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Abstract

We focus on the problem of unsupervised cell
outlier detection and repair in mixed-type tab-
ular data. Traditional methods are concerned
only on detecting which rows in the dataset
are outliers. However, identifying which cells
corrupt a specific row is an important problem
in practice, and the very first step towards
repairing them. We introduce the Robust
Variational Autoencoder (RVAE), a deep gen-
erative model that learns the joint distribution
of the clean data while identifying the out-
lier cells, allowing their imputation (repair).
RVAE explicitly learns the probability of each
cell being an outlier, balancing different likeli-
hood models in the row outlier score, making
the method suitable for OD in mixed-type
datasets. We show experimentally that not
only RVAE performs better than several state-
of-the-art methods in cell OD and repair for
tabular data, but also that is robust against
the initial hyper-parameter selection.

1 Introduction

The existence of outliers in real world data is a problem
data scientists face daily, so outlier detection (OD) has
been extensively studied in the literature (Chandola
et al., 2009; Emmott et al., 2015; Hodge and Austin,
2004). The task is often unsupervised, meaning that
we do not have annotations indicating whether indi-
vidual cells in the data table are clean or anomalous.
Although supervised OD algorithms have been pro-
posed (Lee et al., 2018; An and Cho, 2015; Schlegl

∗ Joint first authorship.

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

et al., 2017), annotations of anomalous cells are often
not readily available in practice. Instead, unsupervised
OD attempts to infer the underlying clean distribution,
and explains outliers as instances that deviate from that
distribution. It is important to focus on the joint dis-
tribution over features, because although some outliers
can be easily identified as anomalous by considering
only the marginal distribution of the feature, many
others are only detectable within the context of the
other features (section 2.2 of (Chandola et al., 2009)).
Recently deep models outperformed traditional ones
for tabular data tasks (Klambauer et al., 2017), cap-
turing their underlying structure better. They are an
attractive choice for OD, since they have the flexibility
to model a wide variety of clean distributions. How-
ever OD work has mostly focused on image datasets,
repairing dirty pixels instead of cells in tabular data,
e.g. (Wang et al., 2017b; Zhou and Paffenroth, 2017;
Akrami et al., 2019).

Outliers present unique challenges to deep generative
models. First, most work focuses on detecting anoma-
lous data rows, without detecting which specific cells
in a row are problematic (Redyuk et al., 2019; Schelter
et al., 2018). Work on cell-level detection and repair
often focuses on real-valued features, e.g. images (Zhou
and Paffenroth, 2017; Wang et al., 2017b; Schlegl et al.,
2017), or does not provide a principled way to detect
anomalous cells (Nguyen and Vien, 2018). Since focus is
on row OD, not enough care is given to cell granularity,
which means it is often difficult to properly repair the
dirty cells, e.g. large number of columns exist or when
the data scientist is not a domain expert. Second, tabu-
lar data is often mixed-type, including both continuous
and categorical columns. Although modelling mixed-
type data has been explored (Nazabal et al., 2018;
Vergari et al., 2019), the difficulty arises when han-
dling outliers. Standard outlier scores are based on the
probability that the model assigns to a cell, but these
values are not comparable between likelihood models,
performing poorly for mixed-type data. Finally, the
effect of outliers in unsupervised learning can be insidi-
ous. Since deep generative models are highly flexible,
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they are not always robust against outliers (Hendrycks
and Dietterich, 2019), overfitting to anomalous cells.
When the model overfits, it cannot identify these cells
as outliers, because it has modelled them as part of
the clean distribution, and consequently, most repair
proposals are skewed towards the dirty values, and not
the underlying clean ones.

Our main contributions are: (i) Our Robust Varia-
tional Autoencoder (RVAE), a novel fully unsupervised
deep generative model for cell-level OD and repair for
mixed-type tabular data. It uses a two-component mix-
ture model for each feature, with one component for
clean data, and the other component that robustifies
the model by isolating outliers. (ii) RVAE models the
underlying clean data distribution by down-weighting
the impact of anomalous cells, providing a competitive
outlier score for cells and a superior estimate of cell
repairs. (iii) We present a hybrid inference scheme for
optimizing the model parameters, combining amortized
and exact variational updates, which proves superior
standard amortized inference. (iv) RVAE allows us to
present an outlier score that is commensurate across
mixed-type data. (v) RVAE is robust against the selec-
tion of its hyper-parameters, while other OD methods
suffer from fine tuning of their parameters to each
specific dataset.

2 Variational Autoencoders

We consider a tabular dataset X with n ∈ {1, · · · , N}
instances and d ∈ {1, · · · , D} features, where each cell
xnd in the dataset can be real (continuous), xnd ∈ R,
or categorical, xnd ∈ {1, .., Cd} with Cd the number of
unique categories of feature d. Cells in the dataset are
potentially corrupted with an unknown noising process
appropriate for the feature type. The objective in this
work is not only detecting the anomalous instances in
the dataset, termed row outliers, but also determining
the specific subset of cells that are anomalous, termed
cell outliers, proposing potential repair values for them.

A common approach to unsupervised OD is to build
a generative model p(X) that models the distribution
of clean data. A powerful class of deep generative
models are variational autoencoders (VAEs) (Kingma
and Welling, 2014), which model p(X) as

p(X) =

N∏
n=1

∫
dzn p(zn)pθ(xn|zn) (1)

where pθ(xn|zn) =
∏D
d=1 pθ(xnd|zn) and pθ(xnd|zn) is

the conditional likelihood of feature d, zn ∈ RK is
the latent representation of instance xn, and p(zn) =
N (0, I) is an isotropic multivariate Gaussian prior. To
handle mixed-type data, we choose the conditional like-

lihood pθ(xnd|zn) differently for each feature type. For
real features pθ(xnd|zn) = N (xnd|md(zn), σd), where
σd is a global parameter. For categorical features
pθ(xnd|zn) = f(ad(zn)), where ad(zn) is an unnor-
malized vector of probabilities for each category and
f is the softmax function. All md(zn) and ad(zn) are
parameterized by feed-forward networks.

As exact inference for pθ(zn|xn) is generally intractable,
a variational posterior qφ(zn|xn) is used; in VAEs this is
also known as the encoder. It is modelled by a Gaussian
distribution with parameters µ(xn) and Σ(xn)

qφ(zn|xn) = N (zn|µ(xn),Σ(xn)) (2)

where φ = {µ(xn),Σ(xn)} are feed-forward neural
networks, and Σ(xn) is a diagonal covariance matrix.
VAEs are trained by maximizing the lower bound on
the marginal log-likelihood called the evidence lower
bound (ELBO), given by

L =
1

N

N∑
n=1

D∑
d=1

Eqφ(zn|xn) [log pθ(xnd|zn)]

−DKL(qφ(zn|xn)||p(zn)), (3)

where the neural network parameters of the decoder θ
and encoder φ are learnt with a gradient-based opti-
mizer. When VAEs are used for OD, typically an in-
stance in a tabular dataset is an outlier if the expected
likelihood Eqφ(zn|xn) [log pθ(xn|zn)] is small (An and
Cho, 2015; Wang et al., 2017b).

3 Robust Variational Autoencoder
(RVAE)

To improve VAEs for OD and repair, we want to make
them more robust, by automatically identifying poten-
tial outliers during training, so they are downweighted
when training the generative model. We also want
a cell-level outlier score which is comparable across
continuous and categorical attributes. We can achieve
both goals by modifying the generative model.

We define here our robust variational autoencoder
(RVAE), a deep generative model based on a two-
component mixture model likelihood (decoder) per fea-
ture, which isolates the outliers during training. RVAE
is composed of a clean component pθ(xnd|zn) for each
dimension d, explaining the clean cells, and an outlier
component p0(xnd), explaining the outlier cells. The
mixing variable wnd ∈ {0, 1} acts as a gate to determine
whether cell xnd should be modelled by the clean com-
ponent (wnd = 1) or the outlier component (wnd = 0).
We define the marginal likelihood of the mixture model
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model under dataset X as1

p(X) =

N∏
n=1

∑
wn

∫
dz p(zn)p(wn)p(xn|zn,wn), (4)

p(xn|zn,wn) =

D∏
d=1

pθ(xnd|zn)wndp0(xnd)
1−wnd , (5)

where wn ∈ {0, 1}D is modelled by a Bernoulli distribu-

tion p(wn) =
∏D
d=1 Bernoulli(wnd|α), and α ∈ [0, 1] is

a parameter that reflects our belief about the cleanliness
of the data. To approximate the posterior distribution
p(z,w|x), we introduce the variational distribution

qφ,π(w, z|x) =

N∏
n=1

qφ(zn|xn)

D∏
d=1

qπ(wnd|xn), (6)

with qφ(zn|xn) defined in (2) and qπ(wnd|xn) =
Bernoulli(wnd|πnd(xn)). The probability πnd(xn) can
be interpreted as the predicted probability of cell xnd
being clean. This approximation uses the mean-field
assumption that w and z are conditionally independent
given x. Finally, the ELBO for the RVAE model can
be written as

L =
1

N

N∑
n=1

D∑
d=1

Eqφ(zn|xn) [πnd(xn) log pθ(xnd|zn)]

+
1

N

N∑
n=1

D∑
d=1

Eqφ(zn|xn) [(1− πnd(xn)) log p0(xnd)]

− 1

N

N∑
n=1

DKL(qφ(zn|xn)||p(zn))

− 1

N

N∑
n=1

DKL(qπ(wn|xn)||p(wn)).

(7)

Examining the gradients of (7) helps to understand
the robustness property of the RVAE. The gradient of
L with respect to the model parameters θ is given by

∇θL =
1

N

N∑
n=1

D∑
d=1

πnd(xn)Eqφ(zn|xn) [∇θ log pθ(xnd|zn)] .

(8)
We see that πnd(xn) acts as a weight on the gradient.
Cells that are predicted as clean will have higher values
of πnd(xn), and so their gradients are weighted more
highly, and have more impact on the model parameters.
Conversely, cell outliers with low values of πnd(xn) will
have their gradient contribution down-weighted. A
similar formulation can be obtained for the encoder
parameters φ.

1Recall from (Bishop, 2006) (Section 9, page 431) mix-
ture models can also be written in product form using
mixing variables wnd, as we adopt here.

3.1 Outlier Model

The purpose of the outlier distribution p0(xnd) is to
explain the outlier cells in the dataset, completely
removing their effect in the optimization of the pa-
rameters of clean component pθ. For categorical
features, we propose using the uniform distribution
p0(xnd) = Cd

−1. Such a uniform distribution as-
sumption has been used in multiple object modelling
(Williams and Titsias, 2003) as a way to factor in pixel
occlusion. In (Chemudugunta et al., 2006) a similar ap-
proach for background words is proposed. For real fea-
tures, we standardize the features to have mean 0 and
standard deviation 1. We use an outlier model based on
a broad Gaussian distribution 2 p0(xnd) = N (xnd|0, S),
with S > 1. Anomalous cells modelled by the outlier
component will be further apart from md(zn) relative
to clean ones.

Although more complex distributions can be used for
p0(xnd), we show empirically that these simple distri-
butions are enough to detect outliers from a range of
noise levels (Section 4). Furthermore, RVAE can easily
be extended to handle other types of features (Nazabal
et al., 2018), e.g.: for count features we can use a Pois-
son likelihood, where the outlier component p0 would
be a Poisson distribution with a large rate; for ordi-
nal features we could have an ordinal logit likelihood,
where p0 can be a uniform categorical distribution.

3.2 Inference

We use a hybrid procedure to train the parameters of
RVAE that alternates amortized variational inference
using stochastic gradient for φ and θ, and coordinate
ascent over π. When we do not amortize π, but rather
treat each πnd(xn) ∈ [0, 1] as an independent parameter
of the optimization problem, then an exact solution for
πnd(xn) is possible when φ and θ are fixed. Optimizing
the ELBO (7) w.r.t. πnd(xn), we obtain an exact
expression for the optimum3:

π̂nd(xn) = g

(
r + log

α

1− α

)
, (9)

r = Eqφ(zn|xn)

[
log

pθ(xnd|zn)

p0(xnd)

]
where g is the sigmoid function. The first term in (9)
represents the density ratio r between the clean com-
ponent pθ(xnd|zn) and the outlier component p0(xnd).
When r > 1 it will bias the decision towards assuming
the cell being clean, conversely r < 1 it will bias the
decision towards the cell being dirty. Such a ratio r has

2This is standard, see (Quinn et al., 2009; Gales and
Olsen, 1999)

3The derivation of equation (9) is provided in the Sup-
plementary Material (Section 2)
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arisen in the literature (Hido et al., 2011; Yamada et al.,
2017). The second term in (9) represents our prior be-
lief about cell cleanliness, defined by α ∈ [0, 1]. Higher
values of α will skew the decision boundary towards a
higher π̂nd(xn), and vice-versa. This coordinate ascent
strategy is common in variational inference for conju-
gate exponential family distributions (Jordan et al.,
1999). We term this model RVAE-CVI (Coordinate
ascent Variational Inference) below.

Alternatively πnd(xn) can be obtained using amortized
variational inference. However two problems arise in
the process. First an inference gap is introduced by
amortization, leading to slower convergence to the op-
timal solution. Secondly, there might not be enough
outliers in the data to properly train a neural network
to recognize the decision boundary between clean and
dirty cells. We term this model RVAE-AVI (Amortized
Variational Inference). RVAE inference is summarized
in Algorithm 1, for both the coordinate ascent version
(RVAE-CVI) and the amortized version (RVAE-AVI).

Algorithm 1 RVAE Inference

1: procedure RVAE(η learning rate, M batch size,
T number epochs, α prior value)

2: if RVAE-AVI = True then
3: Define NN parameters: Ψ = {φ, θ, τ}; . τ

is NN params of πτ (xn) encoder (AVI)
4: else if RVAE-CVI = True then
5: Define NN parameters: Ψ = {φ, θ};
6: initialize Ψ;
7: for 1, ..., T do
8: Sample mini-batches {Xm}Mm=1 ∼ p(X);
9: Evaluate pθ(xmd|zm) and p0(xmd) ∀m, d; .

Forward-Pass of Deep AE
10: if RVAE-CVI = True then
11: Infer π̂md,∀m, d using eq. (9);
12: else if RVAE-AVI = True then
13: Evaluate encoder πτ (xn); .

Forward-Pass of NN
14: gΨ ←− ∇ΨL(Ψ, π(xn), α) using eq. (7);
15: Ψ←− Ψ + η ·Adam(Ψ, gΨ);

3.3 Outlier Scores

A natural approach to determine which cells are outliers
in the data is computing the likelihood of the cells under
the trained model. In a VAE, the scores for row and
cell outliers would be

Cell: − Eqφ(zn|xn) [log pθ(xnd|zn)]

Row: −
D∑
d=1

Eqφ(zn|xn) [log pθ(xnd|zn)] , (10)

where a higher score means a higher outlier probabil-
ity. However, likelihood-based outlier scores present
several problems, specifically for row scores. In mixed
type datasets categorical features and real features are
modelled by probability and densities distributions re-
spectively, which have different ranges. Often this leads
to continuous features dominating over categorical ones.
With the RVAE we propose an alternative outlier score
based on the mixture probabilities π̂nd(xn)

Cell: − log π̂nd(xn) Row: −
D∑
d=1

log π̂nd(xn), (11)

where again a higher score means a higher outlier prob-
ability. Notice that the row score is just the nega-
tive log-probability of the row being clean, given by
π̂n =

∏D
d=1 πnd(xn). These mixture-based scores are

more robust against some features or likelihood models
dominating the row outlier score, making them more
suitable for mixed type datasets.

3.4 Repairing Dirty Cells

Cell repair is related to missing data imputation, how-
ever this is a much harder task, since positions of
anomalous cells are not given, and need to be inferred.
After the anomalous cells are identified, a robust gen-
erative model allows to impute them given the dirty
row directly. In general, repair under VAE-like models
can be obtained via maximum a posteriori (MAP)

x̂ind = arg max
xnd

pθ(xnd|zn) zn ∼ qφ(zn|xon), (12)

where superscript i denotes imputed or clean cells (de-
pending on context), and o corresponds to observed or
dirty cells. In the case of RVAE, pθ(xnd|zn) is the clean
component responsible for modelling the underlying
clean data, see (5). This reconstruction is akin to robust
PCA’s clean component. In practice, for real features
x̂ind = md(zn), the mean of the Gaussian likelihood,
and for categorical features x̂ind = arg maxc f(adc(zn)),
the highest probability category. Other repair strate-
gies are discussed in the Supplementary Material (Sec-
tion 10).

4 Experiments

We showcase the performance of RVAE 4 and base-
line methods, for both the task of identifying row and
cell outliers and repairing the corrupted cells in the
data. Four different datasets from the UCI repository
(Lichman, 2013), with a mix of real and categorical
features, were selected for the evaluation (see Supple-
mentary Material, Section 1). We compare RVAE with

4https://github.com/sfme/RVAE_MixedTypes/

https://github.com/sfme/RVAE_MixedTypes/


Simão Eduardo∗1, Alfredo Nazábal∗2, Christopher K. I. Williams12, Charles Sutton123

ABDA (Vergari et al., 2019) in a different OD task in
the Supplementary material (Section 9).

4.1 Corruption Process

All datasets were artificially corrupted in both train-
ing and validation sets. This is a standard practice in
OD (Futami et al., 2018; Redyuk et al., 2019; Krishnan
et al., 2016; Natarajan et al., 2013), and a necessity
in our setting, due to the scarcity of available datasets
with labelled cell outliers. No previous knowledge about
corrupted cell position, or dataset corruption propor-
tion is assumed. For each dataset, a subset of cells
are randomly selected for corruption, following a two
step procedure: a) a percentage of rows in the data
are selected at random to be corrupted; b) for each of
those selected rows, 20% of features are corrupted at
random, with different sets of features being corrupted
in each select row. For instance, a 5%-20% scenario
means that 5% of the rows in the data are randomly
selected to contain outliers, and for each of these rows,
20% of the features are randomly corrupted, leading
to 1% of cells corrupted overall in the dataset. We
will consider for the experiments five different levels of
row corruption, {1%, 5%, 10%, 20%, 50%}, leading to
five different levels of cells corrupted across the data,
{0.2%, 1%, 2%, 4%, 10%}. This corruption process is
repeated 5 times (instances). Here, we show results
for the aggregate of all datasets for one of those in-
stances, leaving the full disclosure of the results to the
Supplementary Material (Section 8).

Real features: Additive noise is used as a noising
process, with dirty cell values obtained as xond ∼ xind+ζ,
with ζ ∼ pnoise(µ, η). Four different noise distributions
pnoise are explored: Gaussian noise (µ = 0, η = 5σd),
with σd the standard deviation of feature d; Laplace
noise (µ = 0, η = {4σd, 8σd}); Log-Normal noise (µ =
0, η = 0.75σd); and a Mixture of two Gaussian noise
components (µ1 = −0.5, η1 = 3σd, with probability 0.6
and µ2 = 0.5, η2 = 3σd with probability 0.4).

Categorical features: The noising process is based
on the underlying marginal (discrete) distribution. We
replace the cell value by a dirty one by sampling from
a tempered categorical distribution5 (and excluding the
current clean category):

xondc ∼
pc(x

i
nd)

β∑Cd
c=1 pc(x

i
nd)

β
, (13)

with the range β = [0, 0.5, 0.8]. Notice that, when β =
0, the noise process reduces to the uniform distribution,
while when β = 1, the noising process follows the
marginal distribution.

5Also known as power heuristic in importance sampling.

4.2 Evaluation metrics

In the OD experiments, we use Average Precision
(AVPR) (Everingham et al., 2014; Salton and McGill,
1986), computed according to the outlier scores of each
method. AVPR is a measure of area under the precision-
recall curve, so higher is better. For cell outliers we
report the macro average of the AVPR for each feature
in the dataset.6 In the repair experiments, different
metrics are necessary depending on the feature types.
For real features, we compute the Standardized Mean
Square Error (SMSE) between the estimated values
x̂ind and the original ground truth in the dirty cells xind,
normalized by the empirical variance of the ground

truth values: SMSEd =
∑Ndc
n=1(xind−x̂

i
nd)2∑Nc

n=1(xind−xd)2
, where xd is

the statistical mean of feature d and Nd
c is the number

of corrupted cells for that feature7. For categorical
features, we compute the Brier Score between the one-
hot representation of the ground truth xind and the
probability simplex estimated for each category in the

feature: Brierd = 1
2Nc

∑Ndc
n=1

∑C
c=1(xindc − pc(xond))2,

where pc(x
o
nd) is the probability of category c for fea-

ture d, xindc the one-hot true value for category c, and
C the number of unique categories in the feature. We
used the coefficient 1

2 in the Brier score to limit the
range to [0, 1]. We name both metrics in the rest of the
paper as SMSE for simplicity, but the correct metric is
always used for each type.

4.3 Competing Methods

We compare to several standard OD algorithms. Most
methods are only concerned about row OD, whilst
only a few can be used for cell OD. For more details on
parameter selection and network settings for RVAE and
competitor methods, see the Supplementary Material
(Section 3).

Exclusively row outlier detection. We consider
Isolation Forest (IF) (Liu et al., 2008), an OD algorithm
based on decision trees, which performed quite well in
the extensive comparison of (Emmott et al., 2015); and
One Class Support Vector Machines (OC-SVM) (Chen
et al., 2001) using a radial basis function kernel.

Row and cell outlier detection. We compare to
(i) estimating the Marginal Distribution for each fea-
ture and using the negative log-likelihood as the outlier
score. For real features we fit a Gaussian mixture model
with the number of components chosen via Bayesian In-
formation Criterion. The maximum number of compo-

6The AVPR macro average is defined as the average of
the AVPR for all the features in a dataset.

7In our experiments xd = 0 in practice, since the data
has been standardized before using any method
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nents is set at 40. For categorical features, the discrete
distribution is given by the normalized category fre-
quency; (ii) a combination of OC-SVM and Marginal
Distribution for each feature. We use Platt scaling to
transform the outlier score of OC-SVM for each row
(to obtain log-probability), and then combine it with
marginal log-likelihood of each feature. This score, a
combined log-likelihood, is then used for cell OD; (iii)
VAEs with `2 regularization and outlier scores given by
(10); (iv) DeepRPCA (Zhou and Paffenroth, 2017), an
unsupervised model inspired by robust PCA. The data
X is divided in two parts X = R + S, where R is a
deep autoencoder reconstruction of the clean data, and
S is a sparse matrix containing the estimated outlier
values (see Supplementary Material, Section 3, for fur-
ther description). Outlier scores for rows are given by

the Euclidean norm
√∑D

d=1 |snd|2, whilst cell scores

are given by |snd|2, where snd ∈ S. (v) A set of Condi-
tional Predictors (CondPred), where a neural network
parametrizing pθ(xn) is employed for each feature in
the data given the rest8. However, `2 regularization
is necessary to prevent overfitting, and the model is
overall much slower to train than VAE .

Repair: We compare to VAE, DeepRPCA, Marginal
Distribution method and Conditional Predictor (Cond-
Pred) method for repairing dirty cells (same model
parameters as in OD). We use (12) for all VAE-based
methods. For DeepRPCA we use X̂i = R. For Cond-
Pred the estimate is x̂ind = arg maxxnd pθ(xnd|x

o
n \d),

with xon \d meaning all features in xon except xond. The
Marginal Distribution method takes xond and uses as
estimate the mean of the closest GMM component in
the real line. For RVAE, results using a different infer-
ence strategy are provided in Supplementary Material,
using pseudo-Gibbs sampling (Rezende et al., 2014).

4.4 Hyperparameter selection for competing
methods

In order to tune the hyperparameters for the compet-
ing methods, we reserved a validation set with known
inlier/outlier labels and ground truth values. This vali-
dation set was not used by the RVAE method. Thus
the performance obtained by the competitor methods is
an optimistic estimate of their performance in practice.
Note also that RVAE-CVI is robust to the selection of
its parameter α in (9), as we will show in Section 4.8.
In Figure 1 we compare the performance of the con-
ditional predictor method and VAE, with respect to
RVAE-CVI when `2 regularization is not used, and
when the best `2 regularization value is used for each
dataset. We can observe clearly that a significant gap

8It can be seen as a pseudo-likelihood model given by
pθ(xn) ≈

∏
d pθ(xnd|xn \d)

Figure 1: Row and cell OD performance (higher means
better) of VAE and CondPred methods without L2
regularization and best choice of λ.

Figure 2: Row and cell OD scores for the average of
the four datasets in 5 different cells corruption levels.
Left: AVPR at row level. Right: AVPR at cell level.

exists in the performance of these competitor methods
when not fine-tuned, making it explicit the dependence
of these methods from a labelled validation set. In the
rest of the experiments we will use the best possible
version of each competitor method.

4.5 Outlier detection

We compare the performance of the difference meth-
ods in OD, both at row and cell levels. We focus on
Gaussian noise (µ = 0, η = 5σd) for real features and
uniform categorical noise, i.e. β = 0 in (13), relegating
results on other noise processes scenarios to Section 4.7.
In Figure 2 we show the average OD performance across
all datasets for all OD models in terms of both row
(left figure) and cell OD (right figure). We term RVAE-
CVI-nll our model with outlier score as defined in (10)
and RVAE-CVI-pi our model with outlier score as de-
fined in (11). We relegate RVAE-AVI results to the
Supplementary Material (Section 6), since RVAE-AVI
is worse than RVAE-CVI in general. Additional results
on the OD for each dataset are also available in the
Supplementary Material (section 4). In the right figure,
We can observe that RVAE-CVI is performing similar
to the conditional predictor method on cell OD while
being consistently better than the other methods. Ad-
ditionally, it performs comparatively well in row OD,
being similar to the conditional predictor at higher
noise levels. We would like to remind that RVAE-CVI
does not need a validation set to select its parameters.
This means that RVAE-CVI is directly applicable for
datasets where no ground truth is available, providing
a comparable performance to other methods where pa-
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Figure 3: Average AVPR over all the features in the
four datasets partitioned by type. Left: AVPR for real
features. Right: AVPR for categorical features

Figure 4: SMSE computed over the dirty cells in all
datasets (lower means better). It shows the average
over the four datasets for 5 different noised cells per-
centages. Y-axis is provided in log-scale.

rameter tuning for each dataset is necessary. Figure 2
(left figure) also confirms our hypothesis (Section 3.3)
on the proper score to compute row outliers. We can
see in the upper figure that RVAE-CVI using scores
based on estimate π̂nd(xn), as per score (11), are better
for row OD compared to averaging different feature
log-likelihoods (10). A further analysis of the OD per-
formance of each model for the different feature types
is shown in Figure 3. While the model based on esti-
mating the marginal distribution works well for real
features (left figure), it performs poorly on categorical
features. Similarly, for the method combining OCSVM
and the marginal estimator, it detects outliers better
than the other methods in real features and low noise
levels, but performs poorly for categorical features. In
contrast, RVAE performs comparatively better across
different types than the other models, with comparable
performance to the conditional predictor.

4.6 Repair

In this section, we compare the ability of the different
models to repair the corrupted values in the data. We
use the same noise injection process as Section 4.5.
Figure 4 shows the average SMSE repair performance
across datasets for all models when repairing the dirty
cells in the data (more details in the Supplementary
Material, Section 5). We can observe that RVAE-CVI
outperforms the other models for all the different cell

Figure 5: Average SMSE over all the features in the
four datasets according to their type. Left: AVPR for
real features. Right: AVPR for categorical features

Figure 6: Effect of three different noising processes.
Upper figures: average cell OD across datasets. Lower
figures: average SMSE on the dirty cells

corruption scenarios, being of particularly significance
in lower cell corruption regimes. This is significantly
important since all the comparator methods required
hyperparamter selection and still performed worse than
RVAE-CVI. Also, in Figure 5 we can see the repair per-
formance of different models according to the types of
features in the data. Notice that RVAE-CVI is consis-
tently better than the other models across real features
while being slightly worse on categorical features.

4.7 Robustness to Noising Processes

Figure 6 shows the performance of the different models
across there different combinations of noise processes
for all datasets and noise corruption levels (three other
noise processes are covered in the Supplementary Mate-
rial, Section 7). We notice that all the models perform
consistently across different types of noise. RVAE-CVI
is performing better in repair for low level noise corrup-
tion, while providing competitive performance in OD.
Also, our choice of outlier models on Section 3.1 does
not have a negative effect on the ability of RVAE to de-
tect outliers and repair them. Different noise processes
define what is feasible to detect and repair.

4.8 Robustness to hyperparameter values

In this section, we examine the robustness of RVAE
inference to the choice α, and study its effect in both
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Figure 7: RVAE-CVI performance with different
choices for α. Left: average cell AVPR over the datasets.
Right: average repair over dirty cells

OD and repair of dirty cells. We have analyzed values
of α in the set {0.2, 0.5, 0.8, 0.9, 0.99} and evaluated
RVAE-CVI in all datasets under all levels of cell cor-
ruption and the noising process of Sections 4.5 and 4.6.
Figure 7 shows the performance of RVAE-CVI in both
OD (left figure) and repair (right figure) across different
values of α. Larger values of α lead in general to a
better OD performance, with a slight degradation when
we approach α = 1. Repair performance is consistent
across different choices of α, but values closer to 0 or 1
lead to a degradation when repairing dirty cells.

5 Related Work

There is relevant prior work in the field of OD and
robust inference in the presence of outliers, a good
meta-analysis study presented in (Emmott et al., 2015).
Different deep models have been applied to this task,
including autoencoders (Zong et al., 2018; Nguyen and
Vien, 2018; Zhou and Paffenroth, 2017), (VAEs) (An
and Cho, 2015; Wang et al., 2017b) and generative
adversarial networks (GANs) (Schlegl et al., 2017; Lee
et al., 2018). In (Nalisnick et al., 2018) the authors
show that deep models trained on a dataset assign
high likelihood to instances of a quite different dataset,
which is problematic in OD. We identify outliers during
training rather than from a fully-trained model, down-
weighting their effect on parameter learning. Earlier
in training, the model had less chance to overfit, so it
should be easier to detect outliers.

Most closely related to our model are methods based on
robust PCA (RPCA) and autoencoders. They
focus on unsupervised learning in the presence of out-
liers, even though most methods need labelled data for
hyper-parameter tuning (Candès et al., 2011; Zhou and
Paffenroth, 2017; Zong et al., 2018; Nguyen and Vien,
2018; Xu et al., 2018; Akrami et al., 2019). RPCA-
based alternatives, often assume that the features are
real valued, and model the noise as additive with a
Laplacian prior. A problem in RPCA-type models is
that often the hyper-parameter that controls the out-
lier mechanism is dataset dependent and difficult to

interpret and tune. In (Wang et al., 2017b) the authors
proposed using a VAE as a recurrent unit, iteratively
denoising the images. This iterative approach is rem-
iniscent of the solvers used for RPCA. However their
work is not easily extended to mixed likelihood models
and suffers from the same problems as VAEs when
computing row scores (Section 3.3).

Robust Variational Inference. Several methods ex-
plore robust divergences for variational learning, under
the presence of outliers (Regli and Silva, 2018; Futami
et al., 2018), applied to supervised tasks. These di-
vergences have hyper-parameters which are dataset
dependent, and can be difficult to tune in unsupervised
OD; in contrast, the α hyperparameter used in RVAE
is arguably more interpretable, and experimentally ro-
bust to misspecification. Recently a VAE model using
one of these divergences at the decoder was proposed
for down-weighing outliers (Akrami et al., 2019). How-
ever, in contrast to our model, they focused on image
datasets and are not concerned with cell outliers. The
same hyperparameter tuning problem arises, and it is
not clear out to properly extend to categorical features.

Bayesian Data Reweighting. Wang et al (Wang
et al., 2017a) proposes an approach that raises the
likelihood of each observation by some weights and then
infer both the latent variables and the weights from
corrupted data. Unlike RVAE, these weights are only
defined for each instance, so the method cannot detect
cell-level outliers. Additionally, the parameters of the
model are trained via MCMC instead of variational
inference, making them more difficult to apply in the
context of deep generative models.

Classifier Confidence. Several methods explore
adding regularization to improve neural network classi-
fier robustness to outliers (Lee et al., 2018; Hendrycks
et al., 2019). However, the regularization hyper-
parameters are not interpretable and often require
a validation dataset to tune them. Other works
like (Hendrycks and Gimpel, 2017), use the confidence
of the predicted distribution as a measure of OD.

6 Conclusions

We have presented RVAE, a deep unsupervised model
for cell OD and repair in mixed type tabular data.
RVAE allows robust identification of outliers during
training, reducing their contribution to parameter learn-
ing. Furthermore, a novel row outlier score for mixed
type features was provided. RVAE performs similarly
in OD and repair to other methods that heavily rely on
fine tuning hyper-parameters with a trusted labelled
set. Still, RVAE outperforms or matches the other
models in dirty cell repair.
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