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Figure 6: A three-compartment model for Propofol
pharmacokinetics.

B SUPPLEMENTARY MATERIAL

B.1 Rate constants for PK models

The three-compartment pharmacokinetic models de-
scribed in Section 2 model instantaneous drug doses
across physiological compartments C1, C2, C3 modelled
by transport and elimination processes. The matrix A

in equation (1) is constructed from rate constants kij
which describe the rate of transfer from compartment
Ci to Cj . An additional index 0 denotes elimination
from the system. A can then be defined as:

A =

2

4
�(k10 + k12 + k13) k21 k31

k12 �k21 0
k13 0 �k31

3

5 (10)

with Figure 6 illustrating the structure of A for a TCI
pump infusion u(t). Various studies have proposed
personalisation of these rate constants via Nonlinear
Mixed E↵ects modelling (see e.g. Eleveld et al. 2018).

B.2 Derivation of discrete-time relationship

for piecewise constant u(t)

Equation (2) can be solved by integration using Laplace
transformations. Let U(s) be the Laplace transform of
u(t), and X(s) the Laplace transform of x(t). Define

further a piecewise u(t) =
PT�1

i=0 R(t � i)ui with a
slight abuse of notation for u, and for R(·) the the unit
rectangle function. Then we have:

sX(s) = k1eU(s)� ke0X(s) (11)

) X(s) =
k1eU(s)

s+ ke0
. (12)

Recognising the RHS as the product of two known
Laplace transformations gives:

L(x(t)) = L(k1eu(t)) · L(e�ke0tH(t)) (13)

for the Heaviside step function H(t). Then using the
convolution theorem:
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Equation (3) can be written explicitly as xtj =

�1j
Pt�1

i=0 �
t�i�1
2j ui by unrolling the recursion. The re-

lationships given in Section 3.1 are then derived by
comparison with eq. (19).

B.3 Example prediction plots

Some example plots are provided in Figure 7 to give
the reader an intuition for the multi-task model. The
examples were chosen to demonstrate the benefit of
MTL over the Cohort model, and also the situations
in which the model can perform worse. The first two
examples (patient 12 and 19) demonstrate the model
successfully adapting to patient dynamics for di↵er-
ent channels. The example of patient 34 is one of a
significant violation to modelling assumptions; no PD
model is able to account for the uplift at 20 minutes.
Patient 36 does not obviously follow the pattern of
expected vital signs; the MTL model predicts an uplift
at T = 30 as expected from a reduction in dose, but
the vitals instead reduce. Patient 27 shows an example
where MTL is a little over-confident after 30 minutes;
the Cohort model out-performs MTL at this stage by
predicting a flatter curve.
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Figure 7: Example predictions for various patients and channels. Each row is a given (patient, channel)
combination; columns show 90% predictive intervals at increasing points in time (T = 10, 20, 30 minutes).
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