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One of the long-standing open problems in machine vision has been the
task of foreground-background segmentation. There is broad agreement
that this task is coupled to that of object recognition. In this paper we
focus on one side of this relationship; given the ground truth value of the
object’s identity in an image region specified by a bounding box, how
accurately can we segment that image?

When the object’s pixel intensities are near constant in the dataset
(e.g. in videos), statistics of its appearance have been used to guide seg-
mentation [2]. However for many datasets of interest the object’s appear-
ance is too variable to be modelled effectively by these methods. Re-
cently, a number of models have been proposed that carry out segmen-
tation by incorporating prior knowledge about the object’s shape instead
[1, 3, 4, 5]. In such cases, techniques mainly differ in how accurately they
represent and learn about the variability in the object’s shape.

In this paper we present a novel image representation that is parts-
based and learns from datasets that exhibit variability in both shape and
appearance. The model’s latent representations can be interpreted as
‘parsings’ of images.

In the Factored Shapes and Appearances (FSA) model we consider
datasets of images of an object class. We assume that the images are
constructed through some combination of a fixed number of parts. Given
a dataset of such images X, we wish to infer a segmentation S for each
image. Each segmentation consists of a labelling sd for pixels, where L
is the fixed number of parts that combine to generate the foreground and
sd is a 1-of-(L + 1) encoded variable. Accurate inference of S is driven
by FSA’s models for 1) part shapes and 2) part appearances (see Fig. 1).
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Figure 1: Schematic of the FSA model for a single image Xi (L=3). Pixel
intensities X are modelled via appearance random variables (A). The
model’s belief about each part’s shape is captured by a latent variable (v).
Segmentation variables (S) assign each image pixel to a part.

Let ml be a collection of real numbers of the same size as the image,
densely representing the model’s preference for part l’s shape at each lo-
cation. These ‘masks’ combine via a softmax activation function to gener-
ate the segmentation S: p(sld = 1) = exp{mld}/

∑L
k=0 exp{mkd}. In

order to be able to allow for part shape variability, the model is designed
to capture a distribution over ml, l = 1...L (the background’s mask m0

is fixed to equal 1). Specifically, the probability distribution over ml is
defined by a Factor Analysis-like model:

ml = Flv + cl, p(v) = N (0, IH×H).

Part appearances are modelled as mixtures of Gaussians in colour space.
Our formulation captures pixel statistics of parts within a single image, as
well statistics of appearance across images in the dataset. A more detailed
description of the shape and appearance models can be found in the paper.

Inference in the model is performed by iteratively sampling S, v and
appearance variables A (samples of v are obtained efficiently using an
elliptical slice sampler). We use the EM algorithm to find estimates of the
maximum likelihood parameters.

One illustrative dataset we experiment on consists of 20 images of
cars. In addition to appearance variability, the cars exhibit significant
shape variability across the dataset. The segmentations inferred by an
unsupervised FSA model on this dataset can be seen in Fig. 2(a).
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Figure 2: (a) A subset of the training images with their inferred segmen-
tations. Distinct colours indicate assignments of pixels to different parts.
(b) A plot of the joint segmentation for a grid of v values in 2D latent
space. Prototypical shapes of 4 different car types shown in red.

We can inspect how the latent v variable is projected by Fl and cl into
masks for the parts. In Fig. 2(b) we plot the car body’s mask for a grid of
v values in 2-dimensional latent space. Notice how FSA learns a model
of shape that gradually morphs between the parts’ possible outlines. In
doing so it learns a model of object class shape that is more informative
than just a mean. We also observe that the inferred vs can be used as
discriminative indicators of the object’s type. In our experiments, using a
leave-one-out SVM classifier on only the inferred vs, we can classify the
cars into the 5 distinct categories with 100% accuracy.

We additionally evaluate FSA’s performance at segmentation (see Ta-
ble 1). Even though the FSA model does not use CRF-style pixelwise
dependency terms, its performance is comparable to that of state-of-the-
art methods on common benchmarks.

Table 1: Accuracy defined as the average percentage of correctly labelled
pixels. Supervised FSA is trained with ground-truth masks and L = 1.
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Horses Cars Faces Bikes Planes

GrabCut [1] 83.9% 45.1% 83.7% 82.4% 84.5%
Borenstein et al. [3] 93.6% - - - -
LOCUS [5] 93.1% 91.4% - - -
Arora et al. [4] - 95.1% 92.4% 83.1% 93.1%
ClassCut [1] 86.2% 93.1% 89.0% 90.3% 89.8%

Unsupervised FSA 87.3% 82.9% 88.3% 85.7% 88.7%
Supervised FSA 88.0% 93.6% 93.3% 92.1% 90.9%
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