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1 Dataset details

Table 1: Properties of the tabular datasets employed
in the experiments.

Dataset Rows Real Categorical
features features

Wine 6497 12 1
Adult 32561 5 10

Credit Default 30000 14 10
Letter 20000 0 17

2 Derivation of Coordinate Step for
Weights

From (6), we can write the bound L on log p(X) with
respect to πnd(xn) as

L ∝
N∑
n=1

D∑
d=1

πnd(xn)Eqφ(zn|xn)[log pθ(xnd|zn)]

+

N∑
n=1

D∑
d=1

(1− πnd(xn))Eqφ(zn|xn)[log p0(xnd)]

− πnd(xn) log
πnd(xn)

α

− (1− πnd(xn)) log
1− πnd(xn)

1− α

The derivative of this bound w.r.t. πnd(xn) can be
easily computed:

∂L
∂πnd(xn)

= Eqφ(zn|xn)[log pθ(xnd|zn)]

− Eqφ(zn|xn)[log p0(xnd)]

− log
πnd(xn)

α
+ log

1− πnd(xn)

1− α
∗ Joint first authorship.

Evaluating ∂L
∂πnd(xn)

= 0 and solving for πnd(xn), we

obtain the coordinate update for the weights:

π̂nd(xn) =
1

1 + exp
(
−
(
Eqφ(zn|xn)[log pθ(xnd|zn)

p0(xnd)
] + log α

1−α

)) ,
which is the sigmoid function applied to the expected
log density ratio between the clean model and the
outlier model plus the logit of the prior probability.

3 Additional details for RVAE and
Competing Methods

• Data Pre-Processing: For all models and com-
petitor methods the real features were standard-
ized, i.e. subtracting by the empirical mean and
dividing by standard deviation. One-hot encoding
for categorical features was used depending on the
method, as defined below.

• Validation Set: 10% of each dataset was sepa-
rated from the rest of the data to be employed as
a validation set, with known ground truth of the
corrupted cells, for hyper-parameter selection on
all baselines. Our RVAE model does not use this
validation set in any of the experiments.

• Hyper-parameter Selection: The criterion
used for hyper-parameter selection on all base-
lines was the AVPR in the outlier detection task
registered in the validation set. The exception
is the Marginals Distribution baseline, where the
number of components is chosen via BIC score.

3.1 RVAE, VAE, DeepRPCA and
Conditional Predictor methods

• Architecture: For VAE, RVAE and DeepRPCA,
we used an intermediate hidden layer in both en-
coder and decoder, size 400. The latent space
dimension was chosen to be size 20. In the Cond-
Pred baseline, we found that a deep version of
the base conditional predictor was superior than
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a linear one in both outlier and repair metrics.
Two inner layers of dimension 200 and 50 for each
predictor were employed, which made this model
substantially slower than all autoencoder base-
lines. The non-linear activation used throughout
was ReLU (Rectified Linear Unit).

• Optimization: We used the Adam optimizer as
provided in Pytorch to train the encoder and de-
coder parameters, for all VAE-based models. In
the case of RVAE, VAE and CondPred models
we minimized their respective negative losses. In
CondPred, each conditional predictor had its own
Adam optimizer, we found this to work better. The
initial learning rate used in experiments was 0.001.
All models ran for 100 epochs on all datasets, noise
levels and noise processes. Since access to a vali-
dation set is impossible in a unsupervised learning
setting, no standard early stopping can be defined.

In the case of DeepRPCA, we use Adam to train
the encoder and decoder parameters, as in the origi-
nal paper. The optimization process used to obtain
data matrix R, and noise matrix S, was carried out
using ADMM (Alternating Method of Multipliers).
We use row structured `2,1 version of DeepRPCA
for outlier detection as it performed better. In
order for the ADMM optimization procedure to
work, in terms of categorical reconstruction loss
we follow the work in (Udell et al., 2016) (Section
6, Categorical PCA), using cross-entropy loss to
aggregate the different one-hot dimensions. This
yielded better experimental results than one-vs-all
type aggregation. All models ran for 20 ADMM
iterations, each using 10 intermediate epochs of
Adam to train the autoencoder component R. All
the above are in accordance to DeepRPCA paper
(Zhou and Paffenroth, 2017). It should be noted
that, in our experiments, running more ADMM
iterations eventually led to performance degra-
dation, even after an extensive hyper-parameter
search and optimizer tuning.

• `2 Regularization (Weight Decay): We used
the weight decay option of the Adam optimizer
in Pytorch. We performed a grid search over the
values λ`2 = [0, 0.1, 1, 5, 10, 100], each run for 100
epochs, and chose the best on the validation set
The search was performed for each dataset in Table
1. For VAE, the best performance was obtained
with we λ`2 = 0.1 in the Letter dataset, λ`2 = 1
in the Adult dataset and λ`2 = 10 in the Wine
and Credit Default datasets. For the conditional
predictors, the best performance was obtained
for λ`2 = 1 in Adult, Credit default and Letter
datasets, and λ`2 = 5 in the Wine dataset. For
RVAE-CVI and RVAE-AVI no regularization was

needed.

• Categorical Encoding: VAE, RVAE and Cond-
Pred models we used categorical embedding matri-
ces to codify the categorical features at the input
level of the encoder. The dimensionality used in
all experiments was size 50, as it provided gener-
ally good results. For CondPred, embeddings were
not shared between individual feature predictors.
In the case of DeepRPCA we had to use on-hot
encoding, as this was the only way to make the
ADMM procedure to work properly, given the pro-
jection step (using proximity operator). This relies
on subtracting the noise matrix S from the data
matrix X, which is non-trivial using embedding
representations. One-hot encoding is standard in
PCA-type models when dealing with categorical
features.

• DeepRPCA hyper-parameter: The coefficient
that regulates how many of the data-points (cells)
will be represented by sparse matrix S was chosen
from the range λ = [0.001, 0.01, 0.1, 1]. The best
outlier detection performance was obtained for
0.01 in Wine and Adult datasets and 0.1 in Credit
Default and Letter datasets.

• RVAE (hyper-parameters): The value for the
prior probability α was set to 0.95 throughout (it
is fair to assume in general that most of the data
is clean). A full evaluation on its effect on the
performance of the model was conducted in the
main text. In the case of the hyper-parameter
S of the outlier model for real features, we used
2 throughout, with good results. This was the
setting used for all RVAE-based models in the
experiment section, and the validation set was not
employed at any time while selecting parameters.

• Encoder of the weights for RVAE-AVI: We
used a feed-forward neural network with the same
architecture as the one specified above for the
encoder of , which parameterizing the variational
distribution of the latent space. An intermediate
hidden layer of size 400 was used. In this case, no
coordinate optimization procedure was performed.

3.2 OC-SVM

We use a scikit-learn implementation, with RBF (ra-
dial basis function) kernel. We conducted an hyper-
parameter search on both ν and γ, from 0 to 1 in inter-
vals of 0.1. The best performance for all the datasets
was obtained with ν = 0.2 and γ = 0.1, on the valida-
tion set.
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3.3 Marginal Method:

The Marginal method has no hyper-parameters to tune,
apart from the maximum number of Gaussian Mixture
Model components that can be selected by BIC score.
We found a maximum of 40 components to be sufficient.

3.4 OCSVM + Marginals method

We employed a combination of both the OCSVM and
Marginals implementations described above. The pa-
rameters were selected based on the previous details
(ν = 0.2,γ = 0.1 and maximum number of components
of the GMM set to 40).

3.5 Isolation Forest:

We use scikit-learn implementation. A maximum num-
ber of samples of 50% of the size of the datasets, and
a contamination parameter of 0.2 seemed to work best
for all the scenarios. Again, these parameters were
selected using the validation set.

4 Outlier detection additional details

In this section, we present the full disclosure of all the
models in both row and cell outlier detection in each of
the datasets of the experiments, in Figures 1-4 Notice

Figure 1: Row and cell outlier detection scores on Wine
dataset in 5 different cells corruption levels. Upper
figure shows the AVPR at row level. Lower figure
shows the AVPR at cell level.

that RVAE-CVI is stable across datasets and noise
corruption levels, while other models suffer in some
specific datasets for either row or cell outlier detection.

Figure 2: Row and cell outlier detection scores on Adult
dataset in 5 different cells corruption levels. Upper
figure shows the AVPR at row level. Lower figure
shows the AVPR at cell level.

5 Repair additional details

In this section, we present the full disclosure of all
the models in while repairing dirty cells in each of the
datasets of the experiments, in Figure 5. RVAE-CVI
performs better than the other methods for low level
corruption, except for the adult dataset where RVAE-
CVI and the conditional predictor are equivalent and
the Letter dataset, where the conditional predictor does
slightly better.

6 RVAE-CVI vs RVAE-AVI

We present here the AVPR evolution of RVAE-CVI
and RVAE-AVI for each dataset and all noise corrup-
tion levels. RVAE-CVI outperforms RVAE-AVI in all
datasets in both cell and row outlier detection, obtain-
ing a similar performance only for the Letter dataset.

Additionally, in Figure 7 we show the difference in
repair performance of the dirty cells for both models.
We can observe that RVAE-CVI performs better than
RVAE-AVI for all datasets and noise corruption levels.

7 Different noise processes additional
details

In this section we present all the results in row and cell
outlier detection and repair for all six combinations of
noise processes, which are:

• Gaussian noise (µ = 0, η = 5σd), Tempered Cate-
gorical (β = 0)
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Figure 3: Row and cell outlier detection scores on
Credit default dataset in 5 different cells corruption
levels. Upper figure shows the AVPR at row level.
Lower figure shows the AVPR at cell level.

• Laplace noise (µ = 0, η = 4σd), Tempered Cate-
gorical (β = 0.5)

• Laplace noise (µ = 0, η = 4σd), Tempered Cate-
gorical (β = 0.8)

• Laplace noise (µ = 0, η = 8σd), Tempered Cate-
gorical (β = 0.8)

• Log normal noise (µ = 0, η = 0.75σd), Tempered
Categorical (β = 0)

• Mixture of two Gaussian noise components (µ1 =
−0.5, η1 = 3σd, with probability 0.6 and µ2 =
0.5, η2 = 3σd with probability 0.4), Tempered Cat-
egorical (β = 0)

Figures 8-10 show a disclosure of the full results on all
noise processes across the different models for both row
and cell outlier detection and repair.

8 Error Bars per Noise Level

Here, we show results for a few methods (VAE, RVAE
and CondPred) with error bars provided for each noise
level (x-axis). The error bars, for each noise level,
were obtained by generating 5 independent instances
of corruption – randomly corrupting different cells in
the dataset each time. The corruption process is the
same as the one outlined in section 4.5. of main paper.
The inference mechanism for repair in MAP (maximum
a posteriori), like in section 4.6. of main paper. We
report the results both for OD and repair (Figure 11).
In lower noise levels, the standard deviation tends to
be higher, specifically in repair (last row, Figure 11).

Figure 4: Row and cell outlier detection scores on
Letter dataset in 5 different cells corruption levels.
Upper figure shows the AVPR at row level. Lower
figure shows the AVPR at cell level.

Figure 5: Repair performance on the dirty cells of all
models for each datasets

Since fewer cells are affected at lower noise levels, this
leads to more diverse behaviours in repair and OD, and
thus a larger error bar. More instances (than 5) could
be used to try and lower this error bar, but likely might
not be possible (inherent behaviour). On the other
hand, by using a more robust inference mechanism, e.g.
MCMC instead of MAP at test time, one may also
lower the error bars.

According to the error bars, we can see that the main
conclusions about the ”ranking” of our method against
baselines hold in either OD or repair. Further, in repair,
in the two lowest noise levels RVAE (MAP) seems to
have lower error bars (see Adult and Credit Default
figures, in Figure 11).

To further complete this analysis, we provide in Ta-
ble 2 the p-values computed from an independent t-test
between RVAE, VAE and CondPred. These were aver-
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Figure 6: Comparison between RVAE-CVI and RVAE-
AVI for each dataset in row outlier detection (left fig-
ures) and cell outlier detection (right figures)

Table 2: Independent t-test between RVAE, VAE and
CondPred. If p-values in range 0.05-0.10 assume that
models have different performance.

avg. p-values avg. p-values
RVAE vs CondPred RVAE vs VAE

Cell AVPR 0.121 0.070
Row AVPR 0.040 0.227

Repair SMSE 0.025 0.013

aged across datasets and noise levels.

9 Different OD Task: RVAE vs ABDA

In this section we compare RVAE to ABDA (Vergari
et al., 2019), a recent algorithm employed both in
OD and missing data imputation. We followed the
details in the OD section of the ABDA paper and
compare RVAE with ABDA in terms of row AUC ROC
as used therein (we use the results reported by the
ABDA authors). See Table 3. We perform better
in average than ABDA, with 7 out 10 cases being
better in OD. Notice that, the noising scenarios for
these datasets (described in (Goldstein and Uchida,
2016)) are based of standard row outlier detection,
where one or some classes are considered normal while
another class or classes are considered outliers. This
scenario is completely different to the scenarios
described on our paper. In our work, we assume
that some cells in the data corrupt several rows in a
tabular dataset, and we need to detect and correct
them. These experiments showcase the robustness of

Figure 7: Comparison between RVAE-CVI and RVAE-
AVI for each dataset in repair of dirty dells. The lower
SMSE the better.

Figure 8: Row outlier detection across all models and
noise processes, averaging all datasets

RVAE to a different outlier detection process.

10 Different Inference Method

In this section, we compare the MAP inference (recon-
struction, eq. (12)) for VAEs employed throughout
the paper with more powerful inference methods (Fig-
ure 12). In particular, we provide results for the use
of pseudo-Gibbs sampling, see (Rezende et al., 2014)
(section F), applying it on a trained RVAE at evalua-
tion time. The final repair estimate was provided after
the MCMC procedure was ran for T = 5 iterations
(samples). We ran the procedure for T = 30 iterations
(samples) as well, and found marginal improvement.
In the end, 5 iterations were chosen due to the large
amount of scenarios needed to be run (for final average).
We used the same scenarios of sections 4.5 and 4.6 of
paper.

As per our problem definition, a mask removing anoma-
lous entries needs to be either defined, or inferred. We
provide two options to do this automatically:
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Figure 9: Cell outlier detection across all models and
noise processes, averaging all datasets

Figure 10: Repair of dirty cells across all models and
noise processes, averaging all datasets

• OneStage (Algorithm 1): Treat all cells in a row
as anomalous and perform pseudo-Gibbs, for T
iterations.

• TwoStage (Algorithm 2): Use OneStage, obtain-
ing a more stable estimate of πnd, then sample
mask wnd using it to perform pseudo-Gibbs (as
described in (Rezende et al., 2014)). The assumed
clean cells (i.e. wnd = 1) have their value xond fixed
throughout the MCMC chain (of T iterations).

Note that in OneStage method the mask wn is not
inferred, whilst TwoStage it is. In addition, note xon
is the observed row, which can be clean or dirty, as in
section 3.4. of paper.

On average (Figure 12) there were gains in OD and
repair using TwoStage, particularly for repair at low
noise levels. These are still close to MAP, specifically
in the case of higher noising levels.

In Figure 13 we disclose the same information as in

Figure 11: Plots with error-bars for each dataset (col-
umn), using 5 different instances of corruption, at each
corruption level (x-axis). We show cell OD (upper row),
row OD (middle row) and repair (lower row).

Table 3: Comparison between RVAE and ABDA in
row AUC ROC for 10 different datasets.

Dataset AUC RVAE AUC ABDA
Letter 0.8359 0.7036
Breast 0.9815 0.9836

Pen Global 0.9316 0.8987
Pen Local 0.9053 0.9086
Satellite 0.9460 0.9455
Thyroid 0.8211 0.8488
Shuttle 0.9985 0.7861

Aloi 0.5515 0.4720
Speech 0.5584 0.4696
KDD 0.9993 0.9979

Average 0.8529 0.8014

Figure 12, but per dataset. In general, we can see
that TwoStage has better repair performance (last row
of Figure 13), particularly in low level noise. Adult
presents some issues due to specific problematic fea-
tures. Looking at the Letter dataset, completely cat-
egorical dataset, the impact of using TwoStage is
clear, we benefits in both repair and outlier detec-
tion. We stipulate that this might be due to higher
multi-modality of Letter (higher cardinality of the joint
categorical distribution).

Lastly, other methods like (Mattei and Frellsen, 2019)
could also have been used to improve repair. However,
more powerful inference schemes can sometimes lead
to overfitting to noise. On the other hand, we expe-
rienced that smaller datasets (number of rows) may
benefit more from an MCMC inference scheme, making
solutions more stable (lower error bars).

mmm (Paszke et al., 2019)
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Figure 12: Comparison between MAP, OneStage,
TwoStage inference methods in terms of both row /
cell OD, and repair.

Figure 13: Comparison between MAP, OneStage,
TwoStage, CondPred inference methods in terms of
both row / cell OD, and repair. Results for each
dataset.
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