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Abstract. Scene understanding tasks such as the prediction of object
pose, shape, appearance and illumination are hampered by the occlusions
often found in images. We propose a vision-as-inverse-graphics approach
to handle these occlusions by making use of a graphics renderer in combi-
nation with a robust generative model (GM). Since searching over scene
factors to obtain the best match for an image is very inefficient, we make
use of a recognition model (RM) trained on synthetic data to initialize
the search. This paper addresses two issues: (i) We study how the infer-
ences are affected by the degree of occlusion of the foreground object,
and show that a robust GM which includes an outlier model to account
for occlusions works significantly better than a non-robust model. (ii)
We characterize the performance of the RM and the gains that can be
made by refining the search using the GM, using a new dataset that in-
cludes background clutter and occlusions. We find that pose and shape
are predicted very well by the RM, but appearance and especially illu-
mination less so. However, accuracy on these latter two factors can be
clearly improved with the generative model.

Keywords: Vision-as-inverse-graphics, scene understanding, occlusion

1 Introduction

Computer vision is fundamentally an ill-posed and extremely complex problem:
there are many different scene configurations that can produce a given image,
and many factors of variability. An old idea is to use a model of how images are
generated to solve the inverse process, which can also be seen as an instance of
analysis-by-synthesis, see e.g. [32]. In this work we make use of this idea, which
we call vision-as-inverse-graphics, in order to extract detailed descriptions of an
object in an indoor scene. Examples of these descriptions (or factors) include the
object’s shape and appearance, pose, and the illumination of the scene. Stevens
and Beveridge [27] is an early example of combining vision and graphics.
Inverse-graphics is an elegant solution in which these factors are used as
the variables that explain the generation of images. However, searching for the
descriptions that best explain an image is a challenging task due to their high
dimensionality, thus we make use of discriminative models, which we will call
recognition models (RMs), as a way of cutting down the search (see e.g. Dayan
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et al. [6] and Williams et al. [28]). Combining the bottom-up and top-down
information flows is a key aspect in the design of our solution, see Figure 1. Our
goal is to extract fine-grained descriptions that can be used for many different
tasks, such as robotic systems that need to interact with the world.

Recent work (see e.g. Yildirim et al. [31]) has made some exploration of the
combination of generative and recognition models for scene understanding. How-
ever, the experiments to date have typically been made on “clean” scenes which
do not contain occluding objects and background clutter. Our contributions are:

— We study how the inferences are affected by the degree of occlusion of the
foreground object, and show that a robust generative model which includes
an outlier model to account for occlusions works significantly better than a
non-robust Gaussian model.

— We characterize the performance of the recognition model and the gains
that can be made by refining the search using a generative model. We find
that pose and shape are predicted very well by the RM, but appearance and
especially illumination less so. However, accuracy on these latter two factors
can be clearly improved with the generative model.

— Production of a new synthetic dataset with which one can evaluate the per-
formance of the models with variation across pose, shape, appearance, com-
plex illumination (extracted from a collection of indoor environment maps),
a diverse set of indoor scene backgrounds, and with the foreground object
being partially occluded. This goes beyond prior work (e.g. [31]) which only
explores shape, appearance and limited lighting variation.

The structure of the paper is as follows: we first describe the generative
model as a differentiable renderer (see section 2). The idea is to make use of ap-
proximate gradients that describe how the image intensities change with respect
to the scene factors, leading to efficient search over these. The robust and Gaus-
sian likelihood models are also explained here. The recognition model (see
section 3) is trained discriminatively to predict the scene factors of interest. In
order to do this we have created a synthetic dataset of indoor scenes in which
we can generate novel instantiations of object classes of interest, as explained in
section 4. The experimental setup and results are given in section 5.

1.1 Related work

Gradient based approaches. The problem of inferring the physical world
that gave rise to a given image is a long-standing and fundamental problem in
computer vision. One recent example of this reconstructive paradigm is the work
of Barron and Malik [1] where depth maps, reflectance maps, and illumination
models are recovered from an input image by optimizing a data fit criterion and
making use of prior distributions. Another nice example is the work of Loper
and Black [21] as applied to the problem of fitting an articulated human body
model to Kinect data.
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Fig. 1: Mllustration of our inverse-graphics solution. Given an image, the recog-
nition models of shape, lighting, appearance and pose initialize the latent vari-
ables. Then, the differentiable renderer generates an image which is fitted by
optimizing over the latent variables z that best match the input image, i.e.
z* = arg max p(Igr|l,(2)). Detected occlusion mask is illustrated with red

z

Hybrid generative-discriminative architectures. In the above papers the
search over the latent factors of variation is made directly using gradient-based
optimization methods. However, it is also possible to make use of a recognition
model to predict these factors bottom-up. One example is the algorithm behind
Kinect [26], which is shown to be a key component of efficiently estimating
human pose.

The work of Jampani et al. [15] and Kulkarni et al. [18] makes use of bottom-
up sampling probability distribution proposals to get an approximation of the
posterior probability of the latent variables more efficiently for black-box render-
ers. Both papers show improved sampling performance using these data-driven
proposals.

Krull et al. [17] work on estimating 6D pose from RGB-D images. Rather
than explicitly modelling occlusions they learn an energy function that compares
the rendered model and the input image (which may contain occlusions) using a
convolutional neural network. At inference time a search is carried out in 6D pose
space to minimize the energy function. Note that this work is restricted to infer-
ence of pose, while we also address object shape, appearance and illumination
factors.

Perhaps the most closely related work to ours is that of Yildirim et al. [31]
which makes use of both a recognition model and a generative model. They
use the morphable face model [5] and explore variation in shape, texture, pose,
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and lighting direction. In our work we make use of more complex illumination
(extracted from a collection of indoor environment maps), and also include scene
backgrounds and foreground occlusions. We also analyze the performance of the
recognition model with respect to the different factors. A further difference is
that Yildirim et al. [31] make use of MCMC methods for inference, while we use
local search using a differentiable renderer.

The Picture framework of [20] provides a general probabilistic programming
framework for specifying scene understanding problems and general-purpose in-
ference machinery, and applies it to a number of example problems. Rather than
generating pixels it uses a “representation layer” of features to assess the match
of an input image and the rendered scene, using a likelihood-free method. Note,
however, that this means there is a choice of representation that needs to be
made (by hand) in order to use the framework. Also, Picture does not explicitly
handle occlusions, nor complex lighting.

Learning the generative model. Another piece of related work is to use a
deep learning auto-encoder model for both the recognition model (encoder) and
generative model (decoder), as in Kulkarni et al. [19]. This DC-IGN model does
not make use of an explicit 3-d graphics model, but rather learns a mapping
from the graphics code layer (hidden units) to images in the decoder. This gives
a lot of freedom to the model as to how it wishes to represent variation in shape,
illumination etc. However, it also means that the effect of e.g. pose variation
has to be learned specifically for an object class, rather than being generic ge-
ometric knowledge. The ability of DC-IGN to generalize to novel images (e.g.
under different rotations) seems to be limited if one looks at the visual quality
of its renders. Experiments are again conducted wrt shape, texture, pose, and
simple lighting direction variation, without scene backgrounds and foreground
occlusions. Note also that the auto-encoder architecture means that there is no
scope for refinement of the code predicted by the recognition model, in contrast
to our work and that of [31].

The work of Dosovitskiy et al. [8] is somewhat similar to the DC-IGN model
in that it learns a “decoder” network from variables representing shape class,
pose and other transformations (e.g. in-plane rotation, colour transformations),
although there is no corresponding encoder network. Their network shows im-
pressive generalization over the chair class, but is not used to address issues of
scene understanding.

2 Generative models

We first describe how the foreground object is modelled, and then discuss the
rendering process and our likelihood models.

2.1 Object model

The factors that characterize a visual object are the pose, shape, appearance,
and the incident illumination. The choice parametrization is a trade-off between
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its ability to model complex scenes and having a compact representation for
efficient search over the latent variables. In this work we use the following:
Shape: We model the shape of a given object class using a deformable mesh
characterized by Principal Component Analysis, as used e.g. by Blanz and Vet-
ter [5] for modelling faces.

Pose (2D): We assume the camera is centered on the foreground object at a
fixed distance with variable azimuth and elevation. Note that, to a large degree,
the shape parameters can model the general scale of our object, thus including
a distance variable for the position of the camera is not necessary.
Appearance (3D): A global RGB colour is used for all object vertices, which
we also refer to as the albedo. The reflectance function is assumed to be Lam-
bertian, as explained in more detail below.

Ilumination (9D): Inverse illumination is known to be an ill-posed problem
[22, Ch. 6], with the additional issue that real illumination can be very complex
(thus modelled poorly by single directional light sources). We are interested in
representations that are practical for our inverse-graphics framework. One of
the most natural representations is to project lighting to basis functions such
as Spherical Harmonics, see e.g. [23], a technique which is also widely used in
computer graphics for efficient approximate rendering of lighting. Other repre-
sentations include Haar wavelets [25], and so called basis images of the object
class illuminated from different light conditions [3]. We use Spherical Harmonics
(SH) due to its compact representation and the efficiency at which re-lighting
is computed when rotating the light or changing the shape and pose of the
modelled objects.

Spherical Harmonics form an orthogonal basis that can be used to approx-
imate complex illumination. For Lambertian reflectance, it can be shown [2]
that only 9 components can approximate images of a convex object by at least
99.22%. Lambertian reflectance is a diffuse surface property where the resulting
RGB reflectance r(x;) of an incoming light a point x; on the surface is given by

r(x;) = a; max(n,; - ;,0), (1)

where a; is the RGB albedo, 1; is the incoming light direction and n; is the vertex
normal at point x;. Even though real world objects have cast shadows, specu-
larities, and other non-Lambertian factors, our assumption is that a Lambertian
approximation is sufficient for a large variety of tasks in inverse-graphics.

2.2 Renderer

We use a graphics renderer as a generative model that takes as input a set of
object meshes (which include information of their vertex coordinates, normal
vectors, textures and colors) and then generates the renders using OpenGL.
Our renderer is based on OpenDR: Differentiable Renderer [21], which we have
extended to make it capable of rendering multiple objects and textures, and
also modernized its OpenGL back-end in order to support modern graphics
features and hardware-accelerated rendering. The main advantage of OpenDR
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is that it provides approximate derivatives of the image with respect to the
latent variables or any variable of interest. The approximation stems from the
fact that the rendering function is non-differentiable due to self-occlusion and
occlusion across objects. Having derivatives plays a key role in the efficiency of
the optimization process as the dimensionality of our latent space increases

We can think of the cost function of our generative process (i.e. the recon-
struction error) in terms of a likelihood function. In this work we explore two
possible models over the pixel intensities. Since we are modelling one foreground
object, all the rendered pixels that lie outside the object mask are are considered
as background and modelled by a uniform distribution. Given an image I, the
likelihood of the foreground pixel (fg) intensities are modelled as follows:

— Gaussian model: The simplest case is a Gaussian distribution on the pixel
intensities:

pleilz, fg) = N (eis pi(2), 0°1) (2)

where ¢; is the RGB color at pixel i, p,;(z) is the RGB color output of the
renderer given scene latent variables z, 02 is the spherical variance (assumed
to be the same for all pixels), and N denotes the Gaussian distribution. In
terms of the optimization landscape, this is equivalent to using a squared
error cost function.

— Robust model: We want our model to tolerate foreground occlusions by
using outlier statistics as in Williams and Titsias [29]

plcilz, fg) = aN (ci; pi(2), 0°I) + (1 — a)U(c;)), (3)

where « is the mixing probability of a pixel being unoccluded, and U is the
uniform distribution. Note that we can learn « from our training set by e.g.
taking the average of the proportion of unoccluded pixels.

Thus, the overall log-likelihood of an image given the scene latent variables z is
given by
L= logp(cilz, fg) + Y _ logU(c;). (4)
ic€fg jEbg
The pixel-wise outlier model as used above does not impose spatial priors
on regions of occlusion. One could enhance this e.g. using Markov random field
models on the occlusion labels (see e.g. [11]), at the cost of greater complexity in
inference. One could also consider more complex occlusion models that learn the
structure of occlusions from data, see e.g. [12]. While Black and Rangarajan [4]
propose robust statistical techniques for a number of vision tasks, the advantage
of the latent variable formulation of our robust model is that it allows us to
explain occlusions by using the posterior probabilities of the foreground/outlier
pixel segmentation.
Estimating the latent variables of interest is obtained by initializing the
OpenDR input with the estimates of the latent variables given by the recog-
nition model, followed by locally improving its fit using the likelihood function,
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e.q. 4, subject to the constraint that the PCA coefficients of the shape model lie
within +3 standard deviations of the mean. This is why it is essential that the
predictions of the recognition model should lie within the basin of attraction of
the generative model.

3 Recognition model

The choice of the recognition models architecture depends on the task domain
and the scene factors we want to infer. For instance, the model can output a
single point estimate or take a probabilistic approach; in this work we focus on
the former case. Again, we want the estimates of the bottom-up predictions to
lie within the basin of attraction of the generative model.

Using the right feature representation of the images is also key to good dis-
criminative performance. After experimenting with a diverse set of features for
each type of parameter (e.g. Histogram of Gradients for pose prediction, and
different basis expansions for illumination) we found that learning the features
from raw images gave the best prediction performance. Therefore, we make use
of Convolutional Neural Networks (CNNs) to predict each of the latent variables
as these have been key to the success for many computer vision tasks in recent
years [16]. The architecture of choice is almost the same in all cases as it showed
a good generalization capability: three convolutional layers (64 5x5 filters) with
max-pooling and two dense hidden layer (with 256 and 32 hidden units each).
In the case of pose and shape CNNs, the input is assumed to be grayscale. A
dropout rate of 0.5 was used with Nesterov Accelerated Gradient descent with
0.9 momentum.

4 Synthetic ground-truth dataset

Synthetic datasets have been used for a variety of computer vision tasks, see
e.g. [26, 33]. In order to generate synthetic data for training and evaluation of
our method, we use an indoor scene generator based on the dataset of Fisher
et al. [10]. This consists of 10,000 CAD models they collected and stochasti-
cally arranged together in different plausible indoor scenes. Here, we use over 80
different indoor scenes.

In this work we focus on the teapot object class. The reason for choosing
teapots is that they are a common object in indoor scenes and have a good
degree of variability. However, our stochastic scene generation is not limited
to only one type of object, and many different object models can be collected
from sources such as the Princeton Modelnet [30] and easily embedded into the
scenes. 10 PCA dimensions were chosen so as to capture 90% of the variation in
the training dataset of 23 3D teapot models.

To generate the scenes with complex and varied illumination settings, we
collected over 70 complex indoor environment maps (also known as light probes)
from different sources, see e.g. [7]. An environment map is the projection of
the incident illumination on a point of a scene into e.g. an equirrectangular
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image. We use these environment maps to render illumination using Spherical
Harmonics as in [24]. Since the Lambertian reflectance function acts as a low-pass
filter, it effectively removes high-frequency information [2], hence the resulting
illuminated objects are perceptually well approximated compared to using the
actual environment maps.

The ground-truth of each sample in the dataset is generated by instantiating
the teapot object in one of the indoor scenes. This involves sampling the shape
parameters from the shape prior, as well as a uniformly sampled object rotation
around the Z-axis (up axis). The camera’s angles of azimuth and elevation are
randomly sampled with a uniform distribution on the upper hemisphere and it is
placed at a fixed distance from the object. The scene is then illuminated by one of
the environment maps, rotated uniformly along the Z-axis. In total, we produced
10,000 training and 1,000 test images by the above process. We distinguish two
different types of rendering methods: a non-photorealistic rendering which does
not include global illumination and uses OpenGL, and a photorealistic rendering
which uses the unbiased ray-tracer Cycles'. The OpenGL rendering is much
quicker and we use it to generate the training data. Their width and height are
set to 150 by 150 pixels. Figure 2 shows a few examples rendered with Cycles.
Figure 2 (c) shows the histogram of occlusion levels in our dataset, note how
there are occlusions of all levels up to 90% (it is not useful to have images
with occlusions near 100% for the purpose of training or evaluation). This scene
generator and dataset will be made available upon the publication of this work.

1800 Occl‘usmn hlstog"ram

1600
1400
1200

~ £ 1000
a) 8% Occl.  (b) 21% Occl. 5
8 800
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Fig. 2: Examples of our synthetic data-set with different levels of occlusion

! http://www.blender.org/manual /render/cycles/introduction.html
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5 Experiments

5.1 Experimental setup

In the following experiment we use a test set which consists of 1000 test samples
from our synthetic dataset with different levels of occlusions. These test images
are rendered with the unbiased ray-tracer Cycles in order to assess our models
using scenes with global illumination which simulate real images illumination.
We are interested in understanding the performance of our models (recogni-
tion, gaussian and robustified) as the occlusion level is increased. As a reference
evaluation, we provide a baseline prediction based on the mean values of the
different factors on the training set (mean baseline). The evaluation metrics and
optimization procedure for this experiment are explained below.

Evaluation metrics. In general, evaluating predictions of the fine-grained
scene latent variables (e.g. pose, shape, appearance, illumination) is difficult
due to a lack of labelled datasets, but here we have the advantage of having a
synthetic dataset in which all these factors are designed to have a rich variabil-
ity. One way to evaluate the performance of our method is the log-likelihood
on the test set. However, that does not give us an easily interpretable quantity.
Instead, evaluation is carried out with respect to the predictive performance of
the latent variables we are modelling, which have a more intuitive and physical
interpretation. We also evaluate how well the unoccluded foreground pixels are
predicted.

Choosing the evaluation metric for each of these factors in not necessarily
straightforward. For pose azimuth and elevation, we define the errors to be the
absolute angular difference for each angle (azimuth and elevation variables range
360 and 90 degrees respectively). Special care needs to be taken to measure
the appearance and illumination attributes as they interact with each other
multiplicatively, see eq. 1. For the appearance error ¢, we convert the colour
representation to Lab space? which is more perceptually uniform, and omit the
luminance L to give

€ =\ (@ e — @i)? + (Blyq — bi)?, (5)

where a;md and b;red correspond to the predicted color dimensions of the Lab
representation, and a;t and b;t to the ground-truth values for test image 1.

For the illumination error we use the mean squared error (MSE) of the Spher-
ical Harmonics coefficients. It is known that estimating the illumination from a
single view can be potentially ill-conditioned [22, Chapter 6] so it is possible that
the ground-truth illumination cannot be recovered exactly. It is easy to see that
our metric is equivalent to the MSE of the incident SH illumination projected on
a sphere. Furthermore, we use a scale-invariant version of this metric in order to
account for the fact that appearance and illumination interact with each other

2 https://en.wikipedia.org/wiki/Lab_color_space
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multiplicatively. A similar evaluation metric is used in [1]. Finally, we evaluate
shape reconstruction by using the mean Euclidean distance between the vertices
of the ground-truth and predicted meshes, both aligned to a canonical pose.

The occlusion predictions from the robust model are evaluated thus: we ob-
tain predicted un-occluded foreground pixels by evaluating the posterior prob-
ability at each pixel of belonging to the foreground or outlier component in eq.
3, and thresholding at 0.5. These are then compared to the ground-truth un-
occluded foreground pixels using the segmentation accuracy as defined e.g. in
[9], where the number of true positives is divided by the sum of the true posi-
tives plus false positives plus false negatives. For the recognition model without
iterative refinement, we assume that all of the predicted foreground pixels are
unoccluded.

Optimization procedure. For the robust model we explored different opti-
mization strategies since convergence is sensitive to the choice of the likelihood
variance. If we use a pixel variance that is too large, then occlusions and back-
ground clutter will affect the optimization negatively. On the other hand, if the
variance is too small, the robust model tends to ignore large parts of the image
including those which are important for a correct optimization. We jointly op-
timize the latent variables of pose, shape, appearance and illumination using a
standard deviation of ¢ = 0.03 of the pixel likelihood. Note that the pixel color
for each RGB channel ranges between 0 and 1. Also, we clamp shape parameters
to be less than three standard deviations from the prior mean: it is much more
likely that the optimization has gone wrong than it is having an input image
with an unreasonably large (or small) deformation of the mesh.

We explored different minimization methods including gradient descent (with
and without momentum and decay), nonlinear conjugate gradient (CG)3, dogleg
CG (as used in the OpenDR work), and BFGS. Nonlinear CG consistently con-
verged to better minima in our tests hence we use it in our experiments. It is not
surprising that these methods often converge differently since the optimization
landscape is non-convex and the derivatives are approximate.

5.2 Results

Effect of Occlusion on accuracy. Fig. 3 shows the median cumulative predic-
tive performance as a function of the percentage occlusion when evaluating on
the photorealistic test images. (So, for example the performance at 75% occlu-
sion is obtained from all test cases with this much occlusion or less.) Note that
in panels (a)-(e) lower error is better, while in panel (f) higher scores are better.
Comparing the recognition network to the recognition network plus robust fit-
ting, we see very similar performance for azimuth, elevation and shape factors,
but marked improvements with fitting for appearance, illumination and occlu-
sion. Pose and shape are predicted very well by the recognition model, which
suggests that it is good at inferring latent variables for which there are clear and

3 http://learning.eng.cam.ac.uk/carl/code/minimize/
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localized cues (e.g. for pose, the locations of tip of the spout, the handle, etc.),
even under high levels of occlusion. Subsequent fitting of azimuth and shape fac-
tors on average shows little to no improvement, but we do see an improvement
for elevation. We also see how the recognition model has not learned to predict
the illumination and that occlusion has a strong effect on the prediction. This
agrees with the intuition that the other factors can be more easily inferred by
having a smaller portion of the object unoccluded.

Fitting results. It is noticeable that the Gaussian model performs much worse
than the robust model for elevation, appearance, and illumination. Indeed it
sometimes performs worse after fitting than the recognition model itself, which
is most likely explained by the fact that the Gaussian model does not handle
occlusion and background clutter well. Plots of the mean performance rather
than the median show similar trends to Fig. 3, except that the elevation angular
error of the robust fit becomes worse than the recognition model over the oc-
clusion range (increasing from 6 to 8 degrees). Analysis shows that this is due
to some large errors that arise particularly at higher occlusion levels. A possible
remedy we are investigating is to check if the fitting process has gone awry, and
if so revert to the recognition model prediction. Table 1 summarizes the plots by
showing the median prediction errors for the baseline, the recognition model pre-
diction, and the Gaussian and robust fits for up to 75% occlusion. For reference,
we also show the results of the recognition and fitting when the test images are
rendered with OpenGL, which is the method used for our differentiable renderer
as well as to render the training images of the recognition models. We notice how
the relative improvements when fitting is similar in both Cycles and OpenGL
cases, but the OpenGL experiments have overall lower errors as is expected.
Notice how robust fitting gives the best performance in all cases except for a
slightly worse performance on elevation at high occlusion levels. We provide the
median plots with both Cycles and OpenGL experiments in the supplementary
materials along with some example videos of the fitting process.

Table 1: Median prediction errors for the latent variables for level of occlusion
of 75%. Higher is better for segmentation evaluation

Photorealistic OpenGL

Baseline RM Gaussian Robust RM Gaussian Robust

Azimuth 92.14 11.71 14.52 11.17 10.68 17.18 8.55
Elevation 14.44 5.58 8.19 5.02 4.94 7.57 3.668
Appearance 0.140 0.048 0.056 0.032 0.036 0.055 0.014
INlumination 0.021 0.023 0.024 0.019 0.022 0.024 0.019
Shape 1.005 0.541 0.560 0.511 0.525 0.599 0.479

Segmentation - 0.659 - 0.778 0.670 - 0.828
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Qualitative evaluation. Fig. 4 shows examples of how the robust model ex-
plains away the occlusion rather impressively for different levels occlusion, which
is something difficult to achieve with purely bottom-up techniques. In Fig. 5 we
show a few examples to illustrate how the environment map illumination is fit-
ted to capture the main directional sources of illumination in a complex indoor
illumination setting with multiple light sources. Note that all the scene latent
variables were predicted and fitted in this experiment. Indeed, the robust model
seems much more capable of capturing fine-grained descriptions such as illumi-
nation, appearance and occlusions than the recognition model.

Images Segmentation Images Segmentation

= (7 v v

Fig. 4: Examples of occlusion inference using the posterior of the robust pixel
probabilities
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Fig.5: Examples of how fitting with the robust model captures the correct illu-
mination whereas RM is unable to do so

6 Discussion

Above we have investigated the use of vision-as-inverse-graphics with recogni-
tion models for a target object embedded in background clutter and subject to
occlusions. A great advantage of using data generated by computer graphics is
that it allows us complete access to the underlying scene parameters, and hence
the ability to explore these systematically.

Our results show that some of the latent variables like pose and shape are
well-predicted by the recognition network, while others such as illumination, ap-
pearance and occlusion benefit from subsequent refinement by fitting a robust
generative model. Our results also show that the robustified model of e.q. 3
clearly outperforms a Gaussian likelihood, and provides a way to detect occlu-
sions even in complicated cases.

Future directions for research include investigating: detecting if the fitting
process has fallen into improbable basins of attraction, and the use of multi-
modal predictions in the recognition network (as per [14] or [13]).
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