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Abstract

Given a set of images, each of which contains
one instance of a small but unknown set of ob-
Jects imaged from a random viewpoint, we show
how to perform unsupervised learning to dis-
cover the object classes. To group the data into
objects we use a mixture model which is trained
with the EM algorithm. We have investigated
characterizing the the probability distribution
for the features of each object either in terms of
an object model or by a Gaussian distribution.
We compare the performance of these two ap-
proaches on a dataset containing six different
stick-animals, and on a dataset consisting of
seven hand gestures.

1 Introduction

Imagine that you are given a set of images, each con-
taining an instance of one of a small, but unknown set of
objects, imaged from a random viewpoint. For example,
the object models could be 2-d shapes and the projec-
tion an affine transformation; or the object models could
be 3-d shapes, which are orthographically projected onto
the 2-d image plane. Your task is to sort the images by
object model. This is an unsupervised task; you are not
given the object models, nor are the images preclassified.

Work on supervised classification often assumes that
the correspondences between features across images are
known. If we make the same assumption, then the unsu-
pervised task is to untangle the variation in the data due
to (i) seeing the same object from different viewpoints
and (ii) seeing different objects.

The viewpoint variability can be handled by character-
izing a probability distribution in feature space for each
object. This may have a parametric form, or be based
on models of the objects; we consider both alternatives
below. The unsupervised algorithm is obtained by using
a mizture model of these distributions (one distribution
per object), and adapting the parameters of the distri-
butions so that the likelihood of the data is maximized.

This unsupervised method may be useful if you were
trying to learn geometric models for a number of fairly
similar objects (like chairs, for example) from data that
is not labelled with the object identity. A single object
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model would learn the average of the appropriate class
specific models, but the mixture model approach should
learn a model for each class.

The organization of the rest of the paper is as fol-
lows: in section 2 we investigate what kinds of probabil-
ity distributions can be expected in feature space from
the imaging of object models. In section 3 these distribu-
tions are used to build classifiers. Section 4 shows how to
create an unsupervised learning algorithm by using mix-
ture models. Results of experiments on two datasets are
reported in section 5, and section 6 contains a discussion
of the results.

2 Probability distributions in feature
space

Our objects are comprised of n (uniquely identified) fea-
tures, and each feature is described by a vector of k
numbers. Any view will correspond to a point in the
nk dimensional feature space. We may choose some well
defined points on the objects as features so that in the
image each feature will be described by the 2 and y co-
ordinates of the point, but it would also be possible to
choose features such as line segments that have orienta-
tion and scale as well as location in the image. If we know
the spatial relations between the features that make up
the rigid object, and we know the instantiation parame-
ters (position, orientation, and size, for example) of the
object, then we can calculate the values of the feature
vectors.

If the vector of object instantiation parameters is de-
noted by z, then the predicted feature vector for feature
J is given by X; = f;(z). If the transformation from z to
X; is linear, then f; is a-matrix. Assuming a Gaussian
probability distribution for the observed feature vector
x; given the predicted vector X;, we obtain

1 1 . - .

. . (1)
where W; is the covariance matrix used to calculate
the Mahalanobis distance (x; — J”cj)TWj‘l(xj — Xj) be-
tween the predicted values for feature j and the obser-
vations. In our experiments we have used W; = o%I
for all j. The probability of observing all n features is
simply calculated by multiplying together the probabili-
ties for the individual features, assuming independence.



Letting x be the concatenation of all n vectors x;, then
P(x|z) = [1; P(xj]z).

To define a probability distribution in feature space
based on equation 1, we would need to know the prior
probability distribution of the instantiation parameters
P(z), to obtain P(x) = [ P(x|z)P(z)dz. However, it
is not really necessary to do the integration if we only
want to compare the probability of a set of observed
features under different models; we can just compare
the maximum values P(x) = maxz P(x|z). Assuming
a non-informative prior for all models, and that all of
the W;’s are equal, this maximum likelihood approach is
Justified because the peaks of the posterior distributions
will have the same variance, so the integral will factor
into P(x) times a hypervolume factor which is the same
for all models. If these conditions do not hold, or if the
models have different numbers of degrees of freedom, the
(Bayesian) integration method should be preferred over
the maximum likelihood approach.

If f;, the function that predicts the feature vector
given the instantiation parameters, is linear, the best
fit instantiation parameters can be found analytically
because the distribution P(x|z) turns out to be a multi-
variate Gaussian in z given the image data, i.e. P(x|z) =
P(x)exp{—(z—2*)T (z2—2*)/202}, where z* denotes the
best fit instantiation parameters.

As an example, consider the case of models made up
of n 2-d point features imaged under 2-d affine transfor-
mations (corresponding to the orthographic projection
of a planar object viewed from a general position). The
z and y coordinates of point j in the object-based frame
are (u}, ). The instantiation parameters are denoted
(tz,ty,a,b,c,d), where t; and t, are the z and y trans-
lations and the other parameters depend on the rotation
and scaling of the view, so that the predicted position
(£;,9;) of feature j is given by

& = apl+bul+ts (2
9 = cpl+dul+ty ®)

If there was no observation noise, the observations
would lie on a 6-d subspace of the 2n-dimensional space.
This subspace can be generated by taking linear com-
binations of six basis vectors (Ullman and Basri, 1991;
Edelman and Poggio, 1990). The addition of noise means
that the 6-d subspace will become more “fuzzy”, occu-
pying a finite volume of the 2n-dimensional space. This
observation leads to our alternative method of character-
izing the probability distribution in feature space using a
Gaussian model. This Gaussian is a higher dimensional
analogue of a pancake or sausage shape; the variance will
be large for directions within the 6-d subspace, and small
in directions orthogonal to the subspace. In general the
Gaussian will require 2n parameters to specify its mean,
and n(2n+1) parameters for the covariance matrix. The
mean and the covariance matrix will depend on the first
and second moments of the instantiation parameters, the
positions of the features in the model and the covariance
matrix of the noise.

Similar arguments can be made for other viewing
transformations of interest. For 2-d point models un-
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der similarity transformations (rigid rotations, scalings
and translations in the plane) the subspace is four dimen-
sional, and for 3-d point models under affine transforma-
tions followed by orthographic projection it is eight di-
mensional. Orthographic projections of 3-d point models
form a six dimensional non-linear subspace of this eight
dimensional space.

A geometric interpretation of the difference between
the model based and Gaussian approaches is as follows.
For the Gaussian method, the likelihood of an obser-
vation depends on the Mahalanobis distance from the
mean to the data point. For the model based approach
an object is represented by a lower-dimensional (para-
metric) surface in the feature space, and the likelihood
of a observation now depends on the minimum distance
of the point from the surface.

3 Classifiers

To classify a feature vector as belonging to a particular
object, we need to calculate P(w;|x) o< P(w;)P(x|w;),
where w; indexes the classes. If the prior probabilities
P(w;) are equal, then classification reduces to finding the
class that maximizes the likelihood P(x|w;). For model
based approaches, this is equivalent to finding the model
which has the smallest Mahalanobis distance to the data
(see equation 1), if we make the assumptions that allow
the replacement of P(x|w;) with P(x|w;).

Ullman’s “structure from motion” theorem (1979)
showed that it is possible to do (supervised) learning
of the models. An example of more recent work along
these lines is the paper by Tomasi and Kanade (1992).
The work of Bennett et al. (1993) on “recognition poly-
nomials” also falls into the model based category.

A technique closely related to the model based ap-
proach is to transform the data so that the effect of the
viewing transformation is removed. For example, to ob-
tain invariance to affine transformations of the image
features, Lamdan and Wolfson (1988) use three of the
features to define a basis, and then measure the posi-
tions of the other features relative to this basis. This
method works for orthographic projections of planar ob-
Jjects, but cannot be extended to full 3-d objects.

It is also possible to build a classifier without using
object models; see, for example, the radial basis function
classifier of Poggio and Edelman (1990).

4 Mixture models

We have shown how to characterize the probability dis-
tribution in feature space for one object. Observations
coming from a number of different models can be char-
acterized by a mixture model Ppiz(x) = 3, m Pi(x),
where the m;’s are the “mixing proportions” of each
model (3°;m = 1) and P;(x) is the probability of the
data under model i.! To train the mixture model we
adjust the parameters of each component in order to

! For the object models we can use P;(x) instead of Pi(x).
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Figure 1: The six “stick figure” models of animals used
to generate the “animals” dataset. From top to bottom
and left to right they are snake, starfish, bird, cat, giraffe
and hippo. The models are really only represented by the
points; the lines are added to aid visualization.

maximize the log likelihood of the training data

M
L= Zbg(z: i Pi(xc))

where ¢ indexes the training cases.

The training can be done with the EM algorithm
(Dempster, Laird and Rubin, 1977), where the E (Ex-
pectation) and M (Maximization) steps are applied al-
ternately. Starting from initial randomly chosen mod-
els, on the E step we calculate the “responsibility”
ri = miPi(x.)/ 30; mi Pj(x.) of each model for each im-
age. On the M step, having fixed the responsibilities,
we adjust the model parameters to maximize the likeli-
hood. This maximization is split into M sub-problems,
one for each model. For a mixture of Gaussians model,
the means and covariance matrices of each component
are updated. Details of these steps can be found, for
example, in McLachlan and Basford (1988).

For a mixture of object models, the M step is non lin-
ear and we used conjugate-gradient search in the experi-
ments reported below. The value of 62 was re-estimated
using the EM algorithm.

(4)

5 Results

We have tested the unsupervised learning procedure, us-
ing both object models and Gaussians, on two datasets,
called “animals” and “hand gestures”.

5.1 Datasets

The “animals” dataset is generated from the six models
shown in figure 1. Each model has six feature points.
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Figure 2: Examples of the seven hand gestures, “five”,
“four”, “three”, “two”, “one”, “thumbs up” and “point”,
from Ahmad and Tresp (1993).

50 training examples were generated from each model,
randomly choosing a different translation, scale and ro-
tation for each instance? and then adding Gaussian noise
of standard deviation 0.1 to each of the generated points.
A further 100 examples of each class were generated from
the true models for use as a test set.

The “hand gestures” dataset is the same as was used
by Ahmad and Tresp (1993). It consists of the five (z, y)
locations of the five fingertips for 500 training and 500
testing examples of each of the seven gestures shown in
figure 2.3 The fingertip locations were obtained by per-
spective projection of the hand models at various ori-
entations and distances; translations were not used. It
should also be noted that only a limited range of depths
were used. The data was scaled to so that each feature
lies roughly in [-1,1] x [-1,1].

5.2 Training the models

For both datasets we were able to train both the model
based and Gaussian classifiers in either a supervised or
unsupervised manner. Supervised training is similar to
the unsupervised version, except that the “responsibili-
ties” are set to either 1 or 0 based on knowledge of the
true class. The supervised training is useful as it pro-
vides a check as to whether the method can actually
classify the data correctly if the correct parameters can
be found.

The final parameters found by the EM algorithm for
fitting mixture models will depend on the starting values,
so it is necessary to try several randomly chosen initial
configurations. The best run is the one that gives the

%Let t; and t, denote the translations, r the scale and ¢
the rotation angle, and set ¢ = rcos 4, s = rsinf. t,, t,, c
and s were all sampled from a unit variance Gaussian. The
models were normalized so that ) .(pz)° + Yoy =1

3We thank Subutai Ahmad for providing these datasets
and figure 2.



highest likelihood of the data.

A common problem with using mixture models is try-
ing to decide how many components are present; for
example, see the discussion in McLachlan and Basford
(1988). In the experiments reported below, we set the
number of components to be the correct number of
classes, based on knowledge of the datasets. However,
experiments starting off with more components and us-
ing variable mixing proportions were often able to dis-
cover the correct number of classes. Indeed, this pro-
cedure may make the search problem easier, helping to
avoid local maxima of the objective function where one
component accounts for data that actually comes from
two different objects.

5.3 Results on the “animals” dataset

Ten different unsupervised runs of the model based
method were performed, using six randomly chosen ini-
tial models and a starting variance of 0.5. Four of these
runs successfully converged to the six classes, in an aver-
age of 9 iterations of the the EM algorithm. On the other
six runs typically five of the six classes were discovered.
The error rate of these classifiers was found to be the
same as the true generative models (because the added
noise level is quite high, even the correct models give 28
errors on the 600 test examples). Even though the train-
ing data was noisy and unlabelled, the learned models
closely resemble the true models; the learned feature lo-
cations were within 2% of the true locations on average.

Supervised training of a Gaussian classifier gave 32
errors on the test set, slightly worse than the unsuper-
vised model based performance. However, it was not
possible to obtain this kind of performance with an unsu-
pervised mixture of Gaussians. We tried ten runs start-
ing from random means at four different initial variances
(6.0, 3.0, 1.0 and 0.3); none of these runs discovered the
six classes. Typically the classifier confused the cat, gi-
raffe and hippo classes, which is not too surprising as
these shapes were designed to be very similar. Gaussian
mixture models were successfully trained on a dataset
containing only four the classes hippo, snake, starfish
and bird.

The performance of the (supervised) Gaussian classi-
fier was affected more severely than the models as the
amount of training data was reduced. This is explained
by the greater number of free parameters in the covari-
ance matrix compared to the models.

5.4 Results on the “hand gestures” dataset

To use the model based approach, we have to decide on
the specification of the models and the allowed transfor-
mations. Figure 2 suggests that for each hand shape,
the fingertips all approximately lie in a plane. Hence
we used the 2-d affine model of equations 2 and 3. Su-
pervised training of the models leads to a 96.7% correct
performance on the test set, compared to a best of 93.3%
reported by Ahmad and Tresp. However, ten unsuper-
vised runs using seven models failed to find all seven
classes. Gestures “two” and “three” were always discov-
ered, but there was always some confusion between the
other hand shapes. We were able to find the correct solu-
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tion by starting with fifteen models, allowing the mixing
proportions to be re-estimated and then using a valida-
tion set of data (held out of the training data) to select
the top seven models.

Two out of ten runs of the mixture of Gaussians
method successfully discovered the seven classes in the
data in about 20 iterations. The performance of these
classifiers was very impressive; there were only five er-
rors in 3500 test examples, giving 99.8% correct. A simi-
lar performance was found with the supervised Gaussian
classifier.

The superior performance of the Gaussian classifier in
comparison to the model based classifier suggests that
the assumptions used for the models may not be quite
correct; one possibility is that the approximation that
all the fingertips lie in a plane will not hold exactly. We
tried supervised learning of three-dimensional models on
the hand data, but obtained only 82.3% correct. This is
due to the fact that the transformation used has eight
degrees of freedom, which means that all models will
be able to obtain quite a close fit to any given set of
five fingertip locations. This problem could be reduced
by constraining the transformations, or by having more
features®.

An explanation for the excellent performance of the
mixture of Gaussians can be found in the generation of
the “hands” dataset; there was limited depth variation
and no translational offsets, so the Gaussians will not
have learned about variation in these directions. The
object models have this variability built in, and thus will
have a distribution P(x|w;) that is less tightly tuned to
the data. This was demonstrated by adding random z
and y offsets to each image in the “hands” dataset; the
performance declined to only 63.7% correct for the Gaus-
sians that had been trained on the unperturbed data, but
remained the same for the model based approach.

6 Discussion

We have shown that both a model based approach and
a mixture of Gaussians are able to discover objects with
unsupervised learning. There are a number of advan-
tages of the model based approach:

e The output is much more meaningful than the
covariance matrices produced by the mixtures of
Gaussians.

e The search problem in unsupervised learning should
be helped by the fact that we are effectively biasing
the choice of covariance matrices to the ones that
should have the correct invariance properties. This
is supported by the experiments on the “animals”
data, where the model based approach was able dis-
cover all six classes, but the mixture of Gaussians
could not.

e The desired invariance properties can be built in,
even if they are not fully present in the training
data (e.g. the effects of translations with the “hand
gestures” dataset).

*E.g. the recognition of six-fingered hands.



e The instantiation parameters at the output level can
be used as input features to a higher level in an
hierarchical scheme.

e Fewer parameters are needed to describe a model
as compared to a general covariance matrix®, which
implies that the models should need less training
data to achieve equal performance.

On the other hand, there are also some disadvantages

e It is necessary to know what kinds of viewing trans-
formations are possible in order to calculate P(x).

e Ifnot all of the degrees of freedom in the transforma-
tion are used, better performance may be obtained
by another method (e.g. the success of the Gaus-
sian mixture model on unsupervised learning of the
hand data).

o The calculations needed to fit the models to the data
are rather more complicated than those for fitting
mixtures of Gaussians.

The work can be extended to handle missing features
very readily—the necessary marginal distributions are
found by simply ignoring the features for which we don’t
have data, and then doing the same kind of calculations
as before (c.f. Ahmad and Tresp, 1993).

It should also be possible extend the approach to cases
where the computation of the best-fit parameters is not
possible analytically; we can simply use an “inner loop”
search (like conjugate-gradient). This would be neces-
sary if the feature generation model was extended to
handle outliers by using a mixture of Gaussians distri-
bution, or for the case of strict orthographic projection
of 3-d objects where there are six free parameters (z and
y translations, scaling and three Euler angles).

One of the aims of this paper has been to conduct an
investigation of the use of machine learning techniques in
computer vision, using image representations (like fea-
ture locations) which are rather different to the pixel-
lated images often used in connectionist object recogni-
tion work. This stems from the idea that it is not only
the kinds of features observed, but also their relative
spatial arrangement in the image that is important for
object recognition. By explicitly building in knowledge
of imaging transformations rather than letting networks
discover them it should be possible to considerably re-
duce the amount of training data required (c.f. TRAF-
FIC, Zemel, Mozer and Hinton, 1990).
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