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Abstract

In many areas of data modelling it is the case that observations at

different locations (e.g. time frames or pixel locations) are augmented

by differences of nearby observations (e.g. δ-features in speech recog-

nition, Gabor jets in image analysis). These augmented observations

are then often modelled as being independent—how can this make

sense? We provide two interpretations, showing (1) that the likeli-

hood of data generated from an autoregressive (AR) process can be

computed in terms of “independent” augmented observations, and (2)

that the augmented observations can be given a coherent treatment

in terms of the Products of Experts model (Hinton, 1999).

In automatic speech recognition it is often the case that Hidden Markov mod-
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els (HMMs) are used on observation vectors that are augmented by difference

observations (so-called δ features), see Furui (1986). Under the HMM each ob-

servation vector is modelled as being conditionally independent given the hidden

state. How can this make sense, as close-by differences are clearly not indepen-

dent? A similar difficulty arises in image analysis tasks such as texture seg-

mentation, see e.g. Dunn and Higgins (1995). Here derivative features obtained

e.g. from Gabor filters or wavelet analysis are modelled as being independent at

different locations, despite the fact that these features will have been computed

sharing some pixels in common.

In this paper we present two solutions to this problem. In section 1 we show

that if the data is generated from a vector autoregressive (AR) model then the

likelihood can be expressed in terms of “independent” difference observations. In

section 2 we show that the local models at each location can be combined using

a Product of Experts model (Hinton, 1999) to provide a well-defined joint model

for the data, and that this can be related to AR models. Section 3 discusses how

these interpretations are affected if the local models are conditional on a hidden

state variable, as is the case e.g. for HMMs.

1 An AR model

Consider a temporal vector autoregressive model

Xt =

p∑
i=1

AiXt−i + Nt, (1)
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where the Ai’s are square matrices and Nt is iid Gaussian noise ∼ N(0, ΣN). Xt

and Nt have dimension D for all t. To avoid complicated end effects we will use

periodic (wrap-around) boundary conditions, so that the subscript t − i should

be read mod(t− i, N). Thus there are N random variables X0, . . . ,XN−1 which

collectively we denote as X, and similarly for N. Then X and N are related by

N = TX for an appropriate matrix T . Thus

P (X) ∝
N−1∏
t=0

exp

{
−1

2
NT

t Σ−1
N Nt

}
(2)

=
N−1∏
t=0

exp

−1

2

[
p∑

i=0

AiXt−i

]T

Σ−1
N

[
p∑

i=0

AiXt−i

] , (3)

where we have set A0 = −I so that Nt = −
∑p

i=0 AiXt−i.

Now let Y0
t , . . . ,Y

p
t be linearly independent linear combinations of Xt, . . . Xt−p.

For example we could choose Y0
t = Xt, Y1

t = Xt − Xt−1 etc. As the Yi
t’s are

simple linear combinations of Xt, . . . Xt−p we have

p∑
i=0

AiXt−i =

p∑
i=0

BiY
i
t, (4)

for some set of matrices Bi. So we can now write

P (X) ∝
N−1∏
t=0

exp

−1

2

[
p∑

i=0

BiY
i
t

]T

Σ−1
N

[
p∑

i=0

BiY
i
t

] , (5)

showing that the likelihood of the underlying X process can be expressed in

terms of a product of terms involving the difference observations up to order p
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at each time. Stacking Y0
t ,Y

1
t , . . . ,Y

p
t as the vector Yt we have

P (X) ∝
N−1∏
t=0

exp

{
−1

2
YT

t MYt

}
, (6)

where the (i, j) block of the matrix M (between Yi
t and Yj

t ) has the form

BT
i Σ−1

N Bj. Equation 6 almost looks like a product of independent Gaussians,

but note that M is singular (it has rank D as it arises from Nt) so the correct

normalization factor of the Gaussian cannot be obtained from it.

As a simple example, consider the scalar AR(1) process Xt = αXt−1 +Nt and

set Y 0
t = Xt, Y 1

t = Xt −Xt−1. Thus

Xt − αXt−1 = (1− α)Xt + α(Xt −Xt−1) (7)

= (1− α)Y 0
t + αY 1

t . (8)

To obtain the likelihood for the sequence X the matrix M will have the form

M =
1

σ2
n

 (1− α)2 α(1− α)

α(1− α) α2

 (9)

where σ2
n = var(Nt). As expected M has rank 1 (it is an outer product).

Interestingly, the matrix M is not equal to the inverse covariance of the Yt’s

derived from the distribution for X. To show this we first use the result that for

the scalar AR(1) process on the circle the covariance C[j] = 〈XtXt−j〉 is given

by

C[j] =
σ2

n(α|j| + α|N−j|)

(1− α2)(1− αN)
. (10)
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Thus

cov(Yt) =

 〈Y 0
t Y 0

t 〉 〈Y 0
t Y 1

t 〉

〈Y 0
t Y 1

t 〉 〈Y 1
t Y 1

t 〉

 =

 C[0] (C[0]− C[1])

(C[0]− C[1]) 2(C[0]− C[1])

 . (11)

Inversion of cov(Yt) shows that it is not equal to M as given in equation 9.

Notice that the joint distribution of Y0, . . . ,YN−1 is singular.

If we take an AR process on the X variables then of course one can choose

linear combinations of the Xts that are truly independent by carrying out an

eigenanalysis. (For the periodic boundary conditions described above and time

invariant coefficients the eigenbasis would be the Fourier basis.) However, if we

allow ourselves an overcomplete basis set then we have shown that the likeli-

hood of X under the AR process can readily be computed using “independent”

densities at each location.

Although we have given the derivation above using Gaussian noise, in fact

the conclusion concerning expressing the likelihood of the X sequence in terms of

a product of terms involving Yt’s is independent of the form of the noise driving

the AR process.

It is also possible to extend the AR model described above beyond the tem-

poral one-dimensional chain. For example Abend et al. (1965) describe Markov

mesh models in two-dimensions. A simple example of such a model is a “third-

order”Markov mesh where Xi,j depends autoregressively on Xi,j−1, Xi−1,j−1 and

Xi−1,j. The same construction in terms of Y variables can be used in this case.
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2 Product of Experts Interpretation

At an individual location we have a model Pt(Yt) for the augmented vector Yt.

To define a joint distribution on X we set

P (X) =
1

Z

∏
t

Pt(Yt), (12)

where Z is a normalization constant (known in statistical physics as the partition

function). This is the Product of Experts construction (Hinton, 1999). One

can also think of this as a Markov Random Field construction where P (X) ∝

exp−E(X) and E(X) = −
∑

t log Pt(Yt). If each Pt(Yt) is Gaussian then P (X)

will also be Gaussian, and Z = (2π)N/2|C|1/2 where C is the covariance matrix

of X.

Again we consider a simple example relating to a scalar AR(1) process, so

Yt = (Xt, Xt −Xt−1)
T . Let

Pt(Yt) ∝ exp−1

2

{
a0X

2
t + a1(Xt −Xt−1)

2
}

(13)

with a0, a1 > 0. Then we obtain the joint distribution

P (X) ∝ −1

2

{
a0

∑
t

X2
t + a1

∑
t

(Xt −Xt−1)
2

}
. (14)

C−1, the inverse covariance matrix of X is circulant with entries a0 + 2a1 on

the diagonal and −a1 in the bands above and below the diagonal and in the NE

and SW corners. For the AR(1) process Xt = αXt−1 + Nt with Nt ∼ N(0, β−1)
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we obtain corresponding entries of β(1 + α2) on the diagonal and −βα off the

diagonal. The overall scale of a0 and a1 has the same effect as β in setting the

variance of the process but r
def
= a0

a1
= (1−α)2

α
, so for any given α value there is a

corresponding value of r1.

For the Gaussian case with expert t involving interactions between Xt and

Xt−p we obtain a quadratic form with the same pattern of banding as in the

inverse covariance matrix of an AR(p) process, but as above for some choices of

parameters there may not be a corresponding AR process.

Again this construction can be extended to two (or more) dimensions. For

example in 2d we might consider the variable Xi,j and the differences to its four

neighbours to the N, S, E, W to obtain a five-dimensional Y vector. Equation

12 with each expert being Gaussian then defines a Gaussian Markov Random

Field over the lattice of X variables.

3 Incorporating Hidden State

In speech recognition using HMMs the Yts are modelled as conditionally inde-

pendent given the discrete hidden variable st. We now consider how this affects

the interpretations given above.

For interpretation 1 we now consider a switching AR(p) process or AR-

HMM (see e.g. Woodland, 1992), so that Xt depends on Xt−1, . . . ,Xt−p and

also st. For example, using Gaussian noise and setting st = k, we have Xt ∼
1Interestingly for r ∈ (−4, 0) there are no corresponding values of α. Note

that α = 0 ⇒ a1 = 0.
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N(
∑p

i=1 Ak
i Xt−i, Σ

k); notice that the AR model parameters now depend on the

switching variable. However we can still write the prediction
∑p

i=1 Ak
i Xt−i as

a linear combination of the Yi
ts so the likelihood can be written in the form

of “independent” contributions from the Yts. Note that the usual forward and

backward HMM recursions can be carried out for the AR-HMM.

For interpretation 2 we have the individual component densities Pt(Yt|st),

and the joint distribution

P (X|s) =
1

Z(s)

∏
t

Pt(Yt|st), (15)

where s = (s0, . . . , sN−1). Notice that the normalization constant in general

depends on s and thus when given X the computation of P (X|s) does not only

depend on the component densities but also on Z(s). However, if Pt(Yt|st) is

Gaussian and has the same covariance structure but different means depending

on st for all t then Z would turn out to be independent of s.

While writing this paper I became aware of the work of Tokuda et al. (2003)

who correctly derive the product of Gaussian experts construction conditional on

s and note the general dependence of Z(s) on s. They also observe that use of the

Viterbi algorithm to find the state sequence s that maximizes P (s)
∏

t Pt(Yt|st)

(which is easily done with standard dynamic programming techniques) will not,

in general, yield the sequence that maximizes P (s|X), because of the Z(s) term.

Most practical HMM-based speech recognition systems use mixtures of Gaus-

sians to model the Yts at each frame. The product of experts interpretation

readily handles this situation. For an AR model interpretation, the use of a
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mixture distribution for the Yts already suggests a switching AR-process with

the switching variable hidden.

4 Discussion

Above we have described both conditionally specified models (AR processes) and

simultaneously specified models (products of experts) to define the joint density

P (X)2, and relate it to the augmented feature vectors {Yt}.

While this paper describes a theoretical framework for understanding why

using difference observations make sense, it would be interesting to examine

empirically the question of how well AR and PoE models do characterize the

dependencies between time frames or pixel locations.
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