showing how much time is needed
to achieve given performances using the different approximations. The results pre-
sented in Section 6.2 helped us to choose which method variants to use. Table 6.2 lists
those variants and briefly comments on the possible reason for why the choice yields
best results.We tested the methods on the four datasets SYNTH2, SYNTHS, CHEM
and SARCOS. The number of trials per each experiment and various ms we use are as
described in Section 6.2 above. (Note again that the results for Local GP are not very

reliable as only one trial was conducted for each variant of the method).

SoD

Local

FITC

SYNTH2

SYNTHS

CHEM

SARCOS

FPC fills 2D

densely and regularly.

space

Random focuses on
the center of Gaussian
sampled data.

Random finds denser
regions in high di-
mensional data with
little structure.

FPC places inducing
points in interesting
regions of structured

input space.

Joint fits data drawn
from a GP.
Joint fits data drawn
from a GP.

Separate fits nonsta-

tionary data.

Joint possibly fits

data well approxi-
mated by local linear

regression.

FPC (as for SoD)

Random (as for SoD)

Random (as for SoD)

FPC (as for SoD)

Table 6.2: Our choices of approximation flavors that give best performance on different
datasets. Joint and Separate are two different ways of estimating hyperparameters in
Local GP (the clusters can share the hyperparameters or use separate hypers); FPC
and Random are two methods of choosing inducing points either as centers of Farthest
Point Clustering clusters or at random (the table suggests that this choice has similar
consequences for SoD and FPC). Two clustering methods we tested with Local GP

(RRC and RPC) yielded very similar results, hence we don’t mention them in the table.

Chapter 6. Results 58

6.3.1 SYNTH2

Figure 6.15 shows performance of the different algorithms on SYNTH2. SoD, the sim-
plest method, saturates in performance quickly, and is definitely the best method when
hyperparameter training time is important, in which case it achieves stable, good
SMSE and MSLL values quickly. Note that in Figures 6.15(a) and 6.15(b) SoD’s per-
formance is not a function of time in the mathematical sense. This is because for small
inducing point numbers (less than 100) the computational costs are defined by non-
asymptotic factors, as Figure 4.1 exemplified. For similar reasons Local GP’s SMSE
curves are not functions of time. In the case of SYNTH?2, for smaller clusters Local
GP’s performance was falling, but runtimes were growing; we exclude these datapoints
from our plots but keep them in mind for later analysis. In the test time plots, FITC and
Local GP do better than SoD. Note a significant and unexpected rise of FITC’s MSLL
at the last time point in Figures 6.15(c) and 6.15(d). This is due to a numerical insta-
bility in the algorithm. After its performance saturates, FITC has problems calculating
log likelihood derivatives. Rasmussen and Nickisch were working on this problem in
the newest GPML version (see Rasmussen and Nickisch [2010]); we have also looked
at the issue but we don’t see it as crucial for our work, as the algorithms will be unable

to saturate in most non-trivial situations (such as on all the other datasets).

Chapter 6. Results

10
SaD
FITC
N Local
10
w I
-2 "
240t -
=]
10 E y
113
I[Fofp
-6
10 , . ,
i} z 4
10 10 10
Hyperparameter training time [sec]
(a)
or
SoD
FITC
onN |- Local
I
1
2 “1
— -
- B
o 3
=
-4F 1
. a
6 3 .
e L =
-8
0 2 4
10 10 10

Hyperparameter training time [sec]

(©

59

SMSE
S

Test time [sec]

(b)

MSLL

B -5 -4
10 10 10 10
Test time [sec]

(d)

Figure 6.15: Time-performance plots for GP approximations running on SYNTH2 data.

The best expected possible performance, calculated according to Equations 6.1 and
6.2, is SMSEpes; = 9.96 x 1077, MSLLyp5 = —6.9095.

Chapter 6. Results 60

6.3.2 SYNTHS8

Figure 6.16 shows that the algorithms have much trouble working with this dataset; the
error curves are very flat, indicating slow convergence to the true solution. However,
the overall trends are similar: SoD gives relatively good results quickest when the
hyperparameter estimation times are taken into account, while FITC and Local work
better with test times. Note that Local GP’s errors are smaller than those of the other
methods; however, because of the non-monotone time behavior of the method it never

runs quickly enough to compare with FITC or SoD in the short time ranges.

w w
%] 7]
= =
7] 0
-0.4 -0.4
10 10
-0.7 -0.7
10 10
) 1 z 3 4 -6 -5 -4 -3
10 10 10 10 10 10 10 10 10
Hyperparameter training time [sec] Test time [sec]
(a) (b)
5r 5r
4r 4r
3r 3r
27 o2
- —
(72} %]
= =R
or or =—
AT -1r
-2 -2
[t} 1 2 3 4 -6 -5 -4 -3
10 10 10 10 10 10 10 10 10
Hyperparameter training time [sec] Test time [sec]
(©) (d)

Figure 6.16: Time-performance plots for GP approximations running on SYNTHS8 data.
The best expected possible performance is shown as a gray constant line. The best
expected possible performance, calculated according to Equations 6.1 and 6.2, is
SMSEp. = 0.001, MSLLp,s; = —3.449.

Chapter 6. Results 61

6.3.3 CHEM

CHEM’s plots (Figure 6.17) show trends similar to those seen on SYNTHS. Again,
SoD does best on training, while FITC and Local GP are more useful during the
testing phase. Local GP seems particularly promising given its test-time SMSEs, but
we see that for small clusters the MNLP variance is huge, and hence the result is not

reliable.

i
o 0.3
=
]

o1r
1 2 3 4 -5 -g -3
10 10 10 10 10 10 10
Hyperparameter training time [sec] Test time [sec]
(a) (b)

MSLL
MSLL

1 2 3 4 -5 -g -3
10 10 10 10 10 10 10
Hyperparameter training time [sec] Test time [sec]
(© (d)

Figure 6.17: Time-performance plots for GP approximations running on CHEM data.

6.3.4 SARCOS

SARCOS was perhaps the most interesting dataset to look at. Figure 6.18 shows no

surprises in that again SoD is good in hyperparameter training and FITC/Local do bet-

Chapter 6. Results 62

ter in the test phase. The thing to note is that this time Local GP’s performance is better
with smaller cluster sizes (see Section 6.2 for more discussion on this). Unfortunately,
as we already noted, smaller cluster sizes can require growing resources with Local

GP, hence the odd-looking performance curves.

i

007

I
W w
2 2
7] »n 0.04
0.02
1 4 3 4 -6 -5 -4 -3
10 10 10 10 10 10 10 10
Hyperparameter training time [sec] Test time [sec]
(a) (b)
-1r
4 o 5=
- —
(%) 72} =
= =
25
I{I{"“f"{“w
25k | ‘
1 z 3 4 -B -5 -4 -3
10 10 10 10 10 10 10 10
Hyperparameter training time [sec] Test time [sec]
(©) (d)

Figure 6.18: Time-performance plots for GP approximations running on SARCOS data.

6.4 Recommendations

The experimental results presented in Sections 6.1, 6.2 and 6.3 allow us to draw con-
clusions as to which method is best used, depending on the situation. The conclusions
presented in this section sum up the whole of the results and analysis presented in this

dissertation, and so it is difficult to provide pointers to specific sections under each

Chapter 6. Results 63

claim. We hope that our recommendations follow clearly from the discussion in the
three experimental results sections bove, which do provide references to specific evi-

dence whenever appropriate. Table 6.3 attempts to sum up our results telegraphically.

6.4.1 Recommendations by computational budget constraint

If a particular computational resource is limited, it appears clearly that some methods
are much better choices for GP regression than others. The list below sums up our

findings in this context.

Test times If a limited test time budget is available but we can afford long and accu-
rate hyperparameter training, then FITC or Local GP are likely to be the best
choice. If the time budget is very limited, FITC allows for the fastest training
with reasonable accuracy. However, at slightly larger test times Local outper-

forms FITC: it is slower but can be much more accurate.

Training times In some cases, only a limited amount of time might be available for
hyperparameter training. All the approximations seem to allow for reasonable
training times (the longest we had to wait was about 12 hours for training Lo-
cal GP with clusters of size 4096 points). However, if care is not taken when
choosing an approximation, there do exist potential pitfalls (consider IFGT’s hy-
perparameter optimization times, Section 4.2.2). In sum, in great majority of
cases in our experiments we see a similar behavior: Local GP gives best results
if one can afford long hyperparameter training time. If only limited training time

is available, it seems clear that SoD should be the approximation of choice.

Storage Space Limited storage space (mobile applications with limited available mem-
ory come to mind) can render potentially interesting approximations useless.
While we don’t provide explicit memory usage vs. performance plots, under-
standing the methods’ space usage is much more straightforward than looking
at their runtime. One might try to optimize for small constant factors, but FITC
will always need to store an m X N covariance matrix in memory. Local GP is
more flexible: first of all, if the test inputs are known on training, one only needs
to keep one local m x m covariance matrix at a time. This suggests that if the
test time is of no concern at all, one can simply wait with training the hyperpa-

rameters till the test points are known. If they arrive in an on-line fashion but

Chapter 6. Results 64

at long intervals, one could re-compute the appropriate local covariance matrix
each time a test point arrives and thus keep the m x m space complexity while
retaining Local GP’s performance - but this requires using the separate hyperpa-
rameter training approach, which yields worse performances with small cluster
sizes. In the end, we can always simply use the Subset of Data method which
always keeps only O(m x m) values in memory and, as we already mentioned,
gives reasonable performances if training time is of concern anyway. In addition,
in the Future Work Section 7.3 we mention a possible extension to FITC that can

make it more useful in limited space regimes.

Above we suggest that SoD does better than FITC training-time-wise, but worse test-
time-wise. Why is that? It turns out that the gap between the amount of computation
FITC and SoD need to do once the model is trained is much smaller than the gap
between the amount of computation FITC and SoD need to do on training. This is
because computing the derivatives of log likelihood under FITC is particularly com-
plicated (Snelson [2001] Appendix C derives the relevant derivatives), much more so
than computing FITC predictive distribution once the hyperparameters are fixed. For
both SoD and Local GP, hyperparameter training is not that much more complex than

prediction.

6.4.2 Recommendations by dataset type

We might be less concerned with specific computational constraints, but simply re-
quire getting as good results as possible in reasonable time and using feasible space.
Section 6.1 shows that again, IFGT is probably not a good choice in any nontrivial
case. However, the other approximations can apply with varying efficiency to different
problems. This section gathers some observations we made regarding the algorithms’

performance on different data.

Input dimensionality The only method that seems to have significant problems with
growing dimensionality is IFGT. However, SoD and FITC are not immune to
the curse of dimensionality. This is because these methods base their prediction
on information flow between a set of inducing points, which are a small subset
of the full data. In high dimensions only the points at the center of the input
space can communicate efficiently with most other data; the points closer to the

edges will only be able to use exponentially less information with growing di-

Chapter 6. Results 65

mension. In case of Local GP the situation is less clear: on one hand, more local
information is retained under this approximation— and only local information is
actually important in very high dimensions. On the other hand, one would ex-
pect to experience even more of the “edge-effect”, that distracts FITC and SoD
from performing well, under this approximation, as Local GP creates clusters
with “edges” all throughout the space, not only on the outskirts of the input sam-
ples. The effect of dimensionality on Local GP seems to be an interesting, but

unanswered, question.

Input set structure As expected, if the input data are not structured (e.g. the SYNTH
datasets), it is better to use random methods for inducing points choice or clus-
tering. In particular, random methods tended to give better results on high di-
mensional datasets in our experiments. This makes sense as the lack of obvious
structure in the data would require the inducing points or the clusters to ideally
be placed in regular patterns in the input space, but in high dimensions this is
usually not feasible. If, on the other hand, we see much structure in the data,
using more sophisticated clustering/inducing point choice methods can point the
approximations at the relevant regions in the input space, improving their perfor-
mance. In addition, the Local approximation seems likely to use strong dataset

structure to achieve good results with little computational effort.

Chapter 6. Results

66

Desideratum Best approximation Notes

Short test and training Local GP Only if test data known in

times, small memory us- advance and Local imple-

age mented efficiently

Short test and training Local GP Test data need not be

times known in advance

Short test time, small Local GP Only if test data known in

memory usage advance; otherwise, SoD

Short test time FITC

Short training time, small SoD Consider Local GP if test

memory usage data known in advance

Short training time SoD

Small memory usage Local GP Recompute the local co-
variance matrices on each
new test point

Need best possible results Local GP Possibly consider

in feasible time

SoD/FITC, see Sec-
tion 7.2

Table 6.3: Our choices of approximation flavors that give best performance in different

situations. Local GP is particularly attractive when one can afford not storing all the

local covariance matrices (for example, when the test data is available on training time,

or when one can afford recomputing the local covariance matrix on each test point); it

often yields best results for mid- and high- range of the timescale. FITC provides good

results in short test times, but is slow to train and always requires more space than

SoD. SoD is relatively easy to train well. See also Table 6.2 which looks at the methods’

performance on different datasets.

Chapter 7

Conclusions and Future Work

We believe that our work shows that a practical comparison of algorithms is both use-
ful and interesting. Presenting asymptotic complexities is not enough to measure an
algorithm’s usefulness. A theoretical analysis can help understand where an algorithm
applies best, but looking at its performances in practice and in diverse contexts is im-
portant for a full appreciation of the algorithm’s behavior. This chapter sums up our
work in Section 7.1. Section 7.2 mentions several GP approximations which we did
not consider in our experiments and discusses whether our results can shed any light
on these methods’ usefulness. Section 7.3 talks about possible future directions of

research that would extend and clarify our conclusions.

7.1 Summary of completed work

We investigated the practical usefulness of several approximations to the GP regres-
sion algorithm, the theory behind which was explained in Chapter 2. The full algo-
rithm scales cubically in the number of training datapoints and requires storing a ma-
trix of dimension equal to the number of datapoints in memory. Chapter 3 presented
four proposed approximation algorithms: Subset of Data, Local GP, Fully Indepen-
dent Conditional and GP using Conjugate Gradients with approximate Matrix-Vector
Multiplication. These methods have different asymptotic runtimes and can behave
very differently in different contexts (varying datasets or computational constraints);
in particular, we showed that it is important to consider not only theoretical-asymptotic

properties of the algorithms, but also their practical properties in Chapter 4. We have

67

Chapter 7. Conclusions and Future Work 68

created a testing framework that visualizes the practical performance of the methods in
a clear and easy to interpret way; this framework is explained and justified in Chapter
5. Finally, Chapter 6 presented the results of our tests. In the same chapter we con-
sidered a spectrum of possible situations in which one might need to resort to using a
GP approximation algorithm and explain, based on our experimental findings, which

algorithm should work best in each case.

7.2 Other methods

There are several approximation algorithms we know of which we do not consider in
this dissertation. Two interesting algorithms that we feel are worth mentioning are
PITC and SSGP. In addition we shortly discuss an extension to Gaussian Process algo-
rithms called Warped GP.

7.2.1 Partially Independent Conditional

Introduced by Ed Snelson during his PhD research (Snelson [2001]), this approxima-
tion connects the ideas of FITC and Local GP. We saw that FITC approximates the full
GP by using the subset of regressors covariance matrix instead of the full covariance,
but with the full variances on the diagonal (see Chapter 3). Local GP, on the other
hand, approximates the GP by using only block diagonal elements of the full covari-
ance matrix and setting all the other elements to zero. PIC uses the subset of regressors
matrix like FITC, but places the block diagonal with full covariances like Local GP. It
turns out that asymptotically PIC training runtimes are as good as FITC, and we would
expect to be able to gain accuracy by using this interesting covariance. However, Snel-
son [2001] performed experiments similar to ours on FITC, PIC and Local GP, but on a
smaller range of interesting datasets and using pre-computed hyperparameters. These
restricted experiments show that the performance of PIC is very similar to that of Local
GP (Figure 7.1 reproduces the plots from Snelson [2001] that show this). In addition,
PIC requires larger fest times than FITC or Local GP.

Chapter 7. Conclusions and Future Work

MSE
b
5

o] .
o
A

W.ﬁl}#h—i— A

L
and .
0 o'
timefs

(a) SARCOS. MSE.

‘:l:

MSE
w

48

46

440

421

oo
2] 4 (=] o =]
T T T T

e

] o

+
ﬁhﬁﬁ # ﬁ_—d*f"’ Pty

L
10"
timels

(c) Abalone. MSE.

L
0

10

NLPD

NLFD

69

38

38-

34r-

32r-

3l
0
28f
[s]

26f o
24+ 0
2.2F St 4 + e+
sl - .

107" 10 10 o

tima's
(b) SARCOS. NLPD.

245

zaf
2350

z2af
2350

23f

L L

218 el gttt
2.1 a o o o
205F

ol

105

107

107" 10°
timefs

(d) 2balone. NLPD.

Figure 7.1: Comparison of FITC (blue circles), Local GP (red stars) and PIC (black

crosses), copied from Snelson [2001]. MSE is the unnormalized Mean Squared Error

and NLPD is the negative log predictive density, which is unnormalized version of our

MSLL. In these experiments PIC does marginally better than Local GP on the Abalone

dataset (see Snelson [2001] for more details on this data), and there is no significant

difference on SARCOS. Note that this figure confirms our results from Chapter 6, where

our experiments suggested that SARCOS is easier to learn with smaller clusters in Local

GP.

Chapter 7. Conclusions and Future Work 70

7.2.2 Sparse Spectrum Gaussian Processes

This is a relatively new method, introduced in Lazaro-Gredilla et al. [2010], after we
had been working on this project for a while. SSGP works with the spectral repre-
sentation of the Gaussian Process it approximates, and thus appears to be interestingly
different from the other algorithms we considered. Two characteristics of the method

that we notice immediately are:

e Efficient hyperparameter training methods (maximizing the marginal likelihood)
are developed in the introducing publications, and the algorithm can compute the

full predictive distribution, including the predictive variances.
e The method can only approximate stationary Gaussian Processes.

While the second point means that we can expect SSGP to be less flexible than for ex-
ample Local GP (which does surprisingly well on the difficult SARCOS data), the first
point means that the method can still be potentially useful and interesting to look at.
Lazaro-Gredilla et al. [2010] attempts to compare SSGP with FITC and another related
algorithm. Unfortunately, the reported results appear of little practical significance, as
the paper looks at the methods’ error performance as a function of the “number of basis
functions” - that is, it varies the complexity parameter of each method and reports the
results on a joint plot. We reproduce the plot in Figure 7.2; note that even though plots
appear to suggest that SSGP is better than the other methods, this conclusion does not
actually follow from the figure directly. Unfortunately, we did not manage to include

this method in our experiments on time.

7.2.3 Warped Gaussian Process

Warped GP, introduced in Snelson et al. [2004], is not an approximation method per
se. Instead, it warps the dataset — that is, puts the output values through a nonlinear
transformation — that makes it better modelled by a GP. This warping process could in
principle be applied in the preprocessing stage before any approximation is used, and
hence we do not include this algorithm in our comparison. Snelson et al. [2004] reports
good results of applying the algorithm on several relatively small datasets. The warping
step is automatized and so should not take much effort to use; it seems reasonable to
consider using this algorithm in the preprocessing of the data to get best results with

any GP algorithm.

Chapter 7. Conclusions and Future Work 71

—&=—FITC
- % -SMGP
—© - SSGP fixed spectral points
: 1 | —F—SSGP

L] S ...l = = —Full GP on 10000 data points |4

Normalized Mean Squared Error
Mean Negative Log—Probability

- @ - SSGP fixed spectral points

oot ¥ SSGP
) — — = Full GP on 10000 data points : :
T T T T T T i i -15 i i i i i i i i
24 50 100 200 300 500 750 1250 24 50 100 200 300 500 750 1250
Number of basis functions Number of basis functions

(a) (b)

Figure 7.2: Comparison of FITC, two flavors of SSGP and another method which we do
not describe in this thesis. The plots are copied from Lazaro-Gredilla et al. [2010] (the
dataset used for testing is Kin40k, see Lazaro-Gredilla et al. [2010]). The plots shows
that SSGP (with optimized spectral points) gives performances superior to FITC, but it
is unclear how much more computational effort SSGP required to achieve these results.
The figure uses error measures equivalent to the ones used in this thesis (Normalized

Mean Squared Error is our SMSE, Mean Negative Log Probability is our MSLL).

Chapter 7. Conclusions and Future Work 72

7.3 Future Work

We came upon several interesting problems during our investigations. We partially
investigated these problems as they appear very important for a full understanding of
the discussed algorithms’ behavior, but we could not afford putting enough effort into

these side-projects to reach definite conclusions.

7.3.1 FITC on a subset of data

It is possible, and indeed can be reasonable, to connect the FITC and SoD methods.
One could first choose a subset of data of size n < N (where N is the number of training
points available), then run the FITC algorithm on this dataset only, using m < N induc-
ing points. The asymptotic time complexity of this method would thus be O(nm?) and
required storage space O(nm). It seems to us that especially the required space reduc-
tion could be beneficial, as in our tests we were unable to run FI7TC with more than
about 1000 inducing points due to space restrictions; however, if the subset of data was
chosen in a way that does not delete much useful information, then we could expect
significant gains from being able to use more inducing points on an almost equally

informative dataset.

The important question that we did not attempt to answer in our work is how to choose
the - ratio? The interplay of n and m does not seem obvious. We might expect
choosing n < m (so at least some inducing points are outside of the training subset) to
be unreasonable, as the sole function of the m inducing points is to enable approximate
communication between the n datapoints, and simply running the SoD GP on the n
points should give better results. However, even this is not entirely clear, as again we
want to consider the practical performance of the methods, and FITC with m inducing

points on a subset of size n would take O(nm?) time which is less than O(m?) if n < m!

In sum, knowing the optimal n/m ratio could thus possibly make FITC a much more
useful method and we see it as an important open question. (Thanks to lain Murray for

drawing our attention to this problem!)

Chapter 7. Conclusions and Future Work 73

7.3.2 Local GP efficiency

Section 4.3.2 shows that the Local GP algorithm’s behavior can be counterintuitive:
for very small cluster sizes m the algorithm can actually run slower than for mid-range
cluster sizes (it slows down again with m growing more, as the asymptotic analysis of
the algorithm requires). This behavior is very unfortunate, as we showed in Chapter
6 that Local GP can return accurate predictive distributions, often better than those

computed by other approximations.

We suggested that the reason for this behavior is that doing computations with small
clusters requires much more bookkeeping. For example, using 1000 clusters of size
32 requires shuffling many small arrays in- and out- of memory and calling many
short-lived functions numerous times, which can also create an overhead. It is possible
that Matlab, as an interpreted language whose focus is on large matrix algebra, is
particularly bad at running such segmented algorithms. It would be very interesting to

see if Local GP can be implemented efficiently enough to be even more competitive.

7.3.3 Mixing different methods for training and testing

It is possible to use one algorithm to train the hyperparameters, and another one to
do the test predictions. We have seen that SoD appears to be a good hyperparameter
training method, but other algorithms do better on test time. Can we use the hyper-
parameters estimated by SoD with Local GP or FITC? Looking at the hyperparameter
tables in Appendix A, we spot some regularities - as we already mentioned in Section
6.2.3, FITC appears to choose the hyperparameters in an intrinsically different man-
ner than SoD (and thus full GP) does. SoD and Local GP with joint hyperparameters
also don’t seem to converge to the same hyperparameter values. A more detailed re-
search in this direction would be interesting, and it seems to us that most publications
introducing new GP approximations omit the topic of how the approximations use the

hyperparameters in comparison to the full GP they are meant to approximate.

7.4 Conclusion

There exist many interesting methods for approximate inference with Gaussian Pro-

cesses, but very often their practical usefulness is clear. We believe that focusing only

Chapter 7. Conclusions and Future Work 74

on the theoretical properties of these algorithms is not reasonable; after all, the goal
of approximation algorithms is to make other methods practically useful. We hope
to have shown that performing an unbiased empirical comparison of approximation
algorithms is possible and can bring about both useful conclusions as well as new

interesting questions that can deepen our understanding of the considered methods.

Appendix A

Appendix: Tables

Following are hyperparameter tables as optimized by the different methods (excluding
IFGT). For SYNTH2 and SYNTHS the “real” lengthscales d1,d?2 of the data, as well as
the signal amplitude amp = |G|, are all 1. For SYNTH2, The noise level of the training
data is about 10~ so log 62 = —13.47 after normalization. This is only approximate as
we only know the exact noise level for the whole dataset, while in our experiments we
use a randomly chosen half of it for training only. For SYNTHS, the log noise variance
is —6.94.

In any table, entry showing inf means that the particular value exceeded 9999. We
don’t report such large values because the tables would take up too much space. What’s
more, given the dataset variances are all normalized to unity, we doubt there is any

practical distinction between lengthscales of such large values.

The “errorbars” (£ values) shown in Local GP separate hyperparameter training are
variances over the hyperparameters in different clusters. Local GP with joint training

uses the same set of hypers for each cluster, so no variance is present.

The errorbars for SoD and FITC are over 5 repeated runs of the experiment for each

different inducing point choice or clustering method.

75

76

Appendix A. Appendix: Tables

wopuey ZHLNAS ‘doS 2’V 8lqeL

00FTEI— O0FIEI— OO0FIEI— OO0FIEI— TOFTEI— TOFIEI— O00FCTEI— TOFECEI— €0F6TI— 7OT0]
00FS'I 00FS'IT 00F¥'1 00F+'1 00F V1 00FS'I I'0FS'T I'0F91 [0FLT due
00FO01 00FO01 00FO01 00FO01 00FO01 00FO01 00FO01 00FO01 00FO01 wp
00FO01 00FO01 00FO01 00FO01 00FO01 00FO01 00FO1 00FO01 00FO01 P
$3dp008 $3dp009 $1d960t s1dgp0T s)dpzo1 sydgys sydgsy s)dgzy sydp9

Ddd ‘ZHLNAS ‘oS :1'V 8|qeL

0O0FI'€SI— 00FTEI— O00FCTEI— O00FCTEI— 00FCTEI— TO0FTEI— TOFCEI— TIFOEI— 80FEOI— 7O3T0|
00F¥'1 00F+'1 00F+'1 00F+'1 00F+'1 00F+'1 00F¥'1 00F+'1 00F¥1 duwe
00FO01 00FO01 00FO01 00FO01 00FO01 00FO01 00FO1 00FO01 00FO01 rd)
00FO01 00FO01 00FO01 00FO0T 00FO01 00FO01 00FO01 00FO01 00FO01 P
s3dp008 s3dp009 $1d960t s1dgp0T s)dpzo1 sydgys sydost s)dgzy sydp9

77

Appendix A. Appendix: Tables

Odd '8HLNAS ‘00S €'V 8|qeL

€OFLE— 9TIFOV— CTOFFT— €0F9I— 6CFCh— TIFCT— 9TIF0C— LIFSS— LIF9p— 7080
00+0I 00+01 00+0'1 00+60 I'0OF0'I1 I'0+60 I'o+80 00+F01 [0F01 due
00+T'I 00FTT 0O0FT'1 I'0O+¢l1 I'OFT'I1 ¢c0+71 y'0+80 80F€T S9I1F7T6 8P
00+0I 00FTT 00FT'1 I'O+11 I'o+¢l COFT1 COFO0'1 LOFO0T voO+Iv LP
00+0T 00+01 00+0'1 0O0FT'I I'0+0'1 I'0O+¢1 Ov+cC¢ cOFI'T 9TI1+901 9P
00+01 00FT'1 00+FT'1 I'O+1°1 I'0+2¢lI 0T+91 0OT+81 89+¢¢ L9F+T9 Sp
00FT'I I'O+1'1 00+C1 COF¢l I'o+¢l COF¢SI1 90+61 SOF+vvy L6+07I 14Y
00+01 00+01 00FT'1 I'O+1°1 c0+1'1 c0+v1 90+6'1 80+¢S'1 vO+O0'1 ep
00+0T 00+0T 00FT1'1 I'o+r1l I'o+c¢ti ¢0+0'1 CIF+91 9¢+0v LOFCI P
00FT'I 00FT'I 00FT1'1 00FT'I1 I'o+o'r ¢0F0'1 C0F+01 OT+¢1 ¢8F18 1P
$1d0008 $1d0009 $1d9601 $1dg§0T $1dpzoT1 $)dzIs s1d9st s1dgz1 s1dp9

78

Appendix A. Appendix: Tables

wopuey ‘8HLNAS ‘d0S 'V 8lqeL

00FL9— +vO0FT9— LOFLS— 90F8y— LOFtv— 6TFSS— 80F89— SQIFIS— #IF69— 7930
00+0'1 00+01 00+F0T1 00+F01 00+0'1 I'0+0'1 00+F0T 00+0'1 1'0Fo1 due
00+01 00+0'1 00+0I 00FTT 00+0'1 I'0O+0'1 I'0OF01 gc¢+6'c 8OIF¥9 8P
00+0'1 00+0'1 00+0I 00+01 I'0O+0'1 I'O+11 VOF+I'T T8IF86 6CCF+v8I LP
00+0'1 00+0'1 00+0T 00+01 00+0'1 I'0O+¢l1 c0F+¢l LC+TC COF0I 9P
00+01 00+0'1 00+01 00+01 I'oO+1°1 I'O+1°1 COFTT €9IF€0I ¥TSF+6SY sp
00+0'1 00+0'1 00+01 00+01 I'o+1'1 COFTI 80+91 vO+T1'1 8LF+T9 144
00+01 00+0I 00+01 00FT'1 I'o+¢l1 CO+TI COFTT LTIFLTIL 98e+TITC ep
00+0T 00+01 00+0T 00+0T 00+01 I'o+o0'I1 COFT'T 8Pve+88I Ov+L¢ (44
00F0T 00+0T 00+0T 00FT'I 00F+0T I'o+r1I CO0F0'1 ¢cLFYY 00C+80I P

$1d0008 $1d0009 $1d960t $1dg0T $1dpz01 $1dgrs s1d9st $1dgzT s1dp9

79

Appendix A. Appendix: Tables

Odd ‘INFHO ‘QoS S’V 8|qeL

00F6¢— 10FCTE— TOFST— T10FCTT— +vOFET— vOFOI— €TFIE— ['TFE9— 7O30]
00FLE TO0FIE 00FCT T0FST 00F9I I'OFV'1 I'0F¥'1 [0Fs1 duwe
['0F6€ TOFOY €0F09 LOFSY9 SOFFS 9CTF09 I'6IF61E TISFL6Y SIP
I'0F¥y CTOFSY €0F8S TIF99 +0FCTS 60FCE €1F9CT vibF¥8e vIP
00F8¢ T0F8E O00F0E €0FLT TOFET 9CIFLTE LITFOSE SBIFEee €IP
00FICT O00F6T T1T0F9T I'0FST ¥0F8T 60FCTCT OVCFOIE TSPFI9C TIP
I'0F8E TOFLY 6€FO0El ¥OIFECLL HSFE8T 9SIFCOT ¥'STFO6I 9ICFL6E TIP
I'0FOE €O0FIV 9TFOL LITFSE TO6IFVYO HSFO9E €0TF6LE 68SYFEIT OIP
I'0FE€T TOFST TO0F8CT T10F6CT SOFIe €0F6T O00IFL6 0LFT9 6P
00FSy TOFI¥ TOFI'E TOFST SOF9CT 6VCFISI 0CIF99T 6TCFSIT Y
I'0Fe€Ee TO0FCTE CTOFST O00FIT €OFIT CLIFSST 8SIFLIE TEEFELT LP
00F0T TOFET TOFOE ¥OFSE 60FVE +I9FSL SOFIT L'6FS0C 9p
€COF6L 90FVL TIFIL OVF60I 86F0Iy €LIFO0T 6LIFLST LTISFET9 sp
00F+¥T O00F¥I TOFFI TOFET CTOFST 61FFE SO0F6T #EIFOI0I 124
00F8T O00F6T1 TO0FIT TOFIT CTOFET TIF9E TIF9E S8TFTITC €p
TOF9Y TOFSY IT¥FOL O0SIF98 +¥F80E IVIFEIT LSF60I 98F 8¢S w
['0FLY T1T0F¥y TOF9E €0FCTE €0F6C ¥VLSFITE +OF9E €89F6°SS P
$1d0009 $1d960¥ $1dgp0T ST)| sydzIs s3d9gt s1dgz1 s1dy9

80

Appendix A. Appendix: Tables

wopuey ‘W3IHO ‘A0S :9'V 8|qeL

['0F8L— CTOFOL— TO0FO09— CTOF6v— LOF6E— 9TIF6€— O0CFIS— SIFE9— 7030
vOF8Y €O0F¥Y TOFIE TOFIT T0FSI I'0OFET ['0F¢1 [0F60 duwe
TOFEE T0F¥Ee TOFLE SOFSTY O1F6S vSIFOECT 98FCSI SIIFCST SIP
TOFLT TOFIE €0F6CT TOFET SO0FST TIFLT +OFIT +O0IF96 vIP
I'0OFI'E TOFPE €0FE€E CTOFLT €0FE€ECT TOFOT SOF8I SE€FoT €IP
I'0F8CT TOF6T CTOF6CT CTOF9CT CTOFCTCT TOFIT €O0FLIT 6TCIFCTLL TIP
TOFET TOFST €0FST 90F€T TOFST €OFVI vIFET $SFLL TIP
I'0FE€T TO0F¥PT €0F¥PT SO0FIE LOFSY 6LFEC8 9CSIFSIC 6VFI0I OIP
I'0F6T TO0F6T O00F8T TO0F9OT TOF¥FI €0F9T €O0F¥I 6€FS8¢E 6P
€OFIS €0F0S TOF9Y T0F9¢ 80FSE 66FI6 00IFCET +6F98 Y
SOFEY ¥OF8Y €O0FSY +vOFCYy TIF¥y TIFOV TSIF6El 96FLII LP
00FLO0 O00FLO 00F90 O00FS0O TO0FSO TO0FSO T0FSO T0F€0 9p
TOF8S LOF6S 80F8S €0F0S TIFCH 8TF¥FS 19F90C 6LFIII sp
00FCI O00FCTI OO0FIT TO0F60 T0F80 T0F80 T0FLO 61FST 124
I'0F9T TO0FST TOF¥I 00FCTI TOFII I0OFIT I'0FOT SEFO0¢E €p
TOFYE €0F¥E TO0FOE TOFET FOFIT 69FI19 80IF6€El 6FFSH w
['0F8Y 10F9v CTOFIY €0F9¢ TOFIE €0F8CT SOFLT S9OFSL P
$1d0009 $1d960¥ $1dgp0T ST | sydzIs SN $1dgz1 s1dp9

81

Appendix A. Appendix: Tables

00Fvy— TOFE€Y— TOFOV— TOFLE— TOF9E— FOFEE— TOFECE— LOFS e~ 7930
00FST 00F9T I'0F81 1'0F0C €0FET LOFTE 60F9¢ 0¢Fgs dure
[0F8C TOF6T €0FIE TIFI9 +TIFEHI 1'86F6CI1 L'OET F €881 ['0SFTH6 ITP
LOFTET OTF9El SIF6ST 6TFSOI THOIFEPEL 1'LT€ F889¢ 8'86T F 9T 9CEYF99IE 0TP
01F96 8IFETl LEFVEl LYIFVEC ['SFS91 OYLFv'8Y C6EIF99IT €LISTFSILZT 6IP
TOFIE TOFEE €0Fe€e SOF¥Y LOFTS TIF8Y 91F69 CIIFCTYL 8IP
LOFTOl STFSIT €TFPSI TEFISI 99F 681 0'SYSLI F9¥S06 00F /Ul 0€696LF8 11007 LIP
LOFSTI €I1F9¥L ¥O0F¥SI 6FFLTC 0EEFE0S 6'9F 861 9 TYCFTOLI 0'99€ FT99C 91IP
[0FI'E TOFEE €0FSE €0F¢e vOF e 80FLE 0CFLY 9¢F68 SIP
TOFLT €0F0E €0F6CT OIF9S VIFP9 6°6%¢ F1°08¢C I'IbPF8T0S T'I¥Y9TFETLLT PIP
I'TFO9El SOF6El 9E€EF60C 00CFIVC T6ITFO6LL OVELIFYI8CL +'9¢HCT FS 1569 00Ffur €Ip
I'NFE€6 STIFS6 18FCIT 06CFCIL T'9SFH 0TI LTWSFYIvL v1TCIF9€96 T°TILIFO9L6T TIP
I'0F9C TOFLT TOFIE ¥VECFLLL CILFVEL 8'6¥9F9'STS SY9TF 0'90C I'EV8F9LV6 TIP
CIFIO0I VEFTET OCEFHST €8F96C 66£F6191 S'0L8 F9¥S9 0'20v F9°088 vYC8F #0901 OIP
SOFTILT +TFLST TTFEST 6TFISI 6CEFVTH TOLSF 9189 I'€81F6'SLS TH88TFL90SI 6P
I'0OF¥1T TO0F9T SOFST OTIFLE CIFIS 99vT FH €€l 1971 F6°€€T €E8LFLTLS sp
TOFLE 90FI¥ 80F9S TTUIF96I 88TFLIV 979 F T ST €'8STFTTIT 96887 F0'TSST LP
I'CFSEl TEFII SEIF6VE +V8FVSI SLIFLST €S9I F €T T'8SOF 1'6Th T80V FOTLE 9p
I'0F0C TOF0CT CTOFST TOFve QIIFHOI Sy F6'6¢ SYorFE¥ST 8685 F6CCIE Y
7¥0F9¥ +O0FSS LOFO08 61F86 0'SFO00I 0'L8F1C8 7'0EFTLT TILTFTH1 124
90FS6 OCFIECIT 6SFILL LLFOE 6€9F89S €SHOLFTSLSE TIOPIFLTICT €LSSLFILLTY €p
€OFI9 TOFYS OIF6L 80FTL I'TFLL L'€OTFLTIT S966LF 8 LSSH 1'S0E F8°199 w
TOFIY LOFTS €0FCT9 SIFTS8 VIFIL L0F89 9CTFLY 9V F 6 P
$1d0009 $1d960¥ $1dgpoT $1dpTO1 sydzIs $1d9sT $1dgzI1 sydy9

82

Appendix A. Appendix: Tables

00FS¥— 00FE€y— TOFCTH— TO0FOV— ['0F8¢— TOFVeE— TEFES— €9F 96— 7930
00FE€T O00F€T I'0FST T0OFLT COFIT LTFLE 80FLT CiFe¢r due
70F8C €0F0E FOFLT LYF99 T16TF60T I'9ICF9€E6l LTIIFITHI €OLIF6'SOT ITP
TIFQTL QIFST FTFSET 9TFSHL 8IF609 TWO6FYYIL 19€1F6C91 +'89CF09ST 0TP
vOF6L LTIFO09 SIFLY9 $9FLTI SYF8II 6'8SLFT9 066F1 LS8 LYEFTEY 6IP
TO0F9CT TOF¥T €0F¥CT SOFIE €TF8S I'vF1'8 SIFLS LTIF6'1IT SIP
I'TF8L O1IF8L TIFI8 CTHPFIIL 9ITFPST CEEFLTE LIVIFSIII €6TF96E LIP
['ITFT0I 8CTF90I 09F6+¥I 89IF06C +99F8901 YOSFV 9T TOOIFE8YT 06ICFS6SI 9IP
['0FE€T T0FE€T €0FST SOFLT LOFTE LTFES TTFTY SCIFST SIP
TOFET SOFST €0FIE TTF69 098FCTTY 99LIF9L6I #IOIFCTIST OTEIFI0T PIP
9CFLL TTF69I LEIFECIE LITFL6T 9LITF6TST LIESTFVSOET ' ISTFEELI [1'98F968 €IP
9YFOCI E€IFTOlL S9FO9l T'STFYE TISFOLY 9PITFLTIST S691FH96SI I'98F 1Sy TIP
€OF0E PYOF6T 80FEY SOFITL ¥EIFPVLI LILF 606 SITFSHE 9EPTFL 98 TIP
SIFSHL SSFYOl TEFIOl TI'STF6PE S8VCIFYIOL LY6TFOEPE €TIITFOSST 86ITF6STT OIP
LTFVLL TEFLOT O0TFEIT €TFTOI ¥ ETIFOEL 980T FH9L STITFLYST 8SITFHT8I 6P
y0OFST LOFET 60F0S €I1F09 86F0€l L'STF0TC +v8CIFITCCl STHIFI901 Y
YOFTE STFOY VIFTS TSTF661 SOPFSHS 8800IFEC0eS T9IFOLI 080TFHTHC LP
I'EFOET OLFTET OSFO6HC ¥'6SF06S €9SF6€9 LYLIFLSIT TSLIFY86I SSLTFYSET 9p
I'0FLT TOF6T €0FCTT LOFVE I'TFYS LEPIFTO6ST €8STFLSET 7'OSFLEL sp
70F9Y 60FCTY¥ FTFS9 9TF6S €EFEes I'ILFTYL vSITFTLL YY1 F 206 124
FTFSOl SEFOTL 60IF68C TILFITY 9€SF696 SSSTFL8T OTOTFFIIE S 9S9€ F 1°€0S€ €p
90F¥S 90F€S VIFLL 61FI6 09F €SI 6'S9F80S 0F61F6LYC 9ELIFO6YI (4
TOFTE +O0FTE 90F8E SIFIYV 6TFT9 €TFLS STFOL TEFTS P
$1d0009 $1d960¥ $1dgp0T $1dpT0T sydzIs $1d9gT $1dgz1 s1dy9

83

Appendix A. Appendix: Tables

wopuey ZHLNAS “OLId 0}V 8lqeL

TOF60I— SOFLII— 90FIII— +OFLOI— LOF6II— 60F86— 60FH9— 79850
['0FV1 I'0OFV1 00F€1 00FI'1 ['0F60 SO0FET #oFegr due
T0F60 ['0F80 00F60 I'0FO0'1 I'0FI'T TOFET TOFOI (4
[I'0F+0 I'0F€0 TO0FSO 00F90 ['0FO0T 10F80 TOFOI P
$)dzIs s1d9osT $)dgzY s1dp9 sydze S | s)dg

Od4 ‘CHLNAS ‘Olld 6V djeL

[OFTII— SOFETI— €0F8TI— €0FQ0I— LOFSS— 90F9¢— 80F0CT— 7O50]
00FS'T 00F¥'1 00FCI TIF9T TIFST SOFST CTelFyL dure
['0FO01 ['0FO01 ['0OFI'T ['0FCTI T1T0F€ET €0F¥1 LOFII w
[I'0FS0 I'0F9°0 I'OFI'T IOFI'T TOFI'T CTOF¥I 9€F6T P
sydzIs s1d9st $1dgzT s1dp9 sydze s1do| s)dg

84

Appendix A. Appendix: Tables

Odd "'8HLNAS Olld -}V 8qeL

SOF6E¢— 90FLT— TOFFI— TOFI'I— €IF¢I— T['IF0OC— TOFIE— 7080
00FI'T 00FI'T 00F0I 00F60 10F80 T10F60 00F60 dure
00FECT 00F€T T0FECT TO0FEL €0FET €0F0OT 00FLO 8P
[0OFET T1T0FET TO0F¥T TO0FFI €0FE€L TOFTI T0FOI LP
['0OFTI 00FECT TO0FECT €0FLT 9IFFT TOFST TOFTI 9p
[0OFET TOFHT €0F9T CTOFST +OF8L SOF8T T10FOI Sp
TOFYT TO0FST #0F6L TOF6L 19FSL LLFIS €0F9I 144
[0OFE€T TOF9T T0F8T $0F0CT OrFre SOFST T0FOI €p
00FCTI 00F€T TO0FST TOFFI TOFTI TOFOIT T10F80 wp
[0OFET 00FET T0FCTI TO0FET €0FE€T TOFIT 00FO0T1 P

s1dgIs s1d9st $1dgzT s1dp9 sydge sydoy s)dg

85

Appendix A. Appendix: Tables

wopuey ‘8HINAS “OLld 2}V 8lqeL

00F8TI— TOFHI— TOFIT— TOFLO— TO0F90— TOFH0— +O0F0— 7930
00F0T 00F0OT 00F60 O00F80 T10FLO T10F90 T10FL0 dure
['0FET TO0FST CTOF¥I T0F¥I TOFST TE€EF6T TOFSO 8P
[0FET TOF¥T T0FECT T0FST TOFOL €0F8T SIFO0T LP
[0OFET TOFYT 90FLT €0FLI 60FFe SIF9r 8vFGSE 9p
[0FET TOFYT TOFSI 90F0CT 90F8L TOFII €8FS Sp
[0OFET TO0F9T TOF6T 9FPFE€L LI9FI'8 €6F601 LIFIE 144
I'0OF¥T T0F9T CTOFSI CTOFOT +O0FO0CT 61F0F CTOFEI €p
00FECT TO0FST CTOFST TOFST €0F9T CTOF¥I SOFCI wp
I0OF¥T TOFYT TO0FV1T $0F¥I TOFFI SIFET T10F60 P

s1dgIs s1d9st $1dgzT s1dp9 sydge sydoy s)dg

86

Appendix A. Appendix: Tables

Odd ‘INFHO “OLId €1’V 8lqeL

SOFSE— [I'0F6'1— €0F8I— SOF¥I— TOF80— 9IFLI— 90F0¢— 79350
6CIFO6 1 L6FLS8T TIIFGSL 0cEFLE TOFSO I'0FLO 00F60 due
['8€F6'0S 8001 FTLST LTCFSLY TOOFSIL SIvFSer 9IFEe LOFOCT SIP
I'YFLTL 89EFLT6 69TFS8T I'SFLL TIFUE T18IFCTI9T SOFIT pIP
LEFIVI I'SFEl TO0IFS8 68SF€er L6SFISH 90FST 09F8E €IP
8TFL6 L6FSIl OVFSS 6ITFOY TOFII TOFOT SOFIT TIP
OLTFVIY TIIFI6CT 061F061 OLEF6IE OICFCTST 6FIFSLL TOFLO TIP
TO6FO6VI 9SSIFO8ET 6VCFTSy T'€8FIV8 TEIFVIC 08F€6 I'CTFEe OIP
I'CFLL LEFS6 TTFIS 9CF9S LIFVY TEFSE 9VTFOL 6P
09F90T T9EFL6E 69LF8YS SOCFLVY ¥O0cFLST ¥S8FIIL T'€EFST 8P
0LF0CT 09FCTST 9vFI'6 VPLIFICIL 68IFLYC THCIFT6L H9F09 LP
['0F81T 6TFOY 91F8I VIFET 80F0CT 8O0TFSLL 9IF€eE 9p
TOFSYC 009FH08 +T8FTO08 T0EFSOL €TEFYSE 99F88 IT0FIT Sp
€0FLT €0F9CT TIFLI 90FLT 9IF8I 80F9T T0F90 1%
€0FLE 80FEY O0T1FET 9CFTS VEFSL TLOFOTY LOFIT €p
9CFTII 6TF¥8 L¥FE€9 STIF¥S8l 6SIFOIC LIIF6'8 8E€FTE w
OTFLEI SIFTIL TILFSTI €CFY9 9CFIY SOFIT OIFSI P
s1dzIs s1d9st s)dgz1 s1dp9 sydge sydoy s)dg

87

Appendix A. Appendix: Tables

wopuey ‘WIHO “OLId ¥}V 8lqeL

[OFTY— TO0FIE— $O0FLT- TOFSI— TOFECI— 90FvI— 90F9I— 7930
€0F6e T1T0F61T T0FET TOFIT 00F60 T10F80 00F80 dure
€0F09 9CFV6 LIFLL 88EFL8S 8S8CFISL 68¢FOIy 09F6L SIP
90F6v 80F9E SIFTY YEFSS SIFI9 ICTF8T SOFETL vIP
vOF9OY SO0FCTY €0F0E LOFOE €0F9CT ICTFST 8CFET €I
90F8E +vO0FTE 90F0E PYOFOE €0FLT PYFeE 90FET TIP
90FCY VvOFIE 60F9C 6TFOV 90F6T 96IFOVI 86F€8 TIP
SOF6E €0FES TIUFOIL OIIFTT 98TF00S TSIF66I +v6F66 OIP
00F¥C TOF6T €0FIT €0F¥T ¥O0F9CT TIF¥T SOFIIT 6P
90F¥9 80FVS CIF8Y 96IF98 €VeFCTO T'IFST 96FCO0I Y
80F0L 80F¥9 90F8E I'VCFE9l 6SHFTOr ¥8EFOLE 9EFSS LP
I'0F80 00FLO0 T0F90 T1T0F90 €0FLO €LFSS ¥vFLY 9p
CIFSL €0F09 90FCy LOIFI6l +SIFE8E TICFSIE TEFTS sp
I'0FST O00FI'T TO0FIT TO0FOT €0FCI 60FCTI TEFST 144
I'0FLT TOF¥I TOF¥I LOF6T +¥0F0T CTIFST LSIF60I €p
vOFYY SO0FCTE CIFLT VLIFION SLFSEl ¥veF8YC 09FS9 4
80FES 90F6+v TOFEY vOFLE 90F6E LOFIE I'E€EFTE P
sydzIs s1d9st $1dgzT s1dp9 sydge sydoy s)dg

88

Appendix A. Appendix: Tables

[0FSY— O00FSv— I'0FEv— [0OFT1v— [0OFT1¥v— TOF6E— LOFIv— 7930]
0LFES 80FCY 0CFIS 8TFSL 9CFLS 6'TF96 LTFsg due
LOFOE SOFI¥ CIFOY 9PIFLOL TLITFISEL TILFVLY SEETF6LIT ITP
§LIFSEr 06F6¥C TECFCOr TSIF6TCS TIIFI¥Pr €8LF90CT ¥ICSFTO9 0CTP
0SIFT6l I'IFVvL 09F0II1 6'8F VLI €8FLSI TOSFESL TTLTFGSSLL 6IP
LOFOE C1FvY 01F9¢ 60F0L 9vF80I1 60FLS €S6F0TL SIP
€TF6CI 01F98 S0TF60C 0SF80E LOIFLSI 661FF0c 869¢F090€ LIP
I'0IF6LC 10CF09S TThFLVL SV8FLL6 88FEST 0CIFY68 TOLLFIEYS 9IP
80F9€ 90F0€ 80FLE 7' 1F99 €TFEL €OFI€El TTFYEL SIP
LTFYS SOF6'E €9F6'6 STCFSHT SISIFPIEl €L6FEO6LT 8O0EITF0ES6 PIP
89IF6'SE 0SEFVHOI TTCFS06 9O0VF6vL L8OIFOTOI 9E€YIFI'8ST 69LIEFV IOV €IP
6'I8FE€68 6€IF98E LSTIFI8CT €C€IF¥8y 618F6vIT 869FO09IT 9€0CF9IST TIP
6'TF88 LTFTUL 961FL6Y €EEFVSy T9¢FTI6 TO6LFYLS 69LEFHT8E TIP
961 FCT8E VLTFLIL S69FITPT SISFIVS 900CFVOrC 9VOTFTILT TYLEFSSEY OIP
TECFTO6Y €9FE8T TEIF8IC 99FG 0T TLYEFETIT 8TITFETOC LISTFTEOT 6P
8EFS6 €1F60I TYFTOl YYYFTLE 6SITFY 661 06CCFTYLI ¥LI9FSSSS Y
€TIFOTE 60CF6'SY 0S6IFYCOT OCITFTO6I T'S6FTSHT 6SYEFSI98C TOWPPF9'8SS LP
CEIF6LS €TCFO0S OL6FLTET S6IEFIIEE I'SFIFSO6ET VEVEFHS0Y 9IEVF6SIS 9p
01F67¢ SOFLT 90F8Y TYF06 OLIIFSSLY LSOYFLY6S +0£9F 60901 sp
8TFIL 6TF86 6T11FL6l 6FCF0SE T6F9ET €SEFE6S LEOFITL 174
6LIFLOY 9S9F96rl +68FIOFT 98TFVOL LSIIFLIGT €Hh6F1868 L'SIEFYE69 €p
9CF60l TTFOEI 9SFSEl 60IFO0IE TIIFIELY €TOFVH8T 9 LV61 F90611 w
91F99 €IFLOI 89F GGl veF8LC SIIF0O0C I'IIFSEC 1'ISTFS 991 P
sydzIs s1d9st $1dgzT s1dp9 sydge sydoy s)dg

89

Appendix A. Appendix: Tables

00FIv— O00FO0V— 00F8€— [0FLE— [0F9¢— TOFLE— 80Fpe— 7930
€OFIT SOFET O1FTY LTFSY 1'9F0'8 TIFOY TeEF09 dure
90F6€ 60FLY €TFIS ['€F€8 LTIFTIT 8T6FLY6 ['9EIF€L6 TITP

I'CIFI6E 89F€LL L9FT6C V6EFEIS TLSFO89 08EIFTIIN TSYOFI'S09 0P

I'SFLSL €vF¥eEl 6CTUFTIC SYeFvvr 68LF196 ¥0IF80E vOITF8LCT 6IP
€0F6CT LOFOE 9IFE€9 8CTFV 01 €TF69 6 SIFPSI €'889F I'¥9¢ SIP

§LIFEOT 19F0CT 90TF98 000IFS8 TILF9S8L 6LTFCTOV 8COVFS9LE LIP

TITFOOY YOrFEOL SIFECIY SYIFOSE PSITFIPS STIIFISI ['ISF898 9IP
SOFSE LOF9E I'IF9V SYFo6L 99F 601 v'CF96 VOFOVI SIP
I'TF9Y €TFLS SOEFSEE SLLFY6L TOVSFOI88S LEIyFSESeE LY8STFILLET HIP

6'CIF8TY €6SFE6F 96TFV 6y 8601 FCSST TLSEFI'8S9 S 08TFTSHE 86811 F8TLIT €IP

I'LIFSLE SOIFLTE €VIFO6EL SSIFYOF €0TIFPECT THOTF8E0T 1’90y FOory TIP
SIFLY TTFIL €veFv8y SISTFLIS €VCEFSOPC €0€9F8TC8 9VSLYCFOIVIET TIP

88IFS0E E€LIFYOF 0601FETST TSLFTOET TEIWFTELY 8S0TF98CC V' ECOTFESSL OTP

6CIFIOVE LLFSST 0LF¥0C TSFYLL TOLIFTS6L €¥9FITII 6'€STF9TST 6P
CIFVS LSFLOI 0'€FTIIl VTFEVL $0ECFOLEC €LVFILS TESTIF6'T8L Y
LTF09 ¥9IFSET VEIFITC 0CEF6Sy 6LIF8YE TT19FLOCI STITFEILT LP

TI9EFSOS TO6LFVIE LYTF6SE TSPFISS SE€TEFI0SE 60ICFIEET SIEY FI'veY 9p
TOFYT €1F9E SOFVT T9F90l LEIFLET 0S9TF60LI I'Y0LF S'+69 sp
OTF¥S 88F€CO0l O00IF89T SOTF9LT €8TIFELET 6STFIOF 9978 F8'0S¥ 124

LOIFLLE TSTFO6VE 89¢FE€T9 89FF868 +98IFLOLL T0STFOEIY 00F Sur €p

PCFSOl €YFYEl SOIFOVC TEFSTT 890 F8H9T L 96F L'STI L'S96F LTLOT w
SOFIY OVFLL 90IFSEC 80EF96C T8F88I v'6F8IC 0SITOLIFLIISS P
s1dzIs s1d9st $1dgzY s1dp9 sydge s1d9 s)dg

90

Buiures) serowerediadAy juiol ‘OHY ‘ZHINAS d9D (8007 :81°Y d|qeL

00FIEl— O00FI'El— O00FIEl— O00FIECI— 00FTEI— 00FCTEI— 00FTEI— 79850
00Fv1 00Fv1 00F¢1 00F¢1 00+7C1 00+7C1 00F1 1T dure
00+01 00+0'1 00+0I 00+0T 00+60 00+60 00+80 44
00+01 00+0T 00+60 00+60 00+60 00+60 00+80 P

2/dgpor 2/dpzon 2/dz1s 2/d9gt 2/dgzr 2/dp9 d2/dge

Buures serewerediadAy ol ‘0dY ‘ZHLNAS dD [8907 :LL'Y d|qeL

0C0FTIEl— O00FI'El— O00FIEl— O00FIECI— O00FIE€I— O00FTEI— 00FTEI— 79850
['0OFV'I 00F1v'1 00FvI 00F¢1 00F¢1 00+71 00F1 1T dure
00+01 00+0T 00+0T 00+0T 00+0T 00+60 00+60 44
00+01 00+01 00+0T 00+60 00+60 00+60 00+60 p

2/dgpor 2/dpzon 2/dz1s 2/d9st 2/dgzr 2/dp9 d2/dge

Appendix A. Appendix: Tables

91

Appendix A. Appendix: Tables

Buiuresy JejewesediadAy sresedss ‘OHY ‘ZHLNAS ‘dD 8207 102V 90BL

00FT'¢Cl— 00FCT€Cl— 00FCTEI— 00FTEI— T1T0FCEI— SOFTEI— PIFEEI— O30l
COF¢'l (AR €0FTCI €0FTCI c0FI'1 V'0F+0'1 SOFOT due
00F0'1 00F0'1 00F0'1 ¢0F+60 STFOT JUIF69IT6E LLI9F6S 4y
00F0'1 00F0'1 00+60 ['0F0'1 80FI'I JUIFGSIT JUIF6¢e8 P
2/dgpor d/dpzon d2/dzis 2/dgst d/dgz1 d/dp9 d/dzg

Buiurely JejewelediadAy sreredss ‘Ody ‘ZHLNAS dD [B207 61V 9|qeL

00FT'¢l— O00FTI€l— 00FCTEI— 00FTEI— 00FCTEI— 00FCTEI— ['0FTEl— 72930]
CO0F¢'l (AR €0F¢1 €0FTCI EOFII EO0FI1 ¥'0F01 dure
00F0'1 00F0'1 00F0'1 00+60 00+60 ['0F60 6'8LS0SF0'8 4y
00F01 00F+6°0 00F0'1 00+60 I'0F0'1 90F1I'I JurF ¢'8cc P
2/dgpor d/dpzon d/dzis 2/dgst d/dgz1 d/dp9 d/dzg

92

Appendix A. Appendix: Tables

Buure serewerediadAy ol ‘0dY ‘8HLNAS dD [8907 112"V 8|qeL

TOFLY9— TOFS9— T0F09— 10F6S— €OFrS— €0FSS— I'ITFI9— 7030
00F0T 00FO0T 00F0T 00F0T 00F0T 00F01 00F0T due
00F0T 00FO0T 00F0T 00F0T 00F0T 00F0T 00FO0I P
00F0T 00FO0T 00F0T 00F0T 00F0T 00F0T 00FO0I LP
00F0T 00FO0T 00F0T 00F0T 00F0T 00F0T 00FO0I 9p
00F0T 00F0T 00F0T 00F0T 00F0T 00F0T 00FO0I sp
00F0T 00F0T 00F0T O00FI'T O00FI'T O00FIT O00FII P
00F0T 00F0T 00F0I 00F0T 00F0T O00FI'T O00FII €p
00F0T 00F0T 00F0I 00F0T 00F0T 00F0T 00F0I P
00F0T 00F0T 00F0I 00F0I 00F0T 00F0I 00F0I P
2/dgpor d/dpzor d2/dzrs d/d9sg 2/dgzr 2/dpy d/dze

93

Appendix A. Appendix: Tables

Buures se1owerediadAy juiol ‘OHY ‘BHINAS d9D (€907 122"V d|qeL

TOF99— T0FE9— TOFTY9— SOFYS— T[0F9S— €0F09— 60F£9— 7030
00F0T 00FO0T 00F0T 00F0T 00F0T 00F01 00F0T due
00F0T 00FO0T 00F0T 00F0T 00F0T 00F0T 00FO0I P
00F0T 00FO0T 00F0T 00F0T 00F0T 00F0T 00FO0I LP
00F0T 00FO0T 00F0T 00F0T 00F0T 00F0T 00FO0I 9p
00F0T 00F0T 00F0T 00F0T 00F0T 00F0T 00FO0I sp
00F0T 00F0T 00F0T 00F0T O00FI'T O00FIT 00FII P
00F0T 00F0T 00F0T 00F0T O00FI'T O00FIT O00FII €p
00F0T 00F0T 00F0I 00F0T 00F0T 00F0T 00F0I P
00F0T 00F0T 00F0I 00F0I 00F0T 00F0I 00F0I P
2/dgpor d/dpzor d2/dzrs d/d9sg 2/dgzr 2/dpy d/dze

94

Appendix A. Appendix: Tables

Buiurely JejowelediadAy areledas ‘DdyY ‘SHINAS dH [B207 :€2'V 9|98l

TIFTL— 91F89— ITFV9— 8TFv9— €vF8S— 89F8S— r6Fv9— 7030
00F0T 00FO0T 00F0T 00F0OT 00FO0T 00F01 1oFrr dwe
00F0T 00FO0T 00F0T 00F0T TOFTI 0€6FI9 LOISFTEI 8P
00F0T 00FO0T 00FO0T O00FIT ¥OFTI ¥TWOIFO9 0SE6TTFH LI LP
00F0T 00FO0T 00FO0T O00FIT €8EF6T +OVIFSY LOPSIFLPI 9p
00F0T 00FO0T 00FO0T O0FIT LYFrT TSLIFSY 9650TFTII sp
00F0T 00F0T O00FI'T O00FIT TOIF9T TOSIFLY LS6SIFISI P
00F0T 00FO0T O00FI'T O00FI'T €TFPT 68CF9S OTI19F08I €p
00F0T 00FO0T 00F0T O00FI'T €OFI'T ¥S6PITFSS 1TLOSLFTYC P
00F0T 00FO0T O00FI'T O00FI'T TPrFEl SOLIF6Y 1'196F 'Sl P
2/dgpor d/dpzor d2/dzrs 2/d9sg 2/dgzr d/dp9y d/dzg

95

Appendix A. Appendix: Tables

Buiures JejowelediadAy areledss ‘OHY ‘SHINAS ‘dD 8207 ¥2'V 9|9l

SIFLI9— TE€FE9— LEFE9— ['9F 09— CLFCT9— SPIFIL— €9IF6L— 7930
00FO0T 00FO0OT 00FO0T 00FO01 [0OFI'T POFIT v0Fc1 dure
00F0T OO0FI'T O€FET JUIFOVLIT 0996 F1'8 JuIFv89C JUIF1'189¢C Y
00FO0T O00FOT TEFECT L68PFILL 09SHCFO8 JUIFSE0I JurFves LP
00FO0T 8SEIF8T €OrPFLT €6606FLOT 0668CCFS VI JurF fuy JurF fuy 9p
00FO0T 00FO0T SQISFIT #9LLOTFIOI SLITIF¥'8 JurF fur JurF fur Sp
00FO0T 6I19FIT 665FST 9P8ITFS8Y SY66FT6 JUIFH G8II JurF Jug vp
00FO0T O00FOT SISFET TTHPECFYS T'SSETFI6 JuIF I 6£hTl JurF Jug €p
00FO0T OLSFIT #OIF9T 0YreF oy €'G98FLL JurF fuy JurF Jug wp
00FO0T TOFIT O0FIT 6IS9IF69 T6LOEFOTI JurF Jur JurF 876561 P
2/dgpor o/dpzor 2/dzrs d/d9sg d/dgzr 2/dpy d/dge

96

Appendix A. Appendix: Tables

Buiuresy serowerediadAy juiol ‘0dy ‘INFHO dD 18907 162"V d|qeL

90T 16— €0T68— 01T66— 60TL6— TITSOI— €OTLII— SOTFTTI— 030]
POTES TOTOY 10FLT 10F0C 10FST 00F€l 00F11 due
POTSE FYOTLY €0F9v 10F6€ TOFSE TOFSE TOFOE SIP
€OTOE 10F6C 10F9C 10FCe TOFLT 00F¥I O00FI'T bIP
TOFLE T0F¥E T10F8T T10F¥T 10F0CT 00FLI I'0FET €IP
1'0FST 10FvT TOFIT 10F0C TOFLI I'OF¥' T 00FIT CIP
I'0F¥C 10F€T 10F61 00FSI I'0FZI 00F60 00FS0 TIP
1'0F9C TOFT6T <TOFOE 10F9C 10F9C #0FTE +vOFve OIP
I'0F0C 00F61 10FST 00F9I I'0FZI 00F0T 00FT60 6P
COTES T10Tvy 10TLE 10TE€E TOFOE €0T6C €0FCT 8P
COTOY 10T8E €0T€E €0T8T 10F8T TOFST 10FSI LP
00FL0 00F90 00FS0 00FSO 00F+0 00F¥0 00FEO 9P
TOFS9 10FLS TOF9YY <TOFOY 10F8E +0TF8E 10FCE SP
00FI'T 00F0T 00F60 00F80 00F90 00FS0O 00FSO +P
I'0OFST 00F€T 10FTI 00F0T 00T60 00FS0 O00FLO €P
I'OFTve 10F0€ 10FvT 10FICT 10F0CT 10FCcT 10F6T P
TOTTS 1O0FLY 10F8E 10FIE 10F9C I10FIT O00FSI 1
2/dgpor d/dpzon a2/dzrs d/d9st d/dger d/dp9 d/dze

97

Appendix A. Appendix: Tables

Buiure.y serewesediadAy ol ‘OHY ‘WIHD dD [B90T 192V dldeL

LOF96— 10T88— 80TFSO0I— TITF96— I'IFTII— TOFLII— SO0F9CI— 3030
€0FS9 TOTSY 10F€E 10F€ET O00FLI I'OF¥'T 00Fc¢1 dwe
TOFOY €0F9F TOTF6Y <TOFEY 10FLE 10F¥E TOFIE SIP
€OFTE TOFTE 10F6C <TOFST 10F0CT O0F9I O00FTI ¥IP
TOFIY 10F9EC 10F0€ 10F9C 00FcZ 10F61 00F9T €IP
00F¥c 10F¥e TOFOCT 10F61 I'0F9T 00TV I'0OFET TIP
I'0FST 10FST 10FIT T10F8T 00F€T I'OFI'T 00F60 TIP
TOFLT €0FI'E 10F0€ <TOF6CT 10FLT 10FLT +0F6CT OIP
00FI1C 00F6T 00FST T10FLI 00F¥I 00FIT 00F60 6P
TOFLS T10F6v 10FI¥ 10FSE T10F€E TOFTEe TOFST 8P
TOFLE T10FOF €0FSE T10FIE 10F8CT 10FST 10F0CT LP
00FL0 00F90 00F90 00FS0 00F¥0 00TFT¥0 O00FE0 9P
€0T69 TOTI9 TOFTS TOFEY TOTO¥ TOFLE CTOTFEE SP
00FZT O00FI'T 00F60 00F80 00FLO 00T90 O00FSO P
00F9T 00T+ I'0FCI 00FIlT 00F60 00F80 O00FLO €P
I'0F8E 00TF€E 10FLT 10F€T 10FIT 10FIc 10FIT TP
I'0FLS 10F0S 10FTF O00FSE 10F8T TOF¥T 00F0T P
2/dgpor d/dpzor 2/dzrs 2/d9st 2/dger 2/dpg d/dge

98

Appendix A. Appendix: Tables

Buiuresy JerewelediadAy aresedss ‘Ody ‘NIHD 4O 1207 2V dlgeL

60EFSEI— LOSFSVI— VISFOSI— 6LSF6VI— TO09F8ECI— LOYFCTI— OTWFIII— 7030
9'¢EF 001 991 FI'L SOFPS 8ECFQE 6'1F67C €TFTT SIF9T due
L'808TFSOI +€808FIIE 80CE9FOSE S88S8FE8E TEVTSLFOVS v TISSFH TS JUIFIvbbl SIP
I'6v61 Fv 1T JUIFQTIE LTISOIFSLE S6C0LF6 1€ €TLFV8T SLLIOFEIE JuIFS00v8 vIP
LEF6Y 0€9FE€S SOFvY 6CI6F80I 6L0TCFSIT TLIGOFT6E JurF998 €Ip
VEFOY 0EF8E 8COIFLY 9PELFI'8 9T0VCF90C S6I8ITFE8E JUIFOLOTST — TIP
SOPITFY 6l TTOPFLIT TEEILFEEE $688LF6SE TOVILFYIT €99LLFY LT JuIF1e9 1Ip
896 F €°€C JUIFLLS SLLOSFOOE 9TOT9FIIE TII0C9FT9r 0 1I86SFLYY 00CISEF6ES OIP
8ICFLE SIIFIE STPIFY9 vO8IFOPI 0H9I F6€l JuIF6Lve JUIFTLEVSS 6P
09F¢€9 661 F8'S YYLFS9 TEPPFOTL 9€TETFTOE JurF9'¢s JurF 168101 8P
0SFV'S 6'SFTS 7' 0SEF T8 JurFoe6L Jur¥¢881T €LOS9FLOS JUrF0981 LP
VOLIFOS +vHSEFS9 6'60TCF8ST L6IEEFVIT 080V FLLI 6S96€F9GSI JurF 1S 9p
6'09CF9CI SI88FEC8I PIISEFS6L COILSTFLGOE €8P8IFFTYS €0I679F 809 Jur fup Sp
TOFYI SOFV'I 90FFT TLSIFET LTPSFEE 9€0ITFO06 0 L66EY FS€EE vp
[0F9T €0F9I SOF9T I'LhFET 6€TEIFE9 9798y FL VI JurF8:¢s €p
TLIOTFOST 89PFOIl 1968y F99C T ILYEFV LT STIEYFLIY 6HEC6FE9¢ JUIF1°69 wp
SSFS9 ['6F€9 0CIFTI 69F0S OLLOFLII STEISTFITH JurF fup P
2/dgpoT 2/dpzor a2/dgrs d/d9st d/dgz1 d/dp9 d/dge

99

Appendix A. Appendix: Tables

Buiurely JejewelediadAy areledss ‘DY ‘INTHD O [B20T :82'V 9|98l

SPPFIVI— S6EFSEI— TIOFSSI— T9SFIOPI— SI9F9CI— T6SFTEI— S9IF6TI— 7930
8GOF 101 L'STF6L SITFI9 L9FEY SEFTE LEFIT veFeo 1 dure
SYrOIFLST 8 L¥SYF9TT JurFjur 1911 F1°9¢ JUIF0'96 JurF7881 JurF fur - SIp
9CLLFOST 6T809F S 6C JurFjur $'Sy0Ly F0'8S 1785887 F0°CS JUIF1¥6 JurF fur pIp
6vFTS S665CFICI JurFfur ¢619¢€F1°9C JUIFo¥s JUIF 666 JurFfur €Ip
FEFTY 6SEVFLL 6€9ECFEYI TTEEF €L JUurF 18yl JurF65s0¢ Jursfur TIP
LEISFITL 9€819FSTE JUIFQTIVY6 918901 F1°6¢€ JUrF0'¢9 JurF fuy JurFfur 1IP
LLIGTFVIT €L919F9LT JUIFTSST 0°LOSTTIF6'8¢ Jur8.L9 JUIF6°¢8¢S JurFfur 1P
TEBFVY Y661 F6S JUTFTT9 69VIVTFT LT JUTF €8ES 6'99TSOF 8+ JurF fuy 6P
CILFSY9 98I8FFIT S8PTIFEST 616TEFS 0T JUrF¢¢oc JUrF ¢899 JurF fuy Y
I'09FL9 OT0IF08 JurFjur - 79698 F¥'1¢ JUTF QYL ¥ 81¥87F0°LY JurF fuy LP
vY8FOY SLS8FIOl L'E€OSTFOLI TI'SEITF6LI JUIFTepl JurF1cs JurF8eres 9p
SYOLIF S8 STOTIFLSL TITWEFT 6T $E€SSTTFO 9 JurFLsL JUIF8'86 JurF fuy sp
SOPFST 9€8CIFTY9 JUIFLIOLIT 966791 F911 JUIF 96T L€6TSEFITT JurF fuy vP
9SFTT SEFIT 6'SO0TCFI6 6 1LOFIFLSI JurFgoL JuIF8°201 JurF fuy €p
COLYFY Ol THYCEIFV LT 9TOLTFYET 9°SH9S F6°0¢€ JurF L6y JurF fup JurF Juy 4
1'€CF9L ['SIF89 CSLFTL €98C1F96 JUTFSPILI JurF fug JurF fug P
2/dgpoT 2/dpzor 2/dzrs d/d9st d/dger d/dp9 d/dgg

100

Appendix A. Appendix: Tables

00FI'S— 00FI'S— 00FI'S— 00FI'S— 00FI'S— 00FTS— 00TFe€s— zodof
00FZT O00F€T T0FET O00F¥T O00F¥I O00F+#T 00F€T due
I'0OFIC 1T0FICT TOFET 10FLT TOFST 10F8T 10F6T 1P
SOTES S0TI6 LOTSS 90TL6 I'TFOIl S0FSIT LOFLOI 0OTP
POTEL SOFEL 80FO0L €0F€L SOFPL LOTO8 SOTFSL 6IP
1'0FZC 10FTT 10F€T 10F9C 10FLT 10F8T 10F8T SIP
COF6Y €0T0S €0FT6+F €0F9S +0T09 TOFI9 00FLS LIP
POTI9 SOFP9 TOTS9 +O0FTL €0FSL €0TSL +O0F0O8 9IP
00F9T T0F9T T1T0F9T 00FLI O00FLI 00F9T O00F+¥1 SIP
TOFTT TOFPT 10FST 10F0€ T0FEE €O0TFEy TOFLY pIP
SOTYZI 91F6Tl TITFSEl SITFECEl LOTFYSI TIFI9 ¥TFCLL €IP
90FLS LOF99 80F€9 60F8L I'IF8S 90F66 S0FLS TIP
TOF¥e TOFPT TOFLT 10FTE 10FLE +O0FTS TIFLS TIP
POFSY 90FLY LOF¥S €0F6S €0F89 €0FTL 90FEL OIP
LOF9L SOFI6 TIT6S OIFIO0l TIFCIL LIF0T $I1FTSI 6P
I'0FTI 10F¥1T TOFOL TOFIT €0F9C €0FTE €0TF8E 8P
1'0F9C €0FIE TOFIE €0T9¢ 80F6F LOTOL SOTSS LP
POFI9 90FS9 TIFOL LOFT6 9ITFCII I'ITF9¥I 60F9TI 9p
I'0OFLT TOFST 10F€T 10FIE +O0FEy 90Fv9 €IFI6 SP
1I'0F0E v0FT6€ 10FTy +vOFSH SOFLS €O0F¥S TOT9+ P
TOFEY €0FLS TOFE9 90FIL +O0FL6 SOTIOI SOTF06 €P
TOFEY €0F6F €0FSS SOFL9 +0TF6S 60TEC0l SOTLEI P
I'0F€T 10F8T 10F8T TOFOE 10F6CT 10FLT 00FST IP
2/dgpor d/dpron d2/dzrs o/dgst d/dgz1 2/dp9 d/dge

101

Appendix A. Appendix: Tables

00FI'S— 00FI'S— 00FI'S— 00FI'S— 00FTS— 00FTS— 00TF+s— zodof
I'0OFET 00F€T 00F¥I 00F¥1 00F+1 00F€T 00Fc¢l due
I'0F6l 10F0C 10FTT 10FST 10F8T 00F8T 10FLT 1P
LOTES 90TFL8 OITFS6 S0T66 LOFIIL TOF9Il 80FCOl 0P
POTTL YOFPL TOTEL SOF¥L 90F¥L SOTSL TOFSL 6IP
I'0OFIC 10FE€T 10F¥e 10FLT 10F8T 10F8T 10FLT SIP
COTFSY €0T8Y TOTOS FOFSS €0T6S €0FLS TOFOS LIP
TOT6S €0FT9 TOTFS9 €0F89 ¥OFL9 <TOTIL €0FSL 9Ip
I'0OF9T 10F9T 00F9T T0FLT T10F9T T0FST O00FFI SIP
1I'0Fce 10F€T 10F9C 10F8T 10FI€E CTOFSE T10T6€ bIP
60FSTl €0F6Tl CIFTEl SO0FSYI TIFEYI STFLYL 61FIvl €IP
TOFSS TOFT9 TIF99 90F€L 80FI6 80FI6 CTOFES TIP
1'0F€T 10F¥T 10F9C 10F8T TOFEE TOFSE €0F6+F TIP
TOFTY TOFvVY €0F6v CTOFHS TOF6S +O0FE9 €0FLS OIP
90FT8 90F+S LOFT6 +OFPe LITLII SIFLEL TITISI 6P
I'0FTI 10F€T T0FST 10F8T 10F0C 10FST 10F9C 8P
TOFLT 10F6CT TOF6T TOFVE TOFPy 90F6S T'ITF6L LP
SOTSS ¥0T09 SO0TFL 90TF8 60F€0l LIFTT TITFLTI 9p
I'0FLT TOF6T TOFYT TOFEE TOTFEP +v0T6S O0TTFI6 SP
€OT0E TOT¥E 90Ty €O0T¥y LOTES FOTIS 00FCy vP
POFIY +vO0TFLY €0FSS €0F99 <TOFTS +O0FTS 90FTL €P
COTOY €0T9v €O0THS F0TS9 SOTES LOTOOI €TTFEHI P
'0FE€T 10F9C 10F8T 10FIE 10F6C 10FLT 10F+T IP
2/dgpor d/dpron d2/dzrs o/dgst d/dgz1 2/dp9 d/dge

102

Appendix A. Appendix: Tables

rOFSS— 0TF96— [I'TF8S— SIF6S— 6'1FT9— TSF89— I'8IF98— 7930
I'0F¢T 90F+'1 LOFST [I'CFLT vIF91 9IFSI Ci1F¥¢1 dure
SYF8T TIOFLS 9009FI'IT L0OS9IF08I JuIF1L6 JurF 168 Jurs fur - 1Tp
0CT9CFSLT S 6691 FT 6T JUIF 126 JurF¢¢€ci JUrF9:87¢ JUIF¥'+0¢ JurFfur - 0TP
€6STFTLL TH0€69F S69 JUIF$98 TPE86FI1'S9 TO09S66F6'8IT JUIFSLOSLT JuIFH79¢ 6IP
SIFST Y'SFTE L'EOEFLY9 T'LIOFEEl 1'89vE8F6°9F JurFeso JurFoore 8IP
6'9CFCT9 S LSOEFYTT JUTFL'19 80€0LEFETY JUIFSIel JurFL6S0cy JUIFTHELT LIP
6'SEF98 T'LI9F98I 0TTLEFV 6T JUrF8911 JurF7est JUrFTI61 JuUIFE8y8 9IP
0TF91 9TFIT LEFTT LSF¥T 89TF8T 8YSYFSS JUIFLYET SIP
LITFTY SYSIFTS8 ¥9STFICI JurF¢69 JUr 866 JurF9e66 JuIFvecy pIP
['€SLFE9T v ¥orFLSE 1°06V89F6'1L JUrF eyl JurF6vee JUIF G861 JUTFTLLOYO — €IP
L'16F 901 €80EFEST 6 1€ELTF6'6F 9LV6El F8TS JUIF¢8LT JurT 611 JuIFTOST TIP
VIYFOY 0'88EFEO0l 8918y FH'TT JUrF968 JUIFoyIe JUrFsyy1 JurFceel TIP
8TEYFTEL TE68EFITT 9 SI09F8 Y€ JUrF18LT JUrF1°¢51 JUrF19L1 JUIFSE6e OIP
TS9TF6FL 806V FLOL 96hPF96I 898LYFI6F JurF¢001 JurFg961 JUIFTSIT 6P
80F91 9LSFTE 0¥6FT9 JUIF¢y8 S9E€TTOFT'L9 JUrFo'Lel JurF fuy Y
8V9FSS STIOFSII T'TEOLFOEE 9STLE9FIES JUIF098 JUIF61el JUIF S LYE6 LP
I'vPFSL S8SSFEO0T 0TPISSFO9 6 19%CI FT o JUIFT 601 JurFecel JuUIF0€e9 9p
VEFST STLLFLIL S6SE0IFSIT #66STFTIE JUIF 1Lyl JUrFg€or SUIF LIV sp
80CFLS ['6CIF1'6 69S0EI F80E €SE€61 F o JUIFTH0€ JurFei1or SurF T8l vP
[I'9SF6L 69¢SIFSIT 9°GLISFRIE S 46565 F T8 JUIF 66911 JUIF418¢C JurF fuy €p
90rFS9 T'¥IOIFTII S I8CITIFO00E JurFv6¢€1 JurF88Ic JUIF6ELl JulFyvI8Y 4
8TFOE T8FOY 9EPISTFOTL S8P8TFOEI JUIFEYS 6'SSEceFYeS JUIFT0LT P
2/dgpoT 2/dpzor a2/dzrs 2/d9st 2/dger 2/dp9 d/dgg

103

Appendix A. Appendix: Tables

80F9S— I'TF8S— C1F8S— 0CFI19— OVIF69— 98IFLL— tI9FS6— 7930
CIFSI 9TF91 9TFLI CEFSI €TFII OIFV1 I'F¢1r dwe
808F LS LTISOIF6VC 6979CF 81T JUIF6'191 JUrF¢ 191 JurF fur JurFfur TP
['66LS F 0S¥ JUTF091T +'9€T8T FE€9L JurFocer JSUIFOLIOT JUIF 6 V0V JurFfur - 0TP
091€SFO6F 9SOIITFI09 €S8P6FLI8 JUIFHTITI JUIFv1L6 JUIFELSL JurF fur 6IP
S'SOEF L9 09SFTS SOPEIFSSI 9€6ThFT8C JUIF6701 JuUIF 6610 JurFfur QTP
¥'799S FO'I¥ 0 LEYYI FS6€ JUIF 6'¥€1 JUrF 9ty JUIF¥659 JUIF 9 L6LT JurF fur LIp
6'CLLOFO6LE 6TOILFLEE 80LOSF6 TP JurFo1el JuIFT6916 SuUIF1°8S¢ JurF fur 9rp
9¢IF8T EYFTT SCLFLT 6'STSF09 JUIF vyl JUIF09L9%1 JurF fur - SIp
8 ESHIF¥81 P EIVECFSST T1°0S61F60C L8IOITFO9S JurF¢6¢o1 JurFL0ocel JurF fur pIp
S661EF SOV JUIF6'6LY 0'SS89LF 998 JUTFT¥8T JUIF L'G6L08 JUIFSTHOI JurFfur €Ip
096LF1'TC 9 Iv6F8TC S SEEEFTULE 9ELOILF6ES JurFLver JuIFT 6Tl JurFfur 7IP
SLIETF6IT L6STIFO6El SS8TEFEIT 8LIOGSFTIL JurF¢Lee JurFv1ssey JurFfur - 1IP
€G8S6F LTy ¥9E8F8 0T S SSTHIFI'LY JUrF7o1e JUrF99¢¢ JurF Juy JurFfur 1P
8IL8FO98T O8PLIFLOT 96EISIFSTY JUTFTH0T JUrFocor SurFesrel JurF fuy 6P
6'8C9F 6'L TYILF8Y TOTWCFH LT L1681 FHTS €T1606€F88L JUIFLSESYy JUIFOT8YEI sp
I'LSLFOST 1'66CCFLSI T'SY6TFL6T +LI6TIFHIS JUIFQ6LS JulFL'8L6] JurF fuy LP
['0EEFTOT 0°S08TFOST 8SE8IFITIE S SSSSTIFO19 JurF 618 JulFLT01 JurF fur 9p
8VSIFT8 998LFECTI I1H0STFETT 8 SEHOFLLE JUrFL001 JUIFR6ET JUIFSOPE sp
I'IPSFSHL 808ICFI0T 6+69CF I 1€ S T6vEl FT0S JurFfur JurFyeLl JurF Juy 14
SYOIF L6l v'86VEFYEC HOLSEFTSE JuUIFvyopl JulFyoLLe JulF1gee Jur fuy €p
00I6F 9Ll T TSLIF¥¥C 80IETFS 6T JUrFLv8 JUrFse6161 JulFS 98081 JurF jup 4
['CIF6E TOEVOTTFSET 6°690SFL'LI JurFLeL JurFeorr JurF¢8Ll JurF1989¢ P
2/dgpoT 2/dpzor 2/dzrs 2/d9st 2/dger d/dp9 d/dgg

Appendix B

Appendix: The Code

This appendix describes the code we have used and created: it is intended as a guide
should anyone want to repeat or modify the experiments we have performed. Figure
B.1 presents the (pruned to contain only the useful information) directory tree of our
codebase. The following two sections describe the contents of the two main directories
containing the approximation implementations (Section B.1 and the experiments code
(Section B.2).

104

Appendix B. Appendix: The Code 105

/
| code
drtoolbox
figtree-0.9.3
gpml
project
inducing
iterative
local
sod

. _evaluations

SYNTH

CHEM

SARCOS

analysis
SYNTH?2
SYNTHS
CHEM
SARCOS
SoD
Local
FITC
IFGT
clusters
dissertation

Figure B.1: Directory tree containing the code for approximation algorithms and experi-
ments discussed in this dissertation. The contents of the most important directories are

discussed in this appendix.

Appendix B. Appendix: The Code 106

B.1 /code: approximation implementations and exter-

nal source code

This directory contains some open source code written by other researchers, as well as

our own code:

drtoolbox : Matlab Toolbox for Dimensionality Reduction, v.0.7.2 (van der Maaten

[2010]) that we used to project the datasets we use into two dimensions.

figtree-0.9.3 : FIGTree, v0.9.3 (Morariu [2010]) that implements the Improved

Fast Gauss Transform and Farthest Point Clustering algorithms.

gpml : GPML, v.3.1 (Rasmussen and Nickisch [2010]) that implements the full
Gaussian Process Regression algorithm, the Squared Exponential covariance

function and the FITC approximation.

project : Our code, implementing the Subset of Data, Local GP and GP with
CG/fast MVM approximations. This code relies on the packages listed above.
In addition, this directory contains inducing, where we implemented Ran-
dom Recursive Clustering, Random Projection Clustering and three induc-
ing points choice methods: Recursive Random, FPC centers and Informative

Vector Machine (these are all described in Chapter 4).

B.2 /evaluations: the experiment and analysis frame-

work

The dataset-named directories contain the full datasets we use. It is not clear whether
we can release CHEM, SYNTH2 or SYNTH8 to the public yet, so only SARCOS should
be included with this code at the moment. evaluations also contains scripts that
automatize testing the methods, as well as scripts that perform analysis and plotting on

the gathered data:

evaluations the main test scripts: testSod.m,testLocal.m,testFITC.m,
testIFGT.mare here. They demonstrate how to use the code in code directory
to perform approximate GP regression with varying accuracy/complexity trade-

offs, and store the data gathered in this way for use with our analysis scripts.

Appendix B. Appendix: The Code 107

analysis The directories named after the datasets contain scripts that plot the algo-

rithms’ time vs error performance on each dataset.

The directories named after the methods plot each method’s complexity vs error
performance (that is, plot the SMSE and MSLL as a function of the inducing

points count, cluster size, or allowed MVM error).

clusters contains scripts that look at some cluster characteristics of the data.
Note that more of those is contained in the Local directory (understanding the

Local GP approximation required looking at data clustering in some detail).

Finally, dissertation contains the source code for this dissertation, in case

anyone needs to find the sources for any of the figures we included in this work.

Bibliography

F. J. Anscombe. Graphs in Statistical Analysis. The Americal Statistician, 27(1):17—
21, 1973.

C. Archambeau, D. Cornford, M. Opper, and J. Shawe-Taylor. Gaussian Process Ap-
proximations of Stochastic Differential Equations. In JMLR: Workshop and Confer-
ence Proceedings 1: 1-16, 2007.

C. M. Bishop. Patter Recognition and Machine Learning. Springer Science+Business
Media, 2006.

M. Gibbs and D. J. C. MacKay. Efficient Implementation of Gaussian Processes, 1997.
Technical Report.

T. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293-306, 1985.

E. Jackson, M. Davy, A. Doucet, and W.J.Fitzgerald. Bayesian Unsupervised Signal
Classification by Dirichlet Process Mixtures of Gaussian Processes. In IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing, 2007.
A. Krause. Near-optimal sensor placements in Gaussian Processes. ICML, 2005.

N. D. Lawrence, M. Seeger, and R. Herbrich. Fast Sparse Gaussian Process Meth-
ods: The Informative Vector Machine. Advances in Neural Information Processing
Systems, 15, 2003.

M. Lazaro-Gredilla, J. Quinonero-Candela, C. E. Rasmussen, and A. R. Figueiras-
Vidal. Sparse Spectrum Gaussian Process Regression. Journal of Machine Learning
Research, 11, 2010.

D. J. C. MacKay. Information Theory, inference, and learning algorithms. Cambridge
University Press, 2003.

108

Bibliography 109

M. Malshe, L. Raff, M. Rockley, M.Hagan, P. M. Agrawal, and R. Komanduri. Theo-
retical investigation of the dissociation dynamics of vibrationally excited vinyl bro-
mide on an ab initio potential-energy surface obtained using modified novelty sam-
pling and feedforward neural networks. II. Numerical application of the method.
The Journal of Chemical Physics, 127, 2007.

V. Morariu. FIGTree: Fast Improved Gauss Transform with Tree Data Structure ver-

sion 0.9.3, 2010. URL http://www.umiacs.umd.edu/ morariu/figtree/.

V. Morariu, B. V. Srinivasan, V. Raykar, and R. Duraiswami. Automatic online tuning

for fast Gaussian summation. Advances in Neural Processing Systems, 2008.

I. Murray. Gaussian processes and fast matrix-vector multiplies, 2009. Presented at
the Numerical Mathematics in Machine Learning workshop at the 26th International
Conference on Machine Learning (ICML 2009), Montreal, Canada. URL http:
//www.cs.toronto.edu/ murray/pub/09gp_eval/ (as of March 2011).

D. Nguyen-tuong, J. Peters, M. Seeger, and B. Schlkopf. Learning Inverse Dynamics:
a Comparison. In Proceedings of 16th European Symposium on Artificial Neural

Networks, Bruges, Belgium, 2008.

J. Quinonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate
Gaussian Process regression. Journal of Machine Learning Research, 6:1939-1959,
December 2005.

J. Quinonero-Candela, C. E. Rasmussen, and C. K. I. Williams. Large Scale Kernel
Methods, chapter Approximation Methods for Gaussian Process Regression. MIT
Press, Cambridge, MA, 2007.

C. E. Rasmussen. The Gaussian Process Web Site, 2011. URL http://www.

gaussianprocess.ord.

C. E. Rasmussen and H. Nickisch. Gaussian Process Regression and Classifica-
tion Toolbox version 3.1, 2010. URL http://www.gaussianprocess.org/gpml/
code/matlab/doc/.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

V. C. Raykar and R. Duraiswami. Fast large scale Gaussian Process regression using

http://www.umiacs.umd.edu/~morariu/figtree/
http://www.cs.toronto.edu/~murray/pub/09gp_eval/
http://www.cs.toronto.edu/~murray/pub/09gp_eval/
http://www.gaussianprocess.org
http://www.gaussianprocess.org
http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.gaussianprocess.org/gpml/code/matlab/doc/

Bibliography 110

approximate matrix-vector products. In Learning workshop, San Juan, Puerto Rico,
2007.

V. C. Raykar, C. Yang, R. Duraiswami, and N. Gumerow. Fast computation of sums
of gaussians in high dimensions, 2005. Technical Report CS-TR-4767, Dep. of
Computer Science, University of Maryland, College Park.

B. Scholkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002.

E. Snelson. Matlab code for Sparse pseudo-input Gaussian processes (SPGP), 2006.
http://www.gatsby.ucl.ac.uk/ snelson/SPGP_dist.tgz.

E. Snelson, C. E. Rasmussen, and Z. Ghahramani. Warped Gaussian Process. In

Advances in Neural Information Processing Systems, volume 14, 2004.

E. L. Snelson. Flexible and efficient Gaussian process models for machine learning,

2001. DPhil dissertation, University of London.

N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian Process Optimization in
the Bandit Setting: No Regret and Experimental Design. In Proceedings of the 27th

International Conference on Machine Learning, Haifa, Israel, 2010.

L. van der Maaten. Matlab Toolbox for Dimensionality Reduction, v0.7.2,
2010. URL http://homepage.tudelft.nl/19749/Matlab_Toolbox_for_

Dimensionality_Reduction.html.

L. van der Maaten and G. Hinton. Visualizing Data using t-SNE. Journal of Machine
Learning Research, 9:2579-2605, 2008.

V. N. Vapnik. An Overview of Statistical Learning Theory. [EEE Transactions on
Neural Networks, 10(5), 1999.

C. Yang, R. Duraiswami, and L. Davis. Efficient Kernel Machines Using the Im-
proved Gauss Transform. In Advances in Neural Information Processing Systems,
volume 17, 2004.

http://www.gatsby.ucl.ac.uk/~snelson/SPGP_dist.tgz
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html

	Introduction
	Motivation
	Related Work
	Outline of the dissertation

	Theoretical Background
	Regression
	Linear Regression
	Gaussian Process Regression
	Extending linear regression
	Basic GPR: Training and Testing
	Hyperparameter Estimation

	GPR Approximations
	Subset of Data
	Local GP
	Fully Independent (Training) Conditional
	Improved Fast Gauss Transform MVM
	Clustering
	Recursive Projection Clustering (RPC)
	Recursive Random Clustering (RRC)

	Choosing the Inducing Points
	Random subset
	Farthest Point Clustering
	Differences between Random and FPC

	Implementation
	GPML
	SoD and Local GP
	FITC

	Figtree
	IFGT predictive variances
	IFGT hyperparameter optimization

	Complexity in practice
	Space/time complexity
	Local GP Time behavior
	IFGT complexity

	Clustering and Inducing Points
	Tests and additional scripts

	Empirical Comparison Setup
	Datasets
	Error Measures
	Time Measures
	Theory vs. Practice

	Results
	Problems with IFGT
	SoD, Local GP and FITC: performance as a function of m
	Best expected performance
	SoD
	FITC
	Local GP

	SoD, Local GP and FITC: time-wise comparison
	SYNTH2
	SYNTH8
	CHEM
	SARCOS

	Recommendations
	Recommendations by computational budget constraint
	Recommendations by dataset type

	Conclusions and Future Work
	Summary of completed work
	Other methods
	Partially Independent Conditional
	Sparse Spectrum Gaussian Processes
	Warped Gaussian Process

	Future Work
	FITC on a subset of data
	Local GP efficiency
	Mixing different methods for training and testing

	Conclusion

	Appendix: Tables
	Appendix: The Code
	/code: approximation implementations and external source code
	/evaluations: the experiment and analysis framework

	Bibliography

