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A Architecture Illustrations

Figure I illustrates a diagonally-tiled convolutional
mcRBM (TmcRBM) model instance (with different
receptive field sizes and stride than what are used in
our experiments). Figure II illustrates a diagonally-
tiled convolutional mcDBN (TmcDBN) model in-
stance (note that in the illustration the receptive fields
are much smaller than in the model considered in our
experiments, and the connections are drawn only from
few selected hidden units to their receptive fields). Fig-
ure III illustrates a two-stream model for contour pre-
diction.

Figure IV illustrates two three-stream networks and
their respective deep-only network. These were not
studied in this paper.

B Training details

B.1 Generative pretraining

The mean and covariance filters of the TmcRBMs were
initialized to small random values, the mean and co-
variance biases were set to -2 and to 2, respectively,
and their learning rates were globally scaled versions
of 0.05,0.0025,0.0025,0.0005, respectively, similar to
in Ranzato and Hinton [2010]. Only the regular pa-
rameter learning rates were annealed, using 1

t -type an-
nealing, starting at epoch 200, and ending at 0.25 of
the initial rates by the end of training at epoch 800.
The 32 negative particles (of size 142×142) were drawn
and updated by a single step of HMC-sampling with
20 Leapfrog steps, with step-size set automatically to
maintain 90 percent sample accept rate according to an
exponentially weighted moving average with smooth-
ing factor of 0.9. We used a L1-weight decay, with rate
0.001.

The mcDBNs were trained in the usual greedy manner,
layer-by-layer, using exactly the same hyperparameter
settings as above, except the all of parameters had the
same learning rate, 0.00025 divided by the number of
feature plane grid locations (as in the shallow models).

B.2 Discriminative training

The shallow model parameters had equal learning
rates, starting from α = 0.05·β

M ·T , where M denotes the
batch size, and T the number of sites the parame-
ter was shared over per image. β was set to 1 and
10 for the feature extraction and read-out parameters,
respectively. In the deeper models, the learning rates
in the shallow stream were set to 0.5 times those of
the above, and those for the deeper stream parame-
ters were set with β = 5, and setting T as for the
shallow layer.

B.3 Tuning the prediction performance

Our full prediction model (called Enhanced Two-
Stream) uses five t̀unings’ for effective prediction per-
formance. Two of the modifications involve changes
in setting the batch data for training: we standard-
ize extracted the image patches1, subtracting their
mean from them and dividing by their standard de-
viation; we also set the training labels for each site
as the average of the annotations2. The third modifi-
cation encourages hidden unit activation levels (mea-
sured as an exponentially weighted moving average of
the observed levels with smoothing factor of 0.9) to be
at/near specific levels, by adding to the objective func-
tion cross-entropy penalties between the target and
measured levels. This was applied to the final hid-
den unit layer in the deep stream with target activa-
tion level of 0.1, with non-sparsity penalty of 0.001,
and also to the mean hidden units (with target activa-
tion level of 0.1 (grey-domain)/0.025 (colour-domain),
with non-sparsity penalty of 0.01). The fourth mod-
ification, called rotation-averaging, applies prediction
with the network of rotated versions (16 angles in to-
tal around the clock) of the images, back-rotates the
results and averages them. We note that the result-
ing network prediction is still expected not to be fully
transformation-equivariant but this approach was ef-
fective for our purposes. Finally, as done on several

1this makes the network more robust to data variations
(shifts and scaling in global intensity within the extracted
training patches) not considered to be relevant to the prob-
lem of deciding whether a site should be a boundary or not

2This makes optimizing the main objective faster.
11
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Figure I: A graphical illustration of a diagonally-tiled-convolutional mcRBM. The visible units visualized in the
middle layer connect to the J covariance hidden unit layers of the model at the top, and to the L mean hidden
unit layers of the model at the bottom. Within these layers the hidden units are partitioned into different sets
(red,green,blue), associated with different parameters for their hidden units. Each of the hidden units connect
to a region of visible units, and the filter applications within a set are non-overlapping and tile a certain-sized
region of visible units, and those of different sets are offset diagonally with a stride between the neighboring sets.
.
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Figure II: A graphical illustration of a diagonally-tiled-convolutional mcDBN. The visible units v visualized in
the bottom layer connect to the covariance hidden unit hc and mean hidden unit hm layers (L(1) feature planes
in total) in the middle, which connect to the second layer hidden units at the top (having L(2) feature planes).
Within the hidden unit layers, the units are partitioned into different sets (red,green, and blue in the first layer,
and cyan and magenta in the second layer), associated with different parameters for their hidden units. Each of
the hidden units connect to a region of units below, and the filter applications within a set are non-overlapping
and tile a certain-sized region of units, and those of different sets are offset diagonally with a stride between the
neighboring sets. Connections are drawn only from few selected hidden units to their receptive fields.
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Figure III: A graphical illustration of a two-stream model for contour prediction. The visible units v in bottom
left send information to the covariance and mean hidden units directly above, which send information to the
second layer hidden units at the top and also to the contour units u at the bottom right. The second layer hidden
units send information to the hidden units h3 below right, which send information to the contour units below.
As before, within the hidden unit layers, the units are partitioned into different sets, associated with different
parameters for their hidden units. Receptive and send connections are shown only for few of the hidden units.
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Figure IV: 3-Stream Deep Networks. Layer dots illustrate hidden units, blocks receptive fields (no size-
consistency). The solid and dashed arrows denote feature extraction and read-out parameters, respectively.

other works Dollár and Zitnick [2013], Mairal et al.
[2008], we apply non-maximum suppression by Canny.

C Boundary Prediction Statistics

C.1 Quality Assessment via MSSIM-scores

Table I reports statistics based on BSDS500 test
image-specific MSSIM-scores, with quality assessment
between the prediction result by a method and the
average of the human annotations.

C.2 Speed

Our unoptimized GPU implementation of the two-
stream model inference takes 0.1 to 0.2 s per test image
(grey-scale; 3 times for colour-domain where twice the
number of features). Our current implementation of
the enhanced two-stream inference is serial over the
orientations (each of the 16 orientation-specific results
computed on a GPU one after another from CPU) but
are working on an enhanced parallel and optimized im-
plementation. With the rotation-averaging our maxi-
mal runtimes (colour) are on the order of thirty sec-
onds. These compare very favorably with the following
figures quoted in Lim et al. [2013], which are 60s (gPb
local), 100s (SCG local), 240s (gPb global), 280s and
(SCG global). We have confirmed the gPb global fig-
ure on our local machines. We note that Catanzaro
et al. [2009] have reduced the runtime of gPb global to
1.8s using GPUs, but our basic two-stream is signifi-
cantly faster and scales better to image size. In gen-
eral the evidence is that one may typically obtain 10x
speedups by going to GPUs, when comparing tuned
implementations for both CPU and GPU [Lee et al.,
2010]. We note the speeds of Sketch tokens [Lim et al.,
2013](1 s) and that of in Dollár and Zitnick [2013]

Percentiles of A-B

B 0 25 50 75 100

A = Us:
Us (grey) -0.038 -0.000 0.007 0.013 0.060
DollárZitnick -0.005 0.070 0.110 0.161 0.393
SketchTokens 0.209 0.386 0.469 0.529 0.755
SCG (global) -0.016 0.053 0.083 0.120 0.304
gPb 0.020 0.145 0.212 0.281 0.512

A = Us (grey):
DollárZitnick -0.002 0.062 0.104 0.148 0.358
SketchTokens 0.217 0.380 0.460 0.529 0.723
SCG (global) -0.023 0.042 0.072 0.116 0.261
gPb 0.013 0.138 0.204 0.280 0.514
gPb (grey) 0.065 0.240 0.322 0.418 0.662

Percentiles of MSSIM

0 25 50 75 100

Us 0.523 0.655 0.704 0.757 0.865
Us (grey) 0.517 0.645 0.694 0.752 0.890
DollárZitnick 0.317 0.512 0.583 0.649 0.799
SketchTokens 0.056 0.156 0.227 0.316 0.496
SCG (global) 0.394 0.555 0.613 0.668 0.809
gPb 0.257 0.400 0.482 0.555 0.726
gPb (grey) 0.148 0.274 0.359 0.455 0.650

Table I: BSDS500 MSSIM-Score Statistics. gPb and
DollárZitnick refer to [Arbelaez et al., 2011, gPb-owt-
ucm] and Dollár and Zitnick [2013], respectively. All
models are for colour-data unless mentioned (grey).
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(best in performance, 1/6 s) are comparable to us in
speed without the rotation-averaging. Our results in
colour are the following: ODS: 0.725, OIS: 0.74, AP:
0.712. We note Sketch Tokens is there clearly better
in terms of AP and Dollár and Zitnick [2013] is better
also w.r.t. F-scores (see Table 1). If we do not con-
sider non-maximum suppression by the Canny-method
either, our F-scores are higher (ODS: 0.736, OIS: 0.75,
AP: 0.695) but the AP is further weakened.

We have a similar trend within our method under
grey-scale. In particular our scores without rotation-
averaging are: ODS: 0.712, OIS: 0.724, AP: 0.707,
and further without non-maximum suppression by the
Canny-method: ODS: 0.719 (0.742,0.697) OIS: 0.733
(0.758,0.710) AP: 0.697. While we are still clearly bet-
ter than the gPb in terms of any score, our AP is
weaker in comparison to the SCG.

D Boundary Prediction Examples

Figures V, VII, VII, VIII, IX, X, XI, XII, XIII
show BSDS500 test image data contour prediction
examples with our approach and several competing
methods, each individually rescaled. Not rescaled
versions of first five of them are shown in Fig-
ures XIV, XVI, XVI, XVII, and XVIII, respectively.
Non-rescaled results for images in Figure 2 are shown
in Figure XIX.

E Dissecting the Deep Visual
Boundary Prediction Network

We considered a dissection of our deep architecture
onto several subparts which result in feed-forward neu-
ral networks. We discuss the results for shallow and
deep architectures in turn. In addition to the differ-
ent stream architectures, we also assess (i) the rel-
ative importance of the mean and covariance units,
and (ii) the effect of generative pre-training [Hin-
ton et al., 2006]. In the latter case the three op-
tions were (a) initialization of the parameters to those
of the mcRBM/mcDBN followed by supervised fine-
tuning, (b) fixing (i.e. freezing) the learned unsuper-
vised mcRBM/mcDBN parameters, and (c) starting
them from random settings (initialized as those in the
generative training). We did not explore the full com-
binatorial space of settings, but focused on the most
important cases, and considered only the standard
BSDS protocol.

We did not consider Canny non-maximum suppres-
sion and did not apply rotation-averaging but focused
only on the basic neural component. Also their as-
sumed simplifications: there was no sparsity encour-
agement, each training image patch was not standard-

ized individually, and corresponding annotation label
patch was binary and randomly chosen from the set of
available ones instead of their average when optimiz-
ing the cross-entropy defined by the objective function.
Furthermore, the methods here (which are neural net-
works) were trained on/had access to a subset of the
data available for training (200 images and their anno-
tations out the 300 available for training and validation
purposes [Martin et al., 2014]).

E.1 Dissecting Boundary Prediction with
Shallow Networks

We consider first boundary prediction with the shal-
low networks. Table II (bottom) summarizes the re-
sults, and Figure XXI shows precision-recall curves,
for the BSDS500 test set. We observe that when the
parameters are not fine-tuned [mcRBM fixed entries],
the covariance units tend to carry more contour infor-
mation, as the performance without the mean units
nearly matches that of the full model, while perfor-
mance without the covariance units is clearly weaker.
Figure XX visualizes filters of the full shallow model,
without and with fine-tuning. Fine-tuning results in
clear changes in the filter appearances and properties.
We can observe for example that the mean feature ex-
traction filters change in appearance to be more lo-
calized, and the associated read-out weights become
larger in amplitude thus influencing the prediction
more. The checker-patterned fine-detail covariance
feature extraction filters have mostly disappeared.

When fine-tuning is in place, the performances in-
crease significantly, especially so for the mean-only
model, but the relative order of the models is still
maintained. Interestingly, initialization of the feature
extraction parameters from the generatively trained
mcRBM yields better results than random initializa-
tion.

Figure 2 shows example inference with a shallow
network for a large test image. For comparison,
Canny edge detection (obtained with default settings
in the matlab implementation) which produces a bi-
nary edgemap output is also shown. The feature ex-
traction parameters of the shallow network is trained
with the mcRBM parameter initialization, and fine-
tuning. We see that it correctly places probability
mass on locations where humans have placed annota-
tions, but also in regions with repeated local structure.
See Appendix D for more examples.

E.2 Dissecting Boundary Prediction with
Deeper Networks

Table II summarizes the test-set results for the deep
stream and two-stream networks. Similar to the earlier
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Figure V: Contour Prediction Result Examples on the BSDS500, Individually Rescaled to Fill Full Intensity
Range. Best viewed on screen.
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Figure VI: Contour Prediction Result Examples on the BSDS500, Individually Rescaled to Fill Full Intensity
Range. Best viewed on screen.
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Figure VII: Contour Prediction Result Examples on the BSDS500, Individually Rescaled to Fill Full Intensity
Range. Best viewed on screen.
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Figure VIII: Contour Prediction Result Examples on the BSDS500, Individually Rescaled to Fill Full Intensity
Range. Best viewed on screen.
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Figure IX: Contour Prediction Result Examples on the BSDS500, Individually Rescaled to Fill Full Intensity
Range. Best viewed on screen.
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Figure X: Contour Prediction Result Examples on the BSDS500, Individually Rescaled to Fill Full Intensity
Range. Best viewed on screen.
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Figure XI: Contour Prediction Result Examples on the BSDS500, Individually Rescaled to Fill Full Intensity
Range. Best viewed on screen.
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Figure XII: Contour Prediction Result Examples on the BSDS500, Individually Rescaled to Fill Full Intensity
Range. Best viewed on screen.
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Figure XIII: Contour Prediction Result Examples on the BSDS500, Individually Rescaled to Fill Full Intensity
Range. Best viewed on screen.
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Data (colour) Canny [0.2409] Dollár & Zitnick [0.727]

Humans (Average) Sketch Tokens [0.2553] SCG (global) [0.7146]

Us (Enhanced two-stream) [0.8156] Rotation averaged [0.8309] Basic [0.815]
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Figure XIV: Contour Prediction Result Examples on the BSDS500. Numbers in square brackets are MSSIM
scores. Best viewed on screen.



Jyri J. Kivinen, Christopher K. I. Williams, Nicolas Heess
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Figure XV: Contour Prediction Result Examples on the BSDS500. Numbers in square brackets are MSSIM
scores. Best viewed on screen.
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Data (colour) Canny [0.3758] Dollár & Zitnick [0.6221]

Humans (Average) Sketch Tokens [0.3448] SCG (global) [0.6782]

Us (Enhanced two-stream) [0.7121] Rotation averaged [0.7463] Basic [0.7394]
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Figure XVI: Contour Prediction Result Examples on the BSDS500. Numbers in square brackets are MSSIM
scores. Best viewed on screen.
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Data (colour) Canny [0.2363] Dollár & Zitnick [0.5738]

Humans (Average) Sketch Tokens [0.2152] SCG (global) [0.6243]
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Figure XVII: Contour Prediction Result Examples on the BSDS500. Numbers in square brackets are MSSIM
scores. Best viewed on screen.
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Data (colour) Canny [0.1021] Dollár & Zitnick [0.6828]

Humans (Average) Sketch Tokens [0.1865] SCG (global) [0.684]
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Figure XVIII: Contour Prediction Result Examples on the BSDS500. Numbers in square brackets are MSSIM
scores. Best viewed on screen.
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Data (colour) Canny [0.227] Dollár & Zitnick [0.5138]

Humans (Average) Sketch Tokens [0.2021] SCG (global) [0.5165]
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Figure XIX: Contour Prediction Result Examples on the BSDS500. Numbers in square brackets are MSSIM
scores. Best viewed on screen.
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Figure XX: Random Collection of Shallow Stream Filters with and without Discriminative Fine-Tuning. The
small black-boxes each contain the image feature extraction (left part) and contour prediction (right part) filter
pairs. The filters connecting to the image data are normalized invidually, whereas the filters connecting to the
contour data are globally normalized, so as to be on the same scale and to fill the full intensity range.

Figure XXI: Shallow Network Prediction Performance
Dissection on the BSDS500 (Grey-Scale) as Mea-
sured by Precision-Recall Curves. The legend numbers
denote the maximums of the curves w.r.t. the ODS F-
measure (left), and the average precision (right).

experiments, we can see under any particular initial-
ization setting, that the covariance-only models per-
form better than the mean-only models. We can also
see that the generative pre-training helps the full two-
stream model in an even more pronounced way than
the shallow-stream model (compare random init. vs.
mcRBM and mcDBN init). Allowing fine-tuning of
the feature extraction parameters (compare fixed vs.
init for a particular model setting) again results in im-
proved performance. See also Figure XXII for P-R-
curves of many of these cases for further verification.

When comparing the performance summaries related
to the different streams, it is noticeable that the deep
model is clearly better than the shallow model. This
can be also seen in the Figure 2 inference example,
with improved ability to filter out predictions in tex-
tured regions containing many edges. We can see for
example many building windows appearing in a locally
repeated fashion being removed. See Appendix D for
more inference examples.

Although the numerical performance of the deep
model is comparable to the two-stream model with
respect to the ODS and OIS metrics (across the differ-
ent cases in Table II), the average precision is clearly
worse. We can see from the Figure XXII that the
two-stream model is able to obtain higher recall rates,
with the P-R curve of the deep-only model dropping
off earlier.



Jyri J. Kivinen, Christopher K. I. Williams, Nicolas Heess

Model F-score

(Parameters: Shallow,Deep) ODS OIS AP

Two-stream:
MC(mcDBN fixed) 0.664 0.682 0.659
MC(random init) 0.625 0.649 0.605
MC(mcRBM init,random init) 0.667 0.684 0.663
MC(mcDBN init) 0.695 0.709 0.673
C(mcRBM fixed,mcDBN init) 0.686 0.703 0.667
C(mcDBN init) 0.692 0.708 0.683
M(mcRBM fixed,mcDBN init) 0.646 0.663 0.603
M(mcDBN init) 0.679 0.696 0.657

Deep-Stream:
MC(mcDBN fixed) 0.625 0.641 0.537
MC(mcDBN init) 0.702 0.715 0.654
C(mcDBN init) 0.696 0.710 0.652
M(mcDBN init) 0.679 0.694 0.627

Shallow-Stream:
MC(mcRBM fixed) 0.619 0.643 0.601
MC(random init) 0.629 0.651 0.613
MC(mcRBM init) 0.648 0.668 0.637
C(mcRBM fixed) 0.615 0.641 0.598
C(mcRBM init) 0.642 0.660 0.624
M(mcRBM fixed) 0.525 0.539 0.437
M(mcRBM init) 0.629 0.652 0.613

Table II: Deeper Network Prediction Performance Dis-
section on BSDS500 (grey-scale). M, C and MC
denote parts including only and branching from mean,
covariance, and both mcRBM units, respectively.

Figure XXII: Deeper Network Prediction Performance
Dissection on the BSDS500 (Grey-Scale) as Mea-
sured by Precision-Recall Curves. The legend numbers
denote the maximums of the curves w.r.t. the ODS F-
measure (left), and the average precision (right).

F Boundary Prediction Quality
Assessment with the Structural
Similarity Index (SSIM)

The structural similarity metric [Wang et al., 2004]
assesses the similarity of two signals x and y of same
dimension with J elements, using a function on three
comparison functions which (aim to) measure differ-
ences in signal luminance contrast, and structure:

SSIM(x,y) = [`(x,y)]α · [c(x,y)]β · [s(x,y)]γ , (3)

where the signal luminance comparison function
`(x,y) operates on signal sample means (µz =
1
J

∑J
j=1 zj), the contrast comparison function c(x,y)

operates on signal standard deviations (variance σ2
z =

1
J−1

∑J
j=1 (zj − µz)2), the structure comparison func-

tion s(x,y) is a correlation-based measure between the
signals, and α > 0, β > 0 and γ > 0 denote scalars
to adjust the relative importance of the three compo-
nents.

The paper uses the form implemented in Wang et al.
[2004] in which α = β = γ = 1, and the specific form
of the SSIM index is the following:

SSIM(x,y) =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) , (4)

where σxy = 1
J−1

∑J
j=1 (xj − µx) (yj − µy), and C1

and C2 are scalars dependent on the dynamic range
of the signals.

For image (/large lattice) quality assessment Wang
et al. [2004] recommends to apply the index locally
(within local windows) and average the local quality
assessments for an overall quality measure, called the
mean SSIM (MSSIM) index:

MSSIM =
1
I

I∑
i=1

ˆSSIM(xNj
,yNj

), (5)

where zNj denotes a local (2D) window within an
image, I denotes the number of local windows in
the image, and ˆSSIM(xNj

,yNj
) is an evaluation

of a modification of (4) to avoid ”blocking” arti-
facts. In particular, the local SSIM evaluations
are smoothed with a circularly symmetric Gaussian
weighting function w. The modified evaluations
can be then seen to apply (4) but assume µz =∑J
j=1 wjzj , σz =

(
1

J−1

∑J
j=1 wj (zj − µz)2

) 1
2
, and

σxy =
∑J
j=1 wj (xj − µx) (yj − µy).

The paper uses the same settings (considered de-
fault/standard) in the evaluation as in Wang et al.
[2004], with C1 = (0.01 · 255)2, C2 = (0.03 · 255)2 (the
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dynamic range of images assumed to be 255), and the
Gaussian smoothing filter is of 11 × 11 size, assumes
standard deviation of 1.5 samples, and is normalized
to unit sum.

We use the Matlab-implementation https://ece.
uwaterloo.ca/~z70wang/research/ssim/ssim.m
with the suggested use as described in3 which rescales
the images before the evaluation.

3http://www.ece.uwaterloo.ca/~z70wang/research/
ssim/


