
Chapter 12

Physiological Monitoring with Factorial Switching Linear
Dynamical Systems

John A. Quinn1 and Christopher K.I. Williams2

12.1 Introduction

A common way to handle nonlinearity in complex time series data is to try split-
ting the data up into a number of simpler segments. Sometimes we have domain
knowledge to support this piecewise modelling approach, for example in condition
monitoring applications. In such problems, the evolution of some observed data is
governed by a number of hidden factors that switch between different modes of op-
eration. In real-world data, e.g. from medicine, robotic control or finance, we might
be interested in factors which represent pathologies, mechanical failure modes, or
economic conditions respectively. Given just the monitoring data, we are interested
in recovering the state of the factors that gave rise to it.

A good model for this type of problem is the Switching Linear Dynamical Sys-
tem (SLDS), which has been discussed in previous chapters. A latent “switch”
variable in this type of model selects between different linear-Gaussian state spaces.
In this chapter we consider a generalisation, the Factorial Switching Linear Dynam-
ical System (FSLDS), where instead of a single switch setting there are multiple
discrete factors that collectively determine the dynamics. In practice there may be
a very large number of possible factors, and we may only have explicit knowledge
of commonly occurring ones.

We illustrate how the FSLDS can be used in the physiological monitoring of pre-
mature babies in intensive care. This application is a useful introduction because it
has complex observed data, a diverse range of factors affecting the observations, and
the challenge of many “unknown” factors. It also provides an opportunity to demon-
strate the ways in which domain knowledge can be incorporated into the FSLDS
model. Many of the specific modelling details here are also directly applicable to
physiological monitoring of adults, in intensive care and other settings.

Observations and factors

Babies born three or four months prematurely are kept, in their first days or weeks
post partum, in a closely regulated environment, with a number of probes continu-
ously collecting physiological data such as heart rate, blood pressure, temperature
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Channel name Label

Core body temperature (◦C) Core temp.
Diastolic blood pressure (mmHg) Dia. Bp

Heart rate (bpm) HR
Peripheral body temperature (◦C) Periph. temp.
Saturation of oxygen in pulse (%) SpO2

Systolic blood pressure (mmHg) Sys. Bp
Transcutaneous partial pressure of CO2 (kPa) TcPCO2

Transcutaneous partial pressure of O2 (kPa) TcPO2

Incubator temperature (◦C) Incu Temp.
Incubator humidity (%) Incu Humidity.

Table 12.1: Physiological (upper) and environmental (lower) measurement channels in this appli-
cation, with labels used to denote them later in the chapter.

and concentrations of gases in the blood. These vital signs (literally “signs of life”)
are used in neonatal intensive care to help diagnose the condition of a baby in a
critical state. The state of health of a baby cannot be observed directly, but differ-
ent states of health are associated with particular patterns of measurements. Given
observations of the heart rate, body temperature and so on, inferences can there-
fore be made about the operation of the underlying physiological systems – e.g.
whether they are functioning normally, or whether there seems to be evidence of
some pathology. This task is complicated by the fact that the observations depend
not just on the state of a baby’s physiology but also on the operation of the moni-
toring equipment. There is observation noise due to inaccuracies in the probes, and
some operations can cause the measurements to become corrupted with artifact.
The specific data channels we consider here are listed in Table 13.1, each sampled
once per second.

Types of known, common factors which affect these observations fall into two
categories: artifactual and physiological. The known factors we concentrate on here
are as follows:

• Bradycardia – temporary decrease in heart rate (physiological),

• Blood sample – artifactual rise in systolic and diastolic blood pressure mea-
surements while a sample is taken (artifactual),

• Temperature probe disconnection – the core temperature probe cools to ambi-
ent temperature (artifactual),

• Handling – opening of the incubator, leading to a drop in incubator humidity
with increased physiological variation (artifactual).

In addition to these common factors there are many examples of physiological vari-
ation due to rare factors, or for which no explanation is available.

Outline of the chapter

We describe the model in section 13.2 and compare it to other models for condition
monitoring in section 13.2.1. In section 13.3 we describe how to handle novel dy-
namics, i.e. the presence of unknown factors. In section 13.4 we describe parameter
estimation of the model, showing how domain knowledge can be incorporated. In-
ference is discussed in section 13.5 and we demonstrate the operation of the system
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in section 13.6. The description in this chapter gives an overview of the applica-
tion and model; for more specific implementation details, see Quinn, Williams and
McIntosh (2009) and [8]. Demonstration code is also available [9].

12.2 Model

We first recap on the SLDS before generalising to the factorial case. In such models
the observations y1:T , yt ∈ Rdy , are generated by hidden dynamics x1:T , xt ∈ Rdx ,
according to:

xt ∼ N
(
A(st)xt−1 + d(st), Q(st)

)
, yt ∼ N

(
C(st)xt, R

(st)
)

(12.1)

where st ∈ 1, . . . ,K is a discrete variable defining which of a set of K different
dynamics is active at time t. Here A(st) is a square system matrix, d(st) is a drift
vector, C(st) is the state-observations matrix, and Q(st) and R(st) are noise covari-
ance matrices. In this formulation, all dynamical parameters can be switched be-
tween regimes. Similar models referred to in the above literature sometimes switch
only the state dynamics {A,Q}, or the observation dynamics {C,R}. Conditioned
on a setting of st, the model is equivalent to a linear Gaussian state-space model
(Kalman filter).

It is possible to factorise the switch variable, so that M factors f (1)
t , . . . , f

(M)
t

affect the observations yt. The factor f (m) can take on L(m) different values. The
state space is the cross product of the factor variables,

st = f
(1)
t ⊗ f (2)

t ⊗ · · · ⊗ f (M)
t (12.2)

with K =
∏M
m=1 L

(m) being the number of settings that st can take on. The value
of f (m)

t depends on f
(m)
t−1 , and the factors are a priori independent, so that

p(st | st−1) =
M∏
m=1

p
(
f

(m)
t | f (m)

t−1

)
. (12.3)

The joint distribution of the model is

p(s1:T , x1:T , y1:T ) = p(s1)p(x1)p(y1 |x1, s1)
T∏
t=2

p(st | st−1)p(xt |xt−1, st)p(yt |xt, st)

where s1:T denotes the sequence s1, s2, . . . , sT and similarly for x1:T and y1:T .
p(xt |xt−1, st) and p(yt |xt, st) are defined in Eq. (13.1), and p(st | st−1) in Eq.
(13.3).

By considering the factored nature of the switch setting, we have an observation
term of the form p(yt |xt, f (1)

t , . . . , f
(M)
t ). This can be parameterised in different

ways. In this work, we specify conditional independencies between particular com-
ponents of the observation yt given the factor settings. This is explained further
in section 13.4.5. Although we make use of prior factored dynamics in Eq. (13.3)
in this work, it is very simple to generalize the model so that this no longer holds.
The inference algorithms described in section 13.5 can still be applied. However,
the separate factors are crucial in structuring the system dynamics and observations
model.

In the physiological monitoring application, factor settings f (1)
t , . . . , f

(M)
t rep-

resent different conditions (e.g. whether a probe has fallen off or not, whether
there is a specific problem with the circulatory system or not). The state xt can
contain estimates of the “true” values of physiological properties, based on noisy,
artifact-prone observations yt.
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(a) (b)

Figure 12.1: Graphical representations of different factorial models, with M = 2 factors. Squares
are discrete values, circles are continuous and shaded nodes are observed. (a) The Factorial HMM,
(b) the Factorial AR-HMM, in which each observation depends on previous values.

12.2.1 Comparison with other switching models for condition monitor-
ing

We have assumed the existence of a discrete switch variable which indexes different
modes of operation. In our formulation, the problem of condition monitoring is es-
sentially to infer the value of this switch variable over time from new data. We are
particularly interested in the class of models in which there are first-order Marko-
vian transitions between the switch settings at consecutive time steps. Given the
switch setting it is possible to characterise the different dynamic regimes on other
ways, yielding alternative models for condition monitoring. In this section, we first
review the hidden Markov model (HMM) and autoregressive hidden Markov model
(AR-HMM), and then discuss their advantages and disadvantages for condition
monitoring with respect to the (F)SLDS.

A simple model for a single regime is the Gaussian distribution on yt. When
this is conditioned on a discrete, first-order Markovian switching variable, we obtain
an instance of a HMM. This model can therefore be used for condition monitoring
when the levels and variability of different measurement channels are significant
(though note that in general the HMM can use any reasonable distribution on yt).

Autoregressive (AR) models are a common choice for modelling stationary time
series. Conditioning an AR model on a Markovian switching variable we obtain
an autoregressive hidden Markov model (AR-HMM), also known as a switching
AR model – see e.g. [13]. This provides a model for conditions in which observa-
tions might be expected to oscillate or decay, for example. During inference, the
model can only confidently switch into a regime if the last p observations have been
generated under that regime; there will be a loss of accuracy if any of the measure-
ment channels have dropped out in that period, for example, or another artifactual
process has affected any of the readings.

The general condition monitoring problem involves independent factors which
affect a system. In both of these models the switch variable can be factorised,
giving the factorial HMM [4] and the factorial AR-HMM respectively. The graphical
models for these two constructions are shown in Figure 13.1.

By characterising each regime as a linear Gaussian state-space model we obtain
the (F)SLDS. The SLDS can be thought of as a “hybrid” model, having both
discrete switch settings as in the HMM and continuous hidden state as in a linear
dynamical system. The FSLDS is similar, though with the discrete switch setting
structure of the factorial HMM. Note, however, that observations in the FHMM [4]
are generated through an additive process in which each factor makes a contribution.
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Figure 12.2: Factorial switching linear dynamical system for physiological condition monitoring,
with M = 2 factors as an example. The state is split up into two sets of variables, containing
estimates of the ‘true’ physiology and of the levels of artifactual processes.

The mechanisms used to generate observations under different factor settings can
in general be more complex and nonlinear than this, as in the the overwriting
mechanism explained in section 13.4.5.

(F)SLDS models have a number of representational advantages for condition
monitoring. First, we can have many dimensions of hidden state for each observed
dimension. This allows us to deal with situations in which different elements affect
the observations, as we will demonstrate in the examples later in this chapter.

In the physiological monitoring case we can construct detailed representations
of the causes underlying observations. For instance, the state can be split into
two groups of continuous latent variables, those representing the “true” physiology
and those representing the levels associated with different artifactual processes,
as we demonstrate in sections 13.4.1 and 13.4.2. In this application, factors can
be physiological or artifactual processes. Physiological factors can affect any state
variable, whereas artifactual processes affect only artifactual state. This formulation
of the model for physiological condition monitoring is illustrated in Figure 13.2.

The (F)SLDS also gives us the ability to represent different sources of uncertainty
in the system. We can explicitly specify the intra-class variability in the dynamics
using the parameter Q and the measurement noise using the parameter R. There
is no way to make this distinction in either of the other models, which have only
one noise term per regime. However, this flexibility in the FSLDS is obtained at
the cost of greater complexity, particularly in terms of computing inferences, as we
examine in section 13.5.

12.3 Novel conditions

So far we have assumed that the monitoring data contains a limited number of
regimes, for which labelled training data is available. In real-world monitoring
applications, however, there is often such a great number of potential dynamical
regimes that it might be impractical to model them all, or we might never have
comprehensive knowledge of them. It can therefore be useful to include a factor in
the condition monitoring model which represents all “unusual cases”.

In this section we present a method for modelling previously unseen dynamics
as an extra factor in the model, referred to as the “X-factor”. This represents all
dynamics which are not normal and which also do not correspond to any of the
known regimes. A sequence of data can only be said to have novelty relative to
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Figure 12.3: (a) Class conditional likelihoods in a static 1D model, for the normal class (solid) and
the X-factor (dashed). (b) Likelihoods of the normal class and X-factor in conjunction with other
known, abnormal regimes (shown dotted). (c) The power spectral density of a latent AR(5) process
with white observation noise (solid), and that of a corresponding X-factor process (dashed).

some reference, so the model is learnt taking into account the parameters of the
normal regime. The inclusion of this factor in the model has two potential benefits.
First, it is useful to know when novel regimes are encountered, e.g. in order to raise
an alarm. Second, the X-factor provides a measure of confidence for the system.
That is, when a regime is confidently classified as “none of the above”, we know
that there is some structure in the data which is lacking in the model.

12.3.1 The X-factor

First consider a case in which we have independent, one-dimensional observations
which normally follow a Gaussian distribution. If we expect that there will also
occasionally be spurious observations which come from a different distribution, then
a natural way to model them is by using a wider Gaussian with the same mean.
Observations close to the mean retain a high likelihood under the original Gaussian
distribution, while outliers are claimed by the new model.

The same principle can be applied when there are a number of known distri-
butions, so that the model is conditionally Gaussian, y | s ∼ N

(
µ(s),Σ(s)

)
. For

condition monitoring we are interested in problems where we assume that the pos-
sible settings of s represent a “normal” mode and a number of known additional
modes. In physiological monitoring, for example, the normal mode corresponds
to the times when the physiology is stable and there is no artifactual corruption
of the observed data. Additional modes correspond e.g. to known problems with
the monitoring equipment or specific pathologies. We assume here that the normal
regime is indexed by s = 1, and the additional known modes by s = 2, . . . ,K. In
this static case, we can construct a new model, indexed by s = ∗, for unexpected
data points by inflating the covariance of the normal mode, so that

Σ(∗) = ξΣ(1), µ(∗) = µ(1) , (12.4)

where normally ξ > 1. We refer to this type of construction for unexpected obser-
vations as an “X-factor”. The parameter ξ determines how far outside the normal
range new data points have to fall before they are considered “not normal”.

The likelihood functions for a normal class and a corresponding X-factor are
shown in Figure 13.3(a). Clearly, data points that are far away from the normal
range are more likely to be classified as belonging to the X-factor. For condition
monitoring this can be used in conjunction with a number of known classes, as
shown in 13.3(b). Here, the X-factor has the highest likelihood for regions which
are far away from any known modes, as well as far away from normality.
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We can generalise this approach to dynamic novelty detection by adding a new
factor to a trained factorial switching linear dynamical model, by inflating the
system noise covariance of the normal dynamics

Q(∗) = ξQ(1) , (12.5){
A(∗), C(∗), R(∗), d(∗)

}
=

{
A(1), C(1), R(1), d(1)

}
(12.6)

To help understand why (13.5) and (13.6) are a dynamic generalisation of (13.4),
consider the specific case of a hidden scalar AR(p) process,

xt ∼ N

(
p∑
k=1

αkxt−k, σ
2
q

)
, yt ∼ N (xt, σ2

r) . (12.7)

The power spectral density for the hidden process xt at frequency f is given by

Sx(f) =
σ2
q

|1−
∑p
k=1 αke

−2πifk|2
, (12.8)

where − 1
2 ≤ f ≤ 1

2 , assuming one observed value per unit of time. By inflating σ2
q

(as specified in (13.5)) we observe that the power is increased at each frequency.
The observed process has the spectrum Sy(f) = Sx(f)+σ2

r . As the scale of Sy(f) is
determined by the magnitudes of the two noise variances, inflating σ2

q will have the
effect of increasing the power at every frequency, as illustrated in Figure 13.3(c).

In the LDS, any sequence of x’s is jointly Gaussian. Consider the case where
the state is a scalar variable; the eigenfunctions are sinusoids and the eigenvalues
are given by the power spectrum. As increasing the system noise has the effect of
increasing the power at all frequencies in the state sequence, we have a dynamical
analogue of the static construction given above.

A similar model for changes in dynamics is mentioned by [12, p. 458 and §12.4],
who suggest it as the parameterisation of an extra state in the unfactorised SLDS
for modelling large jumps in the x-process, and suggest setting ξ = 100. Their
analysis in §12.4.4 shows that this is used to model single-time-step level changes,
and not (as we are doing) sustained periods of abnormality. We find a much smaller
value ξ = 1.2 to be effective for our task (larger values of ξ mean that an observation
sequence must deviate further from normal dynamics to be claimed by the X-factor).
A different generative model for the X-factor in principle would be white noise, but
we find in practice that this model is too dissimilar to the real signal and is not
effective.

The nature of the measurement noise, and hence the value of the parameter
R(s), is assumed to be the same for both the normal regime and for the X-factor.
Care needs to be taken that the known factor dynamics do not have a very high
variance compared to the normal dynamics. It is clear from Figure 13.3(b) that the
X-factor will not be effective if any of the factors are wider than normality. This
can be ascertained by examining the spectra of the different model dynamics.

12.4 Parameter estimation

In a condition monitoring problem, it is assumed that we are able to interpret at
least some of the regimes in the data – otherwise we would be less likely to have
an interest in monitoring them. We can therefore usually expect to obtain some
labelled training data {y1:T , s1:T }. When available, this data greatly simplifies the
learning process, because determining the switch setting in the (F)SLDS makes the



8

model equivalent to a linear dynamical system, therefore making the process of
parameter estimation a standard system identification problem.

Given training data with known switch settings, the learning process is therefore
broken down into the training of a set of LDS models – one per switch setting. We
might choose a particular parameterisation, such as an autoregressive (AR) model
of order p hidden by observation noise and fit parameters accordingly. Expectation
maximisation can be useful in this setting to improve parameter settings given an
initialisation [2]. We describe particular methods used for parameter estimation in
the physiological monitoring application which incorporate both of these ideas.

When labelled training data is available, estimates of the factor transition prob-
abilities are given by P (f (m)

t = j | f (m)
t−1 = i) = nij+ζPM

k=1(nik+ζ)
, where nij is the number

of transitions from factor setting i to setting j in the training data. The constant
terms ζ (set to ζ = 1 in the experiments described later in the chapter) are added
to stop any of the transition probabilities being zero or very small.

Some verification of the learned model is possible by clamping the switch setting
to a certain value and studying the resulting LDS. One simple but effective test is
to draw a sample sequence and check by eye whether it resembles the dynamics of
training data which is known to follow the same regime [?, §5.7]. Some insight into
the quality of the parameter settings can also be gained by considering estimation of
the hidden state x in the LDS. The Kalman filter equations yield both an innovation
sequence, ỹ1:T (the difference between the predicted and actual observations), and
a specification of the covariance of the innovations under ideal conditions. An
illuminating test is therefore to compare the actual and ideal properties of the
innovation sequence when applied to training data. In particular, the innovations ỹt
should come from a Gaussian distribution with zero mean and a specific covariance,
and should be uncorrelated in time. We find in practice that such tests are useful
when training (F)SLDS models for condition monitoring. For more details about
verification in linear dynamical systems, see [?, §5.5].

We now show examples of learning different aspects of the FSLDS in the phys-
iological monitoring setting. We begin with system identification for the “normal”
physiological dynamics (i.e. the dynamics which are observed when the baby is
stable and there is no artifactual influence) in section 13.4.1. We then show how to
model an artifactual process, the drawing of a blood sample, in section 13.4.2. In
section 13.4.3, we introduce the training of a physiological factor associated with
bradycardia, a specific heart problem. Learning the X-factor parameter ξ is covered
in section 13.4.4, and in section 13.4.5 we demonstrate how to combine dynamical
models into the overall factorised SLDS.

12.4.1 Learning normal dynamics: heart rate

Looking at examples of normal heart rate dynamics as in the top left and right panels
of Figure 13.4, it can be observed first of all that the measurements tend to fluctuate
around a slowly drifting baseline. This motivates the use of a model with two hidden
components: the signal xt, and the baseline bt. These components are therefore used
to represent the true heart rate, without observation noise. The dynamics can be
formulated using autoregressive (AR) processes, such that an AR(p1) signal varies
around an AR(p2) baseline, as given by the following equations:

xt − bt ∼ N

(
p1∑
k=1

αk(xt−k − bt−k), η1

)
, bt ∼ N

(
p2∑
k=1

βkbt−k, η2

)
(12.9)
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where η1, η2 are noise variances. For example, an AR(2) signal with AR(2) baseline
has the following state-space representation:

xt =


xt
xt−1

bt
bt−1

 , A =


α1 α2 β1 − α1 β2 − α2

1 0 0 0
0 0 β1 β2

0 0 1 0

 ,

Q =


η1 + η2 0 0 0

0 0 0 0
0 0 η2 0
0 0 0 0

 , C = [1 0 0 0] . (12.10)

It is straightforward to adjust this construction for different values of p1 and p2.
The measurements are therefore generally taken to be made up of a baseline with
low frequency components and a signal with high frequency components. We begin
training this model with a heuristic initialisation, in which we take sequences of
training data and remove high frequency components by applying a symmetric 300-
point moving average filter. The resulting signal is taken to be the low frequency
baseline. The residual between the original sequences and the moving-averaged se-
quences are taken to contain both stationary high frequency hemodynamics as well
as measurement noise. These two signals can be analysed according to standard
methods and modelled as AR or integrated AR processes (specific cases of au-
toregressive integrated moving average (ARIMA) processes [11]) of arbitrary order.
Heart rate sequences were found to be well modelled by an AR(2) signal varying
around an ARIMA(1,1,0) baseline. An ARIMA model is a compelling choice for
the baseline, because with a low noise term it produces a smooth drift3. Having
found this initial setting of the model parameters, EM updates are then applied.
These are similar the updates given in [2], though constrained so that we retain the
structure in Eq. (13.10). This has been found to be particularly useful for refining
the estimates of the noise terms Q and R.

Examples of the heart rate model being applied using a Kalman filter to se-
quences of heart rate data are shown in Figure 13.4, which plots the noisy ob-
servations yt (upper panels) and estimates of the baseline bt and high frequency
components xt − bt (middle and lower panels respectively).

12.4.2 Learning artifactual dynamics: blood sampling

An arterial blood sample might be taken every few hours from each baby. This
involves diverting blood from the arterial line containing the pressure sensor, so
that measurements are entirely unrelated from the baby’s physiology. Throughout
the operation a saline pump acts against the sensor, causing an artifactual ramp in
the blood pressure measurements. The slope of the ramp is not always the same,
as the rate at which saline is pumped can vary. See Figure 13.6(a) for an example.
During this process, the systolic and diastolic blood pressures of the baby evolve as
normal but are unobserved.

3The ARIMA(1,1,0) model has the form (Xt−βXt−1) = α1(Xt−1−βXt−2) +Zt where β = 1
and Zt ∼ N(0, σ2

Z). This can be expressed in un-differenced form as a non-stationary AR(2)
model. In our implementation we set β = 0.999 and with |α1| < 1 we obtain a stable AR(2)
process, which helps to avoid problems with numerical instability. This slight damping makes the
baseline mean-reverting, so that the resulting signal is stationary. This has desirable convergence
properties for dropout modelling.
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Figure 12.4: In these two examples, HR measurements (in the top left and top right panels)
are varying quickly within normal ranges. The estimated distributions of the underlying signal
(bottom left and bottom right panels) are split into a smooth baseline process and zero-mean high
frequency component, given by the applying the Kalman filter equations with parameters learnt
as in section 13.4.1.

We specify a structural model for this artifactual rise, in which the artifactual
measurements at evolve according to a gradient which is subject to a random walk:

at ∼ N
(
at−1 + da + ct−1, σ

2
a

)
, ct ∼ N

(
ct−1, σ

2
c

)
. (12.11)

Each of these terms are scalars. Parameter da is a positive constant specifying the
average drift, which is modified by the random walk term ct. The Gaussian noise
on at with variance σ2

a models the differences in slope of blood samples taken at
different times, while the noise on ct with variance σ2

c models the change in slope
within a single blood sample operation. During the procedure, both blood pressure
readings (systolic and diastolic) are generated by the same underlying value at.

We now represent these dynamics in state space form. The hidden state dynam-
ics for at, ct are given by

xt =
[
at
ct

]
, dBS =

[
da
0

]
, ABS =

[
1 1
0 1

]
, QBS =

[
σ2
a 0

0 σ2
c

]
.

The observations yt are two-dimensional, where yt,1 is the systolic blood pressure
and yt,2 is the diastolic blood pressure. The observation model is then given by

CBS =
[

1 0
1 0

]
, RBS =

[
rSysBP 0

0 rDiaBP

]
.

The parameters are straightforward to learn from training data. Let T denote a
2-dimensional time series spanning n time steps and containing an example of the
observed systolic and diastolic blood pressures during a blood sample operation,
such that T = {yt,1:2 | 1 ≤ t ≤ n}. If we have a set of such training sequences
T1, . . . , TN then parameter estimation proceeds as follows:

da =
1
N

N∑
i=1

slope(Ti), σ2
a = V ({slope(Ti) | 1 ≤ i ≤ N}) (12.12)
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Figure 12.5: State spaces for normal dynamics and for blood sampling.

where the slope of the measurements can be found either by simply calculating
the gradient slope(T ) = 1

2(n−1) [(y1,1 + y1,2)− (yn,1 + yn,2)] or, better, with linear

regression. The variance of the noise on ct is found using σ2
c = 1

N

∑N
i=1 V (diff(Ti)),

where diff(T ) =
{

1
2 [(yi,1 + yi,2)− (yi−1,1 + yi−1,2)] | 2 ≤ i ≤ n

}
. We assume that

the monitoring equipment has the same observation noise whether a blood sample
is being taken or not. Therefore RBS is the same as for the normal dynamics, learnt
as described in the previous section.

Having set the values of each of the parameters, these dynamics can be in-
corporated into the full switching model. Figure 13.5 shows the structure of the
full transition matrix A and the observation matrix C, for blood sample dynamics
(f (BS) = 1) and for normal dynamics (f (BS) = 0). During a blood sample, obser-
vations are generated only by the artifactual state variables. State variables repre-
senting the baby’s actual systolic and diastolic blood pressure are evolved according
to the normal dynamics, but not observed (see Figure 13.13(a) for an illustration
of hidden state inferences in this case). During normal dynamics, the physiological
state variables are observed, and at is tied to the estimate of systolic blood pressure.

One way to check that such a model has been adequately fitted is to sample from
it and verify that the results have similar characteristics to the training data. Figure
13.6(a) shows a genuine example of measurements made while a blood sample being
taken. We then draw a sample of the same length from the switching model, Figure
13.6(b), using the same initial state at t = 1 and with the switch settings clamped
to be the same as for the genuine sequence. Note that the observation noise appears
greater on the simulated version partly because i.i.d. Gaussian noise is being used
to model quantisation effects in the training observations.

12.4.3 Learning physiological dynamics: bradycardia

Bradycardia is a (usually temporary) reduction in the heart rate, and brief episodes
are common for premature infants. It can have many causes, some benign and
some serious. Examples of this phenomenon are shown in Figure 13.7. Because
there is no simple physical process governing this pattern of observations, we have
less opportunity to parameterise the model based on domain knowledge. Therefore
we turn to statistical principles to learn the dynamics and valildate our chosen
model.

There are several ways to approach modelling this pattern. For example, we
could learn the dynamics of the whole sequence as a single regime, or split it up
into falling and rising dynamics. If the former, we could specify some positive second
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Figure 12.6: Genuine blood sample, and a sample drawn from the model with switch settings

clamped to be the same. BS indicates the factor switch setting, where black denotes f
(BS)
t = 1

(blood sample dynamics) and white denotes f
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t = 0 (normal dynamics).
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Figure 12.7: Examples of periods of bradycardia. Heart rate is measured in beats per minute
(bpm).

derivative, or look at the variability of the observations. If the latter then we could
use drift terms to model the fall and rise, or use exponential decays towards different
mean values.

Bradycardic drops and subsequent rises in heart rate were found to be adequately
modelled by retraining the ARIMA(1,1,0) model for baseline heart rate dynamics.
The high frequency heart rate dynamics are kept the same as for the stable heart
rate regime. As for the normal regime, this model learnt in terms of hidden ARIMA
processes was used as an initial setting and updated with three iterations of EM.

12.4.4 Learning the novelty threshold

Unlike the factors for which we have an interpretation, we do not assume that
labelled training data is available for learning X-factor dynamics. We therefore
consider a partial labelling of the training data y1:T , comprising of annotations
for known factors and for some representative quantity of normal dynamics. The
remainder of the training data is unlabelled, giving us a semi-supervised learning
problem.

To apply the expectation-maximisation algorithm to the X-factor within a SLDS
(non-factorised switch setting), the M-step update to ξ is given by

ξ̃ =
1∑T

t=2 p(st = ∗ | y1:T , θold)
×

T∑
t=2

〈
(xt −A(1)xt−1)>Q(1)−1

(xt −A(1)xt−1)
〉
xt,xt−1 | y1:T ,θold

p(st = ∗ | y1:T , θold)

(12.13)

where st = ∗ indexes the X-factor switch setting at time t. We describe strategies for
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calculating the expectation term in sections 13.5.1 and 13.5.2. It can be convenient
to use the filtering estimate 〈·〉xt,xt−1 | y1:t,θold as an approximation.

The parameters A(1) and Q(1) are the system matrix and system noise covari-
ance matrix respectively for the normal dynamical regime. Intuitively, this update
expression calculates a Z-score, considering the covariance of novel points and the
covariance of the normal regime. Every point is considered, and is weighted by the
probability of having been generated by the X-factor regime. Eq. (13.13) does not
explicitly constrain ξ̃ to be greater than 1, but with appropriate initialisation it is
unlikely to violate this condition.

The factorial case is a little more complicated due to the possibility that dif-
ferent combinations of factors can overwrite different channels. For example, if a
bradycardia is occurring in conjunction with some other, unknown regime, then
the heart rate dynamics are already well explained and should not be taken into
account when re-estimating the X-factor parameter ξ.

An alternative to (13.13) and an extension to the factorial case is given in [8,
§C.4].

12.4.5 Learning the factorial model

The previous discussion assumes that we train the model conditioned on each switch
setting independently, and then combine parameters. Where there are many factors
this implies a great quantity of training data is needed. In practice, however, this
requirement can be mitigated.

Where there are several measurement channels it may be found that some factors
“overwrite” others. For example, if we are monitoring the physiological condition
of a patient, we might have two factors: bradycardia and incubator open. If there
is a period of bradycardia while the incubator is open, then we would see the same
measurements as though there was only the bradycardia. It is often possible to
specify an ordering of factors such that some overwrite measurement channels of
others in this way. This ordering specifies conditional independencies in the factors
and observations, such that

f (i) overwrites f (j) on measurement channel d =⇒ yt,d ⊥⊥ f (j)
t | f

(i)
t > 0 ,

assuming that the switch setting f (j) = 0 means that factor j is “inactive” and
positive integers index the active dynamics of that factor. The significance of this
is that examples of every combination of factors do not need to be found in or-
der to train the factorial model. The factors can be trained independently, and
then combined together by reasoning about which channels are overwritten for each
combination.

12.5 Inference

Exact inference in the switching linear dynamical model is intractable, so we need
to make approximations regardless of whether we are doing filtering or smoothing.
We describe each case in turn in sections 13.5.1 and 13.5.2, including its relevance to
this application and the techniques which can be used to make it tractable. We then
discuss modifications of the standard inference procedures to suit this application
in sections 13.5.3 and 13.5.4.

12.5.1 Filtering

During deployment of the neonatal monitoring system we are primarily interested
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in filtering, though fixed-lag smoothing with a small time delay would also be con-
ceivable. We receive measurements second by second and are required to make an
immediate diagnosis based only on the history.

The time taken to calculate the exact filtering distribution p(st, xt | y1:t) in the
switching linear Gaussian state-space model scales exponentially with t, making
it intractable. This is because the probabilities of having moved between every
possible combination of switch settings in times t− 1 and t are needed to calculate
the posterior at time t. Hence the number of Gaussians needed to represent the
posterior exactly at each time step increases by a factor of K, the number of cross-
product switch settings. The intractability of inference in this model is proved in
[6], which also concentrates on a fault diagnosis setting.

Gaussian Sum approximations have been reviewed previously. While perform-
ing the forward pass to calculate the filtering distribution, at each time step we
maintain an approximation of p(xt | st, y1:t) as a mixture of I Gaussians. Calcu-
lating the Kalman updates and likelihoods for every possible setting of st+1 will
result in the posterior p(xt+1 | st+1, y1:t+1) having KI mixture components, which
can be collapsed back into I components by matching means and variances of the
distribution for each setting of st.

Rao-Blackwellised particle filtering (RBPF) [7] is another technique for approx-
imate inference, which exploits the conditionally linear dynamical structure of the
model to try to select particles close to the modes of the true filtering distribution.
A number of particles are propagated through each time step, each with a switch
state st and an estimate of the mean and variance of xt. A value for the switch
state st+1 is obtained for each particle by sampling from the transition probabilities,
after which Kalman updates are performed and a likelihood value can be calculated.
Based on this likelihood, particles can be either discarded or multiplied. Because
Kalman updates are not necessarily calculated for every possible setting of st+1,
this method can give an increase in speed when there are many factors. The fewer
particles used, the greater the trade-off of speed against accuracy, as it becomes less
likely that the particles can collectively track all modes of the true posterior distri-
bution. RBPF has been shown to be successful in condition monitoring problems
with switching linear dynamics, for example in fault detection in mobile robots [1].

In the factorised model, the number of switch settings may be high. There
may also be some transitions with low probability. In this case, sampling from the
discrete transition prior p(st | ŝ(i)t−1) might be problematic, as there is a chance that
no particles are sampled from certain switch settings. We modify the prior so that
we sample from ŝ

(i)
t ∼ q(st | ŝ

(i)
t−1) where

q(st = k | st−1 = j) =
p(st = k | st−1 = j) + ζ∑M
l=1 (p(st = l | st−1 = j) + ζ)

, (12.14)

which makes it more likely that particles are sampled from different switch settings.
In the following experiments we use ζ = 0.1. If a large setting of ζ was thought to
be distorting the results, then it would be straightforward to adjust the importance

weight of each particle i by a factor of
p
“
ŝ
(i)
t | ŝ

(i)
t−1

”
q
“
ŝ
(i)
t | ŝ

(i)
t−1

” at each time step to compensate.

12.5.2 Smoothing

While carrying out parameter estimation, we are interested in smoothing. Given
offline training data, we can afford to exploit backwards information in order to
refine estimates of the system parameters. The ‘E’ steps of the EM procedures
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cited in section 13.4 therefore use a backwards pass of the data – though in this
case we already know the switch settings st for all t, so we do smoothing during
parameter estimation on linear dynamical systems, not on the full switching model.
It can also be interesting to see how the performance on testing data changes when
calculating smoothed inferences, even though this is not realistic for deployment.

Approximate smoothed inference in the full switching model is possible with
various schemes. In the previous section we described the simplifying assumption
that the true filtering distribution is a mixture of Gaussians (the Gaussian sum ap-
proximation). We can make the same assumption about the smoothing distribution.
Gaussian sum smoothing is possible using Expectation Correction (see the chapter
by Barber in this book). Smoothed inference can also be done with Expectation
Propagation (see chapter by Zoeter and Heskes in this book), or by variational
inference [3].

We now discuss some adaptations to the standard inference routines, for han-
dling missing observations and constraining the number of possible switch transi-
tions.

12.5.3 Handling missing observations

Zero observations in this application denote missing values, for example where a
probe has been disconnected. It would be possible in principle to add an extra
factor for each channel to indicate a missing observation. However each extra factor
with two states slows inference down by a factor of two. To add a dropout channel
for each of 10 observed channels would slow down inference by a factor of 210.

Instead we can test at each time whether there are any dimensions in yt which
are zero. Within the inference routines, for each switch setting we then use the
updated observation matrix given by

H∗ij =

{
Hij where yj 6= 0
0 otherwise .

(12.15)

The Kalman filter updates, which are incorporated in all the inference schemes
we consider, have two stages: prediction (in which the variance of the estimates
increases) and correction (in which the variance decreases). The effect of this mod-
ification to the observation matrix is to cancel the correction step whenever obser-
vations are unavailable. Typical inference results are shown in Figure 13.8, where a
period of heart rate measurements are missing and we show the estimated distribu-
tion of “true” heart rate. We made the normal dynamics stable and mean-reverting
in section 13.4.3, so that the estimates reach an equilibrium in this situation.

12.5.4 Constraining switch transitions

In this application, factors change switch settings slowly relatively to the sampling
rate. It is therefore unlikely that more than one factor changes its setting in any
one time step. We can use this to constrain the transitions.

The discrete transition probabilities are defined by a matrix Z, where Zij =
p(st = j | st−1 = i), given by Eq. (13.3). We can use an updated transition matrix
Z∗ such that

Z∗ij =

{
Zij where 0 ≤

∑M
s=1 I

[
f (i)[s] = f (j)[s]

]
≤ 1

0 otherwise
(12.16)
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Figure 12.8: Inference of true heart rate under a dropout, with automatic handling of missing
observations. The solid black line shows HR observations, where available, the dashed line shows
the mean of the estimated distribution of true HR, and the shaded area shows two standard
deviations of the estimated distribution.

where I[·] is the indicator function and f (i) [s] denotes the switch setting for factor
i in the cross product switch setting s. This reduces the inference time from O(K2)
to O(K logK).

12.6 Experiments

This section describes experiments used to evaluate the model for condition moni-
toring. Other than the X-factor, we consider here the incubator open/handling of
baby factor (denoted ‘IO’), the blood sample factor (denoted ‘BS’), the bradycar-
dia factor (denoted ‘BR’) and the temperature probe disconnection factor (denoted
‘TD’). We demonstrate the operation of the transcutaneous probe recalibration fac-
tor (denoted ‘TR’), but do not evaluate it quantitatively due to a scarcity of training
data.

Some conventions in plotting the results of these experiments are adopted through-
out this section. Horizontal bars below time-series plots indicate the posterior
probability of a particular factor being active, with other factors in the model
marginalised out. White and black indicate probabilities of zero and one respec-
tively4. In general the plots show a subset of the observation channels and posteriors
from a particular model – this is indicated in the text.

24-hour periods of monitoring data were obtained from fifteen premature infants
in the intensive care unit at Edinburgh Royal Infirmary. The babies were between
24 and 29 weeks gestation (around 3-4 months premature), and all in around their
first week post partum.

Each of the fifteen 24-hour periods was annotated by two clinical experts. At
or near the start of each period, a 30 minute section of normality was marked,
indicating an example of that baby’s current baseline dynamics. Each of the known
common physiological and artifactual patterns were also marked up.

Finally, it was noted where there were any periods of data in which there were
clinically significant changes from the baseline dynamics not caused by any of the
known patterns. While the previous annotations were made collaboratively, the
two annotators marked up this ‘Abnormal (other)’ category independently. The
software package TSNet [5] was used to record these annotations, and the recorded
intervals were then exported into Matlab. The number of intervals for each category,
as well as the total and average durations, are shown in Table 13.2. The figures for
the ‘Abnormal’ category were obtained by combining the two annotations, so that

4A convenient property of the models evaluated here, from the perspective of visualisation, is
that the factor posteriors tend be close to zero or one. This is partly due to the fact that the
discrete transition prior p(st|st−1) is usually heavily weighted towards staying in the same switch
setting (long dwell times).
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Factor Incidences Total duration Average duration

Incubator open 690 41 hours 3.5 mins
Abnormal (other) 605 32 hours 3.2 mins

Bradycardia 272 161 mins 35 secs
Blood sample 91 253 mins 2.8 mins

Temp. disconnection 87 572 mins 6.6 mins
TCP recalibration 11 69 mins 6.3 mins

Table 12.2: Number of incidences of different factors, and total time for which each factor was
annotated as being active in the training data (total duration of training data 15 × 24 = 360
hours).

the total duration is the number of points which either annotator thought to be in
this category, and the number of incidences was calculated by merging overlapping
intervals in the two annotations (two overlapping intervals are counted as a single
incidence).

The rest of this section shows the results of performing inference on this data
and comparing it to the gold standard annotations provided by the clinical experts.

12.6.1 Evaluation of known factors

The dataset for evaluation consisted of fifteen 24-hour periods of monitoring data
(one day of monitoring data for each of fifteen babies). Evaluation was done using
leave-one-out cross validation, so that the 24-hour period from each baby was used
for testing in turn, using data from the other 14 babies for training.

From each 24-hour period, a 30 minute section near the start containing only
normal dynamics was reserved for calibration (learning normal dynamics according
to section 13.4.3). Testing was therefore conducted on the remaining 23 1

2 hour
periods.

The quality of the inferences made were evaluated using receiver operating char-
acteristic (ROC) curves for the different inference methods. The ROC curve plots
the rate of true positives against the rate of false negatives, such that the area under
the curve (AUC) gives a balanced measure of performance even when the class sizes
in the testing data are unequal. Another useful statistic which can be obtained
from the ROC curve is the Equal Error Rate (EER), which is the error rate for the
threshold setting at which the false positive rate is equal to the false negative rate.
We give error rates, so smaller numbers are better (some authors give 1 - EER).

Fig. 13.9 shows a plot of AUC against processing time for Gaussian sum filter-
ing, Gaussian sum smoothing using Expectation Correction, and RBPF with vary-
ing numbers of particles. Fig. 13.10 shows a corresponding plot for EER against
processing time.

Gaussian sum filtering (forward mixture size I = 1) had good performance on
all four factors. Gaussian sum smoothing (with a forward mixture size I = 1 and
backward mixture size J = 1) with Expectation Correction gave improved perfor-
mance in the inference of bradycardia, and similar or slightly improved performance
for the other three factors.

RBPF results were not so good, even with high numbers of particles, though it
is interesting to note that a certain level of accuracy can be achieved with much
faster inference than the other methods.

Specific examples of the operation of these models are now given, each using
filtered inference. Figures 13.11-13.13 show inferences of switch settings made with
the FSKF with Gaussian sum approximation. In each case the switch settings have
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Figure 12.9: AUC for different inference methods on four known factors, for 360 hours of mon-
itoring data. ‘Filtered’ and ‘Smoothed’ denote the performance of Gaussian sum filtering and
EC smoothing respectively. RBPF inference was done with 5, 10, 20, 50, 75, 100, 150 and 250
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Figure 12.10: EER for different inference methods on four known factors, with data and inference
methods as in Figure 13.9.
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Figure 12.11: Inferred filtering distributions of switch settings for two situations involving recali-
bration of the transcutaneous probe. BS denotes a blood sample, TR denotes a recalibration, and
TD denotes a core temperature probe disconnection. In panel (a) the recalibration is preceeded by
a dropout, followed by a blood sample. Diastolic BP is shown as a dashed line which lies below the
systolic BP plot. Transcutaneous readings drop out at around t = 1200 before the recalibration. In
panel (b), the solid line shows the core temperature and the dashed line shows incubator temper-
ature. A core temperature probe disconnection is identified correctly, as well as the recalibration.
Temperature measurements can occasionally drop below the incubator temperature if the probe
is near to the portals; this is accounted for in the model by the system noise term Q.
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Figure 12.12: Inferred filtering distributions of switch settings for two further situations in which
there are effects due to multiple known factors. In panel (a) there are incidences of bradycardia,
after which the incubator is entered. There is disturbance of heart rate during the period of
handling, which is correctly taken to be associated with the handling and not an example of
spontaneous bradycardia. In panel (b), bradycardia and blood samples are correctly inferred.
During the blood sample, heart rate measurements (supplied by the blood pressure sensor) are
interrupted.

been accurately inferred. Figure 13.11 shows examples of transcutaneous probe
recalibration, correctly classified in conjunction with a blood sample and a core
temperature probe disconnection. In 13.11(b) the recalibration and disconnection
begin at around the same time, as a nurse has handled the baby in order to access
the transcutaneous probe, causing the temperature probe to become detached.

Figure 13.12 shows inference of bradycardia, blood sampling, and handling of
the baby. In 13.12(a) that it has been possible to recognise the disturbance of heart
rate at t = 800 as being caused by handling of the baby, distinguished from the
bradycardia earlier where there is no evidence of the incubator having been entered.

For the blood sample and temperature probe disconnection factors, the mea-
surement data bears no relation to the actual physiology, and the model should
update the estimated distribution of the true physiology in these situations accord-
ingly. Figure 13.13 contains examples of the inferred distribution of true physiology
in data periods in which these two artifacts occur. In each case, once the artifactual
pattern has been detected, the physiological estimates remain constant or decay
towards a mean. As time passes since the last reliable observation, the variance of
the estimates increases towards a steady state.

12.6.2 Inference of novel dynamics

Examples of the operation of the X-factor are shown in Figures 13.14-13.16. We
employ two models with different sets of factors. The label ‘(1)’ on the plots denotes
the FSLDS with only one factor, the X-factor. The label ‘(5)’ denotes the FSLDS
which has five factors – the four known factors and the X-factor. Figure 13.14
shows two examples of inferred switch settings under model (5) for periods in which
there are isolated physiological disturbances. Both the posteriors for the X-factor
and the gold standard intervals for the ‘Abnormal (other)’ category are shown.
The physiological disturbances in both panels are cardiovascular and have clearly
observable effects on the blood pressure and oxygen saturation measurements.

In Figure 13.14(a), the X-factor is triggered by a sudden, prolonged increase
in blood pressure and a desaturation, in broad agreement with the ground truth
annotation. In Fig. 13.14(a) there are two spikes in BP and shifts in saturation
which are picked up by the X-factor, also mainly in agreement with the annotation.
A minor turning point in the two channels was also picked up at around t = 2000,
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Figure 12.13: Inferred filtering distributions of the true physiological state during artifactual
corruption of measurements. Panel (a) shows correct inference of the duration of a blood sample,
and panel (b) shows correct inference of a temperature probe disconnection. Measurements are
plotted as a solid line, and estimates x̂t relating to true physiology are plotted as a dashed line
with the gray shading indicating two standard deviations. In each case, during the period in which
measurements are corrupted the estimates of the true physiology are propagated with increased
uncertainty.
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Figure 12.14: Filtering inferences of X-factor switch settings during periods of cardiovascular
disturbance, compared to the gold standard annotations.

which was not considered significant in the gold standard (a false positive).
Effects of introducing known factors to model (1) are shown in Figure 13.15.

In panel (a), there are two occurrences of spontaneous bradycardia, HR making a
transient drop to around 100bpm. The X-factor alone in model (1) picks up this
variation. Looking at the inferences from model (5) for the same period, it can
be seen that the bradycardia factor provides a better match for the variation, and
probability mass shifts correctly: the X-factor is now inactive. In panel (b), a similar
effect occurs for a period in which a blood sample occurs. The X-factor picks up the
change in dynamics when on its own, and when all factors are present in model (5)
the probability mass shifts correctly to the blood sample factor. The blood sample
factor is a superior description of the variation, incorporating the knowledge that
the true physiology is not being observed, and so able to handle the discontinuity
at t = 900 effectively.

Figure 13.16 shows examples of inferred switch settings from model (5) in which
there are occurrences of both known and unknown types of variation. In Fig.
13.16(a) a bradycardia occurs in the middle of a period of elevated blood pressure
and a deep drop in saturation. The bradycardia factor is active for a period which
corresponds closely to the ground truth. The X-factor picks up the presence of a
change dynamics at about the right time, but its onset is delayed when compared
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Figure 12.15: Filtering inferences of switch settings for the X-factor, and for known patterns for
models (1) and (5). Model (1) contains the X-factor only, whereas model (5) includes the X-factor
and all known factors. Panel (a) shows two instances of bradycardia, (b) shows a blood sample.
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Figure 12.16: Filtering inferences of switch settings for the X-factor, in regions where other factors
are active. In panel (a) a bradycardia occurs in conjunction with a rise in blood pressure and deep
desaturation. The X-factor is triggered around the right region but is late compared to ground
truth. In panel (b), unusual BP variation is correctly classified as being due to a blood sample,
followed by variation of unknown cause. Panel (c) shows bradycardia with a desaturation picked
up by the X-factor, and (d) shows the X-factor picking up disturbance after the incubator has
been entered.
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Figure 12.17: Panel (a) shows filtered inference, (b) shows smoothed inference. The gray lines
show diastolic blood pressure.

to the ground truth interval. This again highlights a difficulty with filtered infer-
ence, since at time just over 1000 it is difficult to tell that this is the beginning of
a significant change in dynamics without the benefit of hindsight. In panel (b) a
blood sample is correctly picked up by the blood sample factor, while a later period
of physiological disturbance on the same measurement channels is correctly picked
up by the X-factor. Panel (c) shows another example of the bradycardia factor
operating with the X-factor, where this time the onset of the first bradycardia is
before the onset of the X-factor. The X-factor picks up a desaturation, a common
pattern which is already familiar from panel (a). In panel (d), an interaction be-
tween the X-factor and the ‘Incubator open’ factor can be seen. From time 270 to
1000 the incubator has been opened, and all variation including the spike in HR at
t = 420 are attributed to handling of the baby. Once the incubator appears to have
been closed, further physiological disturbance is no longer explained as an effect of
handling and is picked up by the X-factor.

While the previous examples all use filtering inference, Fig. 13.17 shows the
effect of using smoothing to infer periods of novelty. Two periods of novel dynam-
ics are shows, with inference results for filtering (upper) and smoothing (lower).
Filtered inferences of the X-factor tend to ‘trail off’, because without information
about future observations it is difficult to tell when an unusual period of dynamics
has ended. Smoothed inferences correct this, so that the inferred period of normality
correspond more closely to periods of clinically significant change.

12.7 Summary

This chapter has presented a general framework for inferring hidden factors from
monitoring data, and has shown its successful application to the significant real-
world task of monitoring the condition of a premature infant receiving intensive
care. We have shown how knowledge engineering and learning can be successfully
combined in this framework. Our formulation of an additional factor (the “X-
factor”) allows the model to handle novel dynamics. Experimental demonstration
has shown that these methods are effective when applied to genuine monitoring
data.

There are a number of directions in which this work could be continued. The set
of known factors presented here is limited, and more could usefully be added to the
model given training data. Also, experiments with the X-factor have shown that
there are a significant number of non-normal regimes in the data which have not yet
been formally analysed. Future work might therefore look at learning what different
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regimes are claimed by the X-factor. This could be cast as an unsupervised or semi-
supervised learning problem within the model. Another possible avenue would be
to look at the incorporation of nonlinear dynamics within the switching state space
framework for physiological monitoring, using generalised linear models for state
transitions or observations.
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