Greedy Learning of Binary Latent Trees

Stefan Harmeling and Christopher K. I. Williams

Abstract—Inferring latent structures from observations helps to model
and possibly also understand underlying data generating processes. A
rich class of latent structures are the latent trees, i.e. tree-structured
distributions involving latent variables where the visible variables are
leaves. These are also called hierarchical latent class (HLC) models.
Zhang (2004) proposed a search algorithm for learning such models
in the spirit of Bayesian network structure learning. While such an
approach can find good solutions it can be computationally expensive.
As an alternative we investigate two greedy procedures: the BIN-G
algorithm determines both the structure of the tree and the cardinality
of the latent variables in a bottom-up fashion. The BIN-A algorithm first
determines the tree structure using agglomerative hierarchical cluster-
ing, and then determines the cardinality of the latent variables as for
BIN-G. We show that even with restricting ourselves to binary trees
we obtain HLC models of comparable quality to Zhang’s solutions (in
terms of cross-validated log-likelihood), while being generally faster to
compute. This claim is validated by a comprehensive comparison on
several datasets. Furthermore, we demonstrate that our methods are
able to estimate interpretable latent structures on real-world data with
a large number of variables. By applying our method to a restricted
version of the 20 newsgroups data these models turn out to be related
to topic models, and on data from the PASCAL Visual Object Classes
(VOC) 2007 challenge we show how such tree-structured models help
us understand how objects co-occur in images. For reproducibility of
all experiments in this paper, all code and datasets (or links to data) is
available!.

Index Terms—Unsupervised Learning, Latent Variable Model, Hierar-
chical Latent Class Model, Greedy Methods.

1 INTRODUCTION

It is widely recognized that a distribution p(x) over a
vector of variables x = (z1,...,2p) can often usefully
be modelled with the aid of some latent (or hidden)
variables. Our goal is to learn tree- or forest-structured
distributions involving latent variables where the visible
variables x are leaves, as shown in Figures 1-4. Our focus
is primarily on discrete visible variables.

A simple latent-variable model for discrete data is the
latent class model (LCM; see e.g. Lazarsfeld & Henry,
1968). In this model there is one discrete latent variable
that can take on K different states, and the visible

e S. Harmeling is with the Max Planck Institute for Biological Cybernetics,
Tiibingen, Germany.
E-mail: stefan.harmeling@tuebingen.mpg.de

e C. K. I. Williams is with the Institute for Adaptive and Neural Compu-
tation, University of Edinburgh, Scotland.
E-mail: ckiw@inf.ed.ac.uk

1. http:/ /people kyb.tuebingen. mpg.de /harmeling/code/1tt-1.4.tar

variables are conditionally independent given the latent
variable?. This model can readily be fitted to data using
the EM algorithm. However, it has strong assumptions
of conditional independence that in general will not be
justified.

These strong assumptions can be relaxed by proposing
a richer, tree-structured latent variable model as pro-
posed for example in Zhang (2004). Following Zhang
we call this a hierarchical latent class (HLC) model. The
network structure is a rooted tree and the leaves of the
tree are the visible variables. An attraction of a latent tree
structure (compared to more complex DAGs) is that it
allows linear time inference (Pearl, 1988). Furthermore,
such a latent structure reflects a hierarchical grouping
of the visible variables, making HLC models often in-
terpretable and giving insights into the data generating
processes. We emphasize the difference between the
HLC model and the work of Chow and Liu (1968);
the latter algorithm produces a tree-structured model
defined solely on the visible variables, and does not
induce latent variables.

To specify an HLC model there are two issues to be
addressed: (i) the structure of the latent tree and (ii)
the cardinality of the latent variables in the tree. Zhang
(2004) defines the set of regular HLC models; essentially
these are HLC models that are not overparameterized.
(For example, for two binary visible variables we only
need K = 2 latent states to model their joint distribution
exactly; a model with K > 2 is overparameterized, as can
be observed by parameter counting.) Zhang’s algorithm
conducts a search in the space of regular HLC models,
starting the search from an LCM. The search involves
moves which perform node introduction, node elimina-
tion, neighbour relocation, and changing the cardinality
of a latent variable. Its runtime is dominated by the
number of times the EM estimation procedure is called.
In Zhang (2004) the EM algorithm is called O(D*) times
(where D is the number of variables), and each run of
EM takes O(K2DN) time (see end of next section for
an explanation of the symbols) leading to an overall
runtime in D of O(D®). Zhang and Kocka (2004) reduced
this to O(D?). However, the EM algorithm is still called
quadratically often in the number of variables.

We focus on HLC models that are binary trees or

2. This model has the same graphical structure as the naive-Bayes
classifier, but as it is trained in an unsupervised manner we refer to it
as the LCM.

forests. In Section 2 we investigate two bottom-up pro-
cedures: the first, BIN-G, determines both the structure
of the tree and the cardinality of the latent variables in
a bottom-up fashion. The second algorithm BIN-A uses
agglomerative hierarchical clustering to determine the
structure of the tree, and then estimates the cardinality
of the latent variables as for BIN-G. We show that both
call the EM algorithm only D—1 times, i.e. they are linear
in the number of variables, resulting in overall runtimes
of O(D?).

In Section 3 we apply our methods to several real-
world datasets and show experimentally that their per-
formance (in terms of log-likelihood) is comparable to
Zhang’s method, while being computationally more ef-
ficient. Related work is discussed in section 4, and we
give our conclusions in section 5.

2 LEARNING BINARY LATENT TREE MODELS

Our goal is to induce from N data samples an HLC
model which is a good model for the underlying dis-
tribution from which the data was drawn. The quality
of the induced model could be estimated e.g. using
cross-validated predictive log-likelihood, or by a penal-
ized maximum likelihood criterion such as the Bayesian
Information Criterion (BIC) J(0) = I(d) — P/2logN,
where [(f) is the log-likelihood corresponding to optimal
parameters 0 and structure, P is the number of free
parameters of the model and N is the number of data
points. The ability to generalize is an important fea-
ture as otherwise a sufficiently large model can simply
“remember” the input data distribution. For example,
consider an LCM which has as many latent states as
there are unique data vectors: by making the conditional
distribution for a given latent state be a delta function
on the corresponding data vector the dataset can be
memorized. Thus to encourage generalization the size
of the model must be controlled.

We first describe how to learn the basic building block,
the LCM, and then discuss two greedy algorithms for
building a binary latent tree.

2.1

We describe the simple case where the parent node has
two children. Let z; and x5 be two variables which not
necessarily refer to visible variables, and a latent variable
(denoted z). We focus on discrete random variables. The
LCM for two variables z; and zs introduces a latent
variable z, so that

=Y p(z=k)p(z1|z=k)p(zalz=k). (1)
k

Learning Latent Class Models

p(wlv ‘T?)

Its parameters 7, = p(z=k), 0;r = p(x1=t|z=k) and n;, =
p(xe=j|z=k) are learned from data by the Expectation
Maximization (EM) algorithm.

Deriving the EM updates for this model is a simple
exercise if z; and zy are both observed, but it becomes

more interesting when they are not observed. The rele-
vant variables z, x1, T2 and the children of z; and =z,
form a tree-structured belief network (TSBN) with z at
the root. The EM updates for this case are derived in
Appendix A making use of Pearl’s belief propagation
algorithm for trees (Pearl, 1988). Similar updates have
been used in Feng et al., (2002, Eq. (6)),

In practice we try different cardinalities for the latent
variable z between 1 and K., and select automatically
using the BIC. We also use a number of random restarts
to reduce the problem of local optima (in the reported
experiments we did 10 restarts). We denote by LCM the
method that automatically learns a latent class model.

2.2

Our first approach to finding a binary-tree HLC model
is by a greedy growing a tree-structured probabilistic
model. We start with a simple model in which all visi-
ble variables are assumed independent. These variables
form the “working set”. We then choose from that set
the pair with the highest mutual information (MI) and
model them with an LCM with a new latent variable z.
We then remove the selected pair from the working set
of variables, add z to this set, and repeat either (i) until
either the working set contains only a single variable
(which would be the root the overall learned tree), or
(ii) if we try to introduce a latent variable with a single
state. In the latter case we stop early, and we fix the tree
structure and the number of hidden states. Finally, we
refine the conditional probability tables (CPTs, see line 19
of Alg. 1 and Appendix B), before we output the current
forest of trees. The resulting algorithm, called BIN-G, is
stated formally as Alg. 1.

The rationale for selecting the pair of variables with
the highest MI is based on the following observation.
Consider a distribution p(x) over a vector of random
variables x which is approximated by a distribution ¢(x),
where

Incremental Learning of Binary Tree Models

(xi,)

q(x) = p(zs, x;5) H p(z WH? zr), (2)
k#i, j v]

i.e. ¢(x) models the joint distribution of z; and z;, but
only the marginal distributions of the other variables.
Then

L(pllg) = Zp) log p(x Zp)logg(x) (3)
I(z;, ;) +Zp lognp(lk) (4)

where I(x;, z;) is the MI of x; and x; under the distribu-
tion p(x;,x;). Thus in order to minimize the Kullback-
Leibler divergence between p(x) and ¢(x) we should
select the pair that has the highest MI.

Note that each induced tree will have a root. However,
as is well-known in phylogenetics (see e.g. Felsenstein,
2004) the root can be “walked” around the tree without
changing the joint distribution; there is an equivalence

Algorithm 1 BIN-G(x)

Algorithm 2 BIN-A(x)

1: input: a working set V' of variables z1,...,zp

2: G < the graph with vertices V' and no edges

3: calculate pair-wise MI for all observed variables

4: loop

5. W « pair from V with highest mutual information
6: V — V\W /* remove that pair from V */
7.z« LCM(W) /* find latent class model by EM */
8. if z has single state then

9: break /* outer loop */

10: end if

11: add vertex z to graph G

122 add edges from z to children in W to graph G
13: if V is empty then

14: break /* outer loop */

15 end if

16: add latent variable z to working set V'

17 calculate pair-wise MI for the new vertex z and all

variables of the working set
18: end loop
19: recursively refine the conditional probability tables
using EM on structure G (see Appendix B for details)
20: output: the graph G (being a forest)

1: input: a working set V' of variables z1,...,zp

2. G < the graph with vertices V' and no edges

3: calculate pair-wise MI for all observed variables

4: loop

5. W « pair from V with highest mutual information
6.V — V\W /* remove that pair from V */

7. add vertex z to graph G

8. add edges from z to children in W to graph G

9: if V is empty then

10: break /* outer loop */

11: end if

12 add latent variable z to working set V'

13: approximate pair-wise MI for the new vertex z and

all variables of the working set by single, complete,
or average linkage
14: end loop
15: recursively estimate the cardinality and a latent class
model at each latent node by EM (i.e. calling LCM)
beginning at the leaves
16: recursively refine the conditional probability tables
using EM on structure G (see Appendix B for details)
17: output: the graph G (being a forest)

class of directed trees which corresponds to one undi-
rected tree (see also discussion in Zhang, 2004, §3.2).
This is not a problem for us as we only care about the
distribution over the visibles induced by the equivalent
undirected tree.

2.3 Learning Trees via Agglomerative Hierarchical
Clustering

The BIN-G algorithm determines the tree structure and
cardinality of the latent variables greedily as it proceeds
by estimating a LCM for each introduced latent variable.
Thus we are able to compute the MI between inferred
latent nodes and other existing nodes (either latent or
observed), as discussed above and in the appendix. An
interesting question raised by one of the reviewers asked
how such an inferred tree-structured model compares
with a model based on a tree-structure determined via an
agglomerative hierarchical clustering procedure (AHC,
see e.g. Duda & Hart, 1973) running on the variables
(not the datapoints). Of course such a tree structure
also requires inference of LCMs locally at each node to
constitute a full probabilistic model. However, instead of
inferring the LCMs simultaneously with the tree struc-
ture (as BIN-G does), the LCMs can also be estimated
after determining the tree structure.

We state such an algorithm based on AHC formally
as Alg. 2 and called it BIN-A. The linkage options of
AHC (mentioned in line 13 of Alg. 2) are explained
at the beginning of Section 3. First of all we note that
both proposed algorithms are similar. The clustering
procedure of AHC for BIN-A is analogous to estimating
the tree-structure in BIN-G. The differences are:

o Instead of estimating an LCM for each introduced
latent node and calculating the MI in BIN-G (lines
7-10 and 17 in Alg. 1), BIN-A omits the immediate
LCM estimation and approximates the MI by single,
complete, or average linkage (line 13 in Alg. 2).

o Inline 15 Alg. 2 estimates the LCMs bottom-up once
the tree-structure is fixed, before applying EM on the
whole model for refinement (line 16).

The BIN-A algorithm is related to some previous propos-
als for learning a tree structure by AHC, as discussed in
Section 4.

2.4 Runtime Complexity of BIN-G and BIN-A

We will use the following constants for the runtime
analysis:

number of data points

number of observed variables
maximal cardinality (actual)
maximal cardinality (considered)
number of EM-iterations
number of EM-restarts

xR T =

n ~

The runtime complexity of BIN-G is O(D*NK? +
DSINK?K pax). Its loop (see Alg. 1) is executed at
most D — 1 times, as the cardinality of the working set
of variables V' reduces by one on each iteration. The
O(D?>NK?) term arises from the calculation of pairwise
Mils at line 3, and the fact that the mutual information
calculation at line 18 is O(DN K?) and that it is executed
O(D) times. The O(DSINK?K,,.,) term arises from the
call to LCM in line 8, and the fact that this will be called
at most D — 1 times. Each iteration of EM in LCM takes

O(NK?), and there are up to I iterations and S restarts.
Thus we conclude that the runtime complexity of BIN-G
is quadratic in the number of variables D.

How does the second approach BIN-A compare to
BIN-G? As already the structural similarity of the algo-
rithms suggests, we will see that both have the same
runtime complexity: similar reasoning as above explains
that the loop of BIN-A (see Alg. 2) that determines
the tree structure via AHC is executed at most D — 1
times. However, each iteration is much faster than for
BIN-G since no latent class model is learned in that step.
Thus the AHC step of BIN-A is linear in the number of
variables. However, the subsequent recursive estimation
procedure (line 15 in Alg. 2) estimates an LCM for each
latent variable and thus calls LCM also linearly often in
the number of variables D. Thus both procedures have
similar times, as confirmed in the experimental section
below.

2.5 Learning Latent Trees for Gaussian Variables

Above we have described a model for discrete visi-
ble variables. The analogue of the LCM for Gaussian-
distributed continuous variables is the factor analysis
(FA) model. Here the number of latent factors plays an
analogous role to the cardinality of the latent variable in
the discrete case; model selection for FA could be carried
out using BIC. Going beyond factor analysis we come to
a tree-structured latent-variable model, which is in fact
a description of a (recursive) structural equation model
(SEM, see e.g. Bollen, 1989). The greedy method above
could equally be applied to learn SEMs.

3 EXPERIMENTS

Restricting ourselves to binary trees results into large
speed-ups in runtime which allow our methods to infer
latent structures of large real-world datasets. In Sec-
tion 3.1 we analyse text data from newsgroups, and
search in Section 3.2 for latent structure in co-occurrence
data derived from the PASCAL VOC 2007 challenge.
We thoroughly evaluate our approach in Sections 3.3
and 3.4 on further datasets. The algorithms we con-
sider are abbreviated in this section as follows: algo-
rithm IND generates baseline results using the model
in which all variables are independent of each other.
Algorithm ZHANG is the compiled Java code provided
by N. L. Zhang implementing the method described in
Zhang and Kocka (2004). Algorithm LCM estimates a
non-hierarchical Latent Class Model inferring a single
latent variable. We also compare against algorithm CL
from Chow and Liu (1968), however we note that it does
not infer a latent structure. Finally, algorithms BIN-G
and BIN-A denote our proposed methods detailed above.
Note that BIN-A employs average linkage to approximate
the MI between latent and other variables, which means
that the MI between two variables z; and z, (either latent
or observed) is approximated by the average MI between
any leaf below or equal to z; and any leaf below or equal

to z2. Results using complete linkage (maximum distance,
i.e. minimum MI) or single linkage (minimum distance,
i.e. maximum MI) were omitted. These AHC variants
produced similar results (in terms of the applied per-
formance measures) and generated qualitively slightly
inferior forest structures on the newsgroup (Section 3.1)
and visual co-occurrence datasets (Section 3.2).

Note that for reproducibility the code for all ex-
periments is provided as supplementary material (see
footnote on the first page of this paper). This includes
code and data that generates the toy examples and
interfaces to the datasets freely available on the internet
as indicated.

3.1

To demonstrate the ability of BIN-G and BIN-A to deal
with a large number of variables we applied it to a bi-
narized word-document matrix derived by Sam Roweis®
from the UCI 20 newsgroups dataset. The dataset has
been restricted to 100 words, such there are 100 binary
variables and 16,242 data points. Our methods termi-
nated after about an hour (BIN-G) and a quarter hour
(BIN-A), while Zhang’s method did not finish after sev-
eral days, even though ZHANG’s JAVA implementation
is based on the Colt framework* for high performance
scientific computing, while our code is Matlab. For com-
pleteness we also run LCM on this data and obtained the
best log-likelihood. However, LCM is slower by factor of
ten and it estimates only a single latent variable so it
provides no interpretable graph structure.

Figure 1 shows a subtree of the whole latent forest
model (shown in Figure 2) which BIN-G has estimated.
The trees obtained by BIN-A are shown in Figure 3. Note
that BIN-G and BIN-A reached similar log-likelihoods
with BIN-G being slightly better (see Table 1). Each leaf
corresponds to the word with which it is labelled, and
each internal node displays an order number. The lowest
order number for this dataset is 101 which corresponds
to one plus the number of observed variables. The
smaller the order number the earlier its children were
merged during the tree building process.

Examining the labels of the tree inferred by algorithm
BIN-G reveals that the inferred model can be interpreted
in a meaningful way (similar to the work of Blei et al.
(2003)): For instance the leaves of the subtree in Figure 1
capture the words from the topic “medicine”, such as:

Topics of 20 Newsgroups

medicine (subtree at node 192): doctor,
medicine, disease, patients, cancer, studies,
aids, health, insurance.
Similarly, other subtrees (see Figure 2) of the whole latent
tree model collect words from other topics:
sports (subtree at node 175): puck, hit, won,

win, fans, league, nhl, games, baseball, hockey,
players, season, team

3. http:/ /www.cs.toronto.edu/~roweis/data.html
4. http:/ /acs.Ibl.gov/~hoschek/colt/

192

\
/N

191

A 4

doctor 135 171 173
/ L r/ \1 v \
medicine 125 cancer studies aids 130
disease patients health insurance

Fig. 1. Topics of 20 newsgroups: subtree collecting words
of topic “medicine”.

politics/religion (subtree at node 170): children,
human, president, gun, state, law, government,
rights, israel, jews, war, world, religion, chris-
tian, bible, god, jesus, evidence, fact

computer (subtree at node 187): email, phone,
help, problem, technology, computer, science,
data, system, mac, scsi, disk, drive, memory,
graphics, card, video, pc, software, driver, ftp,
version, program, files, dos, windows, format,
image, display, server

spaceflight (subtree at node 162): mars, satellite,
lunar, moon, launch, shuttle, nasa, space, earth,
orbit, mission, solar

others (subtree at nodes 140): research, univer-
sity; (subtree at node 188): water, vitamin, food,
msg, (subtree at node 178): power, question
car (subtree at node 183): oil, bmw, honda,
dealer, car, engine

We note, that the forest of BIN-G is not perfect. For
comparison Figure 3 shows the forest inferred by BIN-A
which has almost the same subtrees, but did split them,
which might be preferable. However, the overall inferred
latent structures of both methods do reflect the mixture
of topics in the selected newsgroups. Furthermore, there
is also interesting structure inside a single tree itself:
e.g. in subtree “politics” the word “law” is closer to
“government” than to “world” (see both Figures. 2 and
3).

3.2 PASCAL VOC 2007 data

A vision-related dataset to which we applied BIN-G and
BIN-A was derived from the PASCAL VOC 2007 chal-
lenge on object recognition and localization in images®
For each image in the dataset, each instance of the 20
considered object classes was labelled with a bounding

5. See http://www.pascal-network.org/challenges /VOC/voc2007
for example images, dataset statistics, etc.

box. The dataset consists of D = 20 variables that encode
the location of each object’s bounding box by a number
from 0 to 9. Horizontally, there are three possibilities
for the bounding box: either (i) the left edge of a small
bounding box is on the far left or (ii) the right edge of
a small bounding box is far right or (iii) the bounding
is large horizontally and extends from left to right over
the image. Similarly we get three possibilities vertically,
which amounts to 9 options for an existing bounding
box. Option 0 denotes that the corresponding object
class is absent. If there is more than one object of a
particular class in an image, multiple data points are
generated. The challenge of this dataset is that each of
the 20 variables has 10 states. Our methods BIN-G and
BIN-A terminated after 0.5 and 1.5 hours respectively (see
Table 1). We also tried to apply ZHANG. However, it
did not finish after several days. Our methods, which
estimate reasonable latent structures on this dataset (see
Figure 4), are not able to infer a model that beats the
slower LCM algorithm and the faster procedure of Chow
and Liu (1968) in terms of log-likelihood (see Table 1).
However, we note that a latent tree model is much more
readily interpretable than the Chow-Liu tree or the flat
LCM model.

Figure 4 shows the latent forest inferred by BIN-G. Vi-
sual results for BIN-A are omitted since they are similar.
Each node either contains the name of a variable, such
as “aeroplane”, or the node number with the number of
states in round brackets. Nodes with smaller numbers
have been introduced earlier than nodes with larger
numbers.

The learned trees arranges the objects (which corre-
spond to variables) in a meaningful way: the biggest
tree groups road scenes (subtree at node 26: person, car,
bus, motorbike) and indoor scenes (subtree at node 28:
sofa, tvmonitor, pottedplant, bottle, chair, diningtable).
The singleton trees (e.g. the pets: cat, dog) make sense
since people often take pictures of their pets without
other objects. Similarly we wouldn’t expect pictures of
“aeroplane” to co-occur with other objects. On the other
hand “cow” and “horse” can co-occur in images, which
is reflected by the fact that they are grouped in a tree
(subtree at node 30).

3.3 Comparative Study on 10 Datasets

To survey how well our fast greedy methods learn latent
trees, we apply our algorithms to several toy and real-
world datasets. As a performance measure we choose 10-
fold cross-validated predictive log-likelihood (CVPLL).
That is, we divide each dataset into 10 equal-sized folds,
train a model on 9 of the folds and compute the pre-
dictive log-likelihood on the remaining fold. Averaging
these results over the 10 folds gives the results in Tables 2
and 3 which uses the algorithm abbreviations introduced
at the beginning of this section.

All not publicly available datasets are included in the
supplementary in form of generating code or files. For

TABLE 1
Log-likelihoods and running times on 20 newsgroups, and PASCAL VOC data.

LOG-LIKELIHOOD TIME IN SECONDS
D| N IND CL LCM BIN-G BIN-A |ZHANG|IND |CL|| LCM |BIN-G |BIN-A |ZHANG
NEWS20w100|100|16242|-255,614 |[-238,713 |-223,046 | -231,764|-232,166 —| 0.1] 91[42,298]| 4,008 884 —
voC 20]20961[-209,725|| -184,577[-168,797 |-188,532|-188,345 —10.06] 6][11,414|2,218] 4,750 —
TABLE 2

Ten-fold cross-validated log-likelihood for various datasets (rows) and algorithms (columns). The winner in each row
is shown in boldface, the runner-up in italics. Column D shows the number of variables, N the number of data points.

D| N IND CL LCM BIN-G BIN-A ZHANG
BINARY-FOREST 5| 900| -832.84+1.72 -556.57+ 1.78| -556.60+ 2.24| -555.16+ 1.46| -555.16+ 1.46 -555.434+1.27
THREE-LEVEL-BINARY | 4| 900| -833.324+2.44| -488.56+ 2.50| -487.42+2.45| -486.36+ 1.61| -486.36+ 1.61 -486.42+ 1.52
THREE-COINS 3| 900| -416.65+1.20 -278.17+ 0.88 -208.46+ 0.53| -347.294+1.23| -347.294+1.23| -208.46+ 0.53
SIX-COINS 4] 900| -834.24+2.08 -488.80+ 2.86| -623.33+19.18 -556.45+ 1.55 -556.45+ 1.55| -556.65+2.14
COLEMAN 41521 -460.794+9.12 -426.26+ 4.71 -425.184+ 4.57| -425.154+ 4.66| -425.15+ 4.66| -425.15+ 4.57
HIV-TEST 4| 189 -57.89+ 4.02 -32.99+ 5.44 -33.11+ 5.45 -32.77+5.39 -32.77+ 5.39 -32.69+5.71
HOUSE-BUILDING 4| 531| -162.62+2.55 -147.96+ 4.67| -145.86+5.33| -145.51+5.15| -145.51+5.15| -145.87+5.33
HANNOVER-5 5[3222| -878.00+42.55|| -777.98+£40.23| -761.174+39.86| -764.63+41.10| -764.65+41.11 -764.62+41.78
HANNOVER-8 813222(-1417.52+68.93||-1162.82+60.46 | -1116.424+58.26 [-1129.16+£55.61 |-1129.15+55.63 | -1116.23+58.81
CAR-EVALUATION 7| 774| -717.56+13.30| -679.24+10.03| -686.62+10.55| -689.73+10.21| -689.734+10.21| -686.83+10.41

TABLE 3
Ten-fold cross-validated running times in seconds for various datasets (rows) and algorithms (columns). Note that
these numbers show only tendencies since different dataset/algorithm combinations run on different cluster nodes.

D| N IND CL LCM BIN-G BIN-A ZHANG
BINARY-FOREST 5| 900{0.00£ 0.00(0.02+ 0.03|| 23.61+4.54| 3.70+0.23| 2.78+0.21| 134.35£ 1.30
THREE-LEVEL-BINARY | 4| 900|0.004 0.00{0.02+ 0.03 | 32.02+ 3.83| 2.81+0.10| 2.82£0.20| 66.23+0.75
THREE-COINS 3| 900{0.00+ 0.00|0.02+ 0.03 2.40+0.03| 1.19+0.04| 1.13+ 0.05 2.98+0.14
SIX-COINS 4| 900|0.00£ 0.00|0.03+ 0.04 8.21+0.43| 3.36+0.17| 2.73£0.16| 43.62+0.63
COLEMAN 411521(0.004+ 0.01]0.01+ 0.03|] 16.30+ 0.86| 8.07+1.85| 7.32+1.66 2.80+ 0.36
HIV-TEST 4| 189(0.00+ 0.01|0.01+ 0.03 0.95+0.04| 0.42+0.09| 0.28+ 0.09 3.38+ 0.43
HOUSE-BUILDING 4| 531|0.00+ 0.01|0.02+ 0.04 2.36+0.15| 1.55+0.14| 1.03+0.14 1.73£ 0.38
HANNOVER-5 5(3222{0.01£ 0.01|0.034+ 0.08|| 64.224+14.44|25.13+ 0.58| 22.05+ 0.54 6.73+ 1.25
HANNOVER-8 813222(0.01+£ 0.01[0.044+ 0.05(|348.63+66.80| 32.974+ 1.14| 30.96+ 5.63|229.76+45.15
CAR-EVALUATION 7| 774]0.01£0.01{0.02+ 0.03 4.97+£0.58| 3.60£0.11| 2.904+0.12| 93.04+ 2.50

completeness we briefly describe in the following the
various datasets.

The BINARY-FOREST data is generated from a model
with two separated binary trees. One tree has three
nodes (two leaves), the other one five nodes (three
leaves). At each node a coin is flipped and incorporated
into the state. THREE-LEVEL-BINARY is a full binary tree
with 4 leaves, each having 8 states (again with a fair
coin flip at each node). THREE-COINS consists of three
variables T (al,aQ), To = (CLQ,CL3), r3 = (a3,a1)
with a1, as, as being three coin flips. Thus z; shares
a single bit with x5 and also with z3, similarly z, and
x3. This dataset can not be modelled properly with a
binary tree. The SIX-COINS example has four observed
variables based on 6 latent variables. Six coins a1, ..., ag
(with values zero and one) are tossed, and z1, ..., x4 are
set as r1 = a1 + 2a3 + 4€L57 To = a9 + 2a3 + 40,5, T3 =
a1 +2a4 +4ag, T4 = as +2a4 +4ag. x1 and x5 share two
bits, 3 and x4 share two bits as well. All other pairs
share a single bit or none.

For a direct comparison to the work of Zhang (2004)
we also use four datasets provided in his paper, namely
the Hannover rheumatoid arthritis data on five bi-

nary visible variables (HANNOVER-5), and three datasets
COLEMAN, HIV-TEST and HOUSE-BUILDING that are all
on 4 binary visible variables. The HANNOVER-5 is re-
duced from a larger dataset given by Kohlmann and
Formann (1997) which has 8 binary visible variables; we
include this dataset as HANNOVER-8 in the comparison.
To have real data with visible cardinalities greater than
two we also selected the UCI dataset® CAR-EVALUATION
which has 7 variables all with cardinality 3 or more.

Summarizing Tables 2 and 3 we conclude that BIN-G
and BIN-A provide competitive HLC models in compar-
ison with ZHANG, while at the same time often being
faster. In Table 2 BIN-G and BIN-A are the winning
algorithms for 4/10 datasets, and are close to ZHANG in
all cases except for THREE-COINS (which was designed to
make BIN-G and BIN-A fail). Note that LCM is compara-
tively slow because estimating a single latent node with
many states is more expensive than estimating several
latent nodes each with few states.

6. available from http://archive.ics.uci.edu/ml/

3.4 Results on COIL-42 and COIL-86

The COIL-86 data’ is the training set of the COIL Chal-
lenge 2000, containing 5822 records and 86 attributes.
As in Zhang and Koc¢ka (2004) this dataset was reduced
to 42 attributes to produce COIL-42; in this process the
cardinalities of the variables was also reduced for many
variables. Table 4 compares the BIC scores of BIN-G and
BIN-A with the BIC score of ZHANG reported in Zhang
and Kocka (2004). All of BIN-G, BIN-A, and ZHANG
are better than LCM, with ZHANG being slightly better.
However, looking at the run times BIN-G and especially
BIN-A excels: our implementation of BIN-G takes 505
seconds, BIN-A takes only 87 seconds, while the reported
runtime in Zhang and Kocka (2004) is 121 hours (=
435,600 seconds). Even though computers have got faster
since 2004, BIN-G and BIN-A provide a large speedup
while delivering good performance.

Additionally, we applied BIN-G and BIN-A to COIL-
86. Comparing their BIC scores with LCM and IND we
see that our methods have extracted some additional
structure in the data. To our knowledge no HLC learn-
ing method has previously been successfully applied to
COIL-86. The steep increase in runtime from COIL-42
to COIL-86 even though the number of variables only
doubled is due to the fact that the original COIL-86 data
has many more states per variable than the reduced
version COIL-42 (as discussed above).

4 RELATED WORK

Our work is partly inspired by recent ideas by Hinton
et al. (2006) on deep belief networks (DBNs), where a
greedy layerwise learning procedure is used, with the
same learning algorithm applied at each level to the
transformed data. Our work uses the same idea, except
that rather than transforming all variables in layer ¢, we
select a pair of variables which are replaced by a new
latent variable, with all other variables from layer ¢ being
copied to the higher layer ¢+ 1.

In very interesting work, Pearl (1988, Section 8.3)
discusses the recovery of latent trees of binary and Gaus-
sian variables in the case that the joint distribution can
be exactly decomposed into a latent tree. His algorithm
relies on the fact that the correct configuration out of four
possibilities for a tree with four visible variables and two
internal nodes can be decided based on relationships of
pairwise correlations between the visible variables. This
fact can be used recursively to connect visible variables
one by one into the correct tree structure. However, we
note that (i) Pearl does not address the approximation
of a distribution p(x) by a latent tree, but only the
reconstruction of the underlying true latent tree, (ii) that
he assumes that exact pairwise statistics are available
(not samples), and (iii) that he only considers binary
discrete variables.

There has also been much recent work on branching
tree models relating to clustering (see e.g. Williams, 2000;

7. available from http://kdd.ics.uci.edu/databases/tic/tic.html

Neal, 2003; Teh et al., 2008). However, there is a im-
portant difference between such models and our latent
trees: in the clustering models each leaf corresponds to a
datapoint, not a variable. In these models all nodes (both
latent and leaf) have the same type and dimension, and
the branching tree represents an evolutionary process,
inspired by phylogenetic trees (see e.g. Felsenstein, 2004).
In contrast we note that for our latent trees the visible
variables can have different number of states, and that
a latent variable will in general have a different number
of states to either of the variables it replaces.

Kemp and Tenenbaum (2008) proposed a method for
comparing different model structures for data. Their
method builds models (including latent trees) where
the leaves correspond to datapoints (or entities in their
terms) rather than variables. However, by transposing
the data matrix such a method could be used to build
a latent tree model. With respect to the details, they use
graphical Gaussian models for the tree and this is less
suitable for discrete data (Kemp, pers comm, 2008). Also
they use a divisive (as opposed to agglomerative) algo-
rithm for tree construction, using a randomized splitting
of a node which is repeated several times, and the best
split chosen. In our context the divisive approach would
have been expensive since the number of possible splits
to be evaluated can be large and each evaluation requires
the estimation of a local LCM. Thus we opted for an
agglomerative algorithm where each step only requires
the selection of a pair of variables to be merged.

There is also some recent work on probabilistic hier-
archical clustering, e.g. Heller and Ghahramani (2005);
Friedman (2003). It might be thought that by transposing
the role of the variables and datapoints in the data
matrix these methods could be used to obtain a latent
tree model for the data. However, neither of the two
constructs a generative model as our approach does. In
fact Heller and Ghahramani (2005, Section 6) themselves
say “[our model] is not in fact a hierarchical generative
model of the data, but rather a hierarchical way of
organizing nested clusters.”

Especially related to the proposed BIN-A algorithm is
the work of Connolly (1993) who also constructs the tree
topology by running AHC on the variables, measuring
the similarity between two variables by their MI. To
define the similarity between groups of variables, he
computes the criterion (mean pairwise inter-cluster MI)
/ (mean pairwise intra-cluster MI) and seeks the join
that minimizes this criterion. This is an “average link”
type criterion in hierarchical clustering parlance. To con-
struct latent variables Connolly uses Fisher’s conceptual
clustering algorithm COBWEB (Fisher, 1987), rather than
LC modelling and EM. In our view Connolly’s paper
provides some interesting ideas for HLC model learning,
but is lacking a firm statistical framework.

Kojadinovic (2004) also discusses a method for the
hierarchical clustering of variables based on their mutual
information. He considers the single link, average link
and complete link criteria. His method does not actually

TABLE 4
BIC scores and running times on COIL-42 and COIL-86 datasets. The BIC score and running times in columns
ZHANG are taken from (Zhang & Kocka, 2004). All running times are in seconds.

BIC SCORE RUNNING TIME IN SECONDS

D| N IND CL LCM BIN-G | BIN-A | ZHANG|IND |CL|| LCM | BIN-G |BIN-A| ZHANG
COIL-42[42[5822| -79,844| -52,183| -67,145| -53,533|-53,783|-51,465[0.04| 1[13,155 506 88|~435,600
COIL-86|86|5822|-483,256||-395,703 | -456,900 | -375,597 | -390,597 —10.05]19] 13,255]23,589 9,799 —

produce a probability model for the data, but only a
hierarchical clustering of the variables.

Wang et al. (2008) proposed an algorithm to construct
HLC models to approximate inference in Bayesian net-
works. In their work the tree structure is determined
via a lower bound between the latent variables and
the visible variables; this turns out to select the two
variables (one from each group under consideration) that
maximize the MIL. Note that as maximizing similarity
(MI) is equivalent to minimizing dissimilarity, this is
analogous to single link clustering. In their work the
same cardinality is used for all latent nodes, based
on trading off inferential complexity against fidelity of
approximation of the original Bayesian network. Note
that the goal of Wang et al. (2008) is rather different from
ours: their HLC model is used to approximate inference
in Bayesian networks, while we infer interpretable latent
structure, as demonstrated e.g. with the 20 newsgroups
example.

5 CONCLUSION

Estimating HLC models without any restrictions requires
searching over a large number of possible latent struc-
tures, as implemented in Zhang’s framework (Zhang,
2004; Zhang & Kocka, 2004). However, in its full gener-
ality it remains a difficult problem and is (like structure
learning for Bayes nets) prone to lots of suboptimal
solutions and large runtime complexity.

In this paper we have considered the alternative of
greedy algorithms to learn binary latent tree structures.
This leads to a sensible trade-off between model com-
plexity and runtime while preserving expressiveness, as
demonstrated in our comprehensive experiments. Due
to its favorable runtime scaling, inferring a binary latent
tree was even possible on datasets with a large number
of variables. Binary latent trees can also be sensible
starting points for heuristic procedures that learn more
sophisticated models. We did explore various extensions
of our algorithm to infer non-binary trees using ideas
from information theory. However, preliminary experi-
ments suggest that such approaches are not worth the
extra computational costs they require.

Restricting the branching factor of latent trees does
limit the model class, but still allows rich enough models
to take advantage of the hierarchical modelling power
of HLC models. Furthermore, the binary tree structure
implicitly limits the cardinality of the latent nodes, which
facilitates EM estimation; this may be part of the reason

why the simple binary latent trees performed compara-
bly to much richer models.

APPENDIX A
EM-UPDATES

A.1 Notation

A single observation consists of D variables z1,...,zp.
These observed variables are the leaves of a binary latent
tree, which is learned in a greedy manner. The latent
nodes are denoted by zpii,...,zr with R = 2D — 1
being the index of the root. The index of the parent of
x; is denoted by pa(t). Define the parameters at node ¢
as

©)
(6)

Note that m;(¢) is defined in terms of p which is the
distribution of the latent subtree with ¢ as the root
ignoring all other nodes.

Let R 2D — 1 be the index of the root of the
completed binary tree for which m;(R) = p(zr = i)
p(zr = i). Then we can write the cumulative distribution
as

mi(t) = p(xi=1).

R—-1

: 7$R) = Tzp (R) H ewtympa(t) (t)

t=1

p(z1, ..)

Note that the cumulative distribution uses only 7(R).
All other 7 (t) for t # R are only used during the greedy
building of the tree.

We denote by in(¢) the indices of the observed vari-
ables which are descendents of z;, i.e. the leaves below
x4, briefly denoted by ;). Similar to the inside-outside
algorithm for probabilistic context free grammars (or
forward-backward algorithm for hidden Markov chains)
we define

®)

which can be calculated recursively as follows: For the
leaves, i.e. t < D, we set

Bi(t) = p(Tin)|ze=1),

0 otherwise.

50 ={ ©)

Latent nodes are calculated recursively from the values
of the children, ie. for t > D and assuming that ¢ has

only two children v and v we have

Br(t) = p(Tin(e)|Ti=k) (10)
= Zp(xin(u)vxin(v);xu:iaxv:j‘wt:k) (11)

= p(@in(u)lru=1)p(r,=ilz=k) (12)
p(xin(v) |zv=7)p(zs=jlz:=k) (13)

= (Zﬁi(u)a k(u)> (Zﬁj(v)agk(v)) . (14

For more children there is a factor for each child. Note
that for the leaves f((t) are distributions, but the (§(t)s
for the other nodes are not necessarily normalized.

A.2 Greedy learning

To simplify notation assume we have only observed
a single data point. The current state of the learning
process is defined by the frontier which are the vari-
ables which have no parents yet. Their distributions are
defined by 7. For the leaves we have (for ¢t < D)

mi(t) = Bi(t).

For these distributions we can calculate all pairwise
mutual informations and choose the maximizing pair of
variables. Let’s denote those two variables by « and v,
for which we wish to learn a common parent z;. For this
we maximise the likelihood of the leaves below u and v
which will be denoted by i) = Tin(u) U Zin(w),

(16)

Zﬁk 7Tk
) (Zﬁj(v)%(v)) m(t). (17)

= Z (Z Bi(u) ik (u)
From the previous iterations we have 3(u) and 3(v). The
parameters we need to learn are 7(t) and 6(u) and 6(v).
For several observations z(!), ..., () we maximize

(15)

xln(f)

h

I
—=
'B

(2 = H POk (18)
n=1 n=1 k
N
- H Z (Z ﬁz(n) wwm(“)) (Z ﬁj(n) ('U)ejlg(’l))) 7 (%)
n=1 k i -
j (19)
N
=TI 3265)ik (w) B (0)0;0.(v) i (8) 20)
n=1 ijk
N j
= H p("latent” = (4, j, k), "observed”(")). (21)
n=1 ijk

A.3 Updates

For the EM-updates we need to consider the log-
likelihood from Equation (20)

log L = Z log Z 6("

ijk

(W) ()0 (V) ke (t). (22)

As usual the difficulty is that the logarithm cannot be
moved past the inner sum. Thus we assume a distribu-
I N P)| (n) _ 1.(n)

tion ¢\"™(i,7, k) = q(zy ' = 1,20 ' = j,ay k|zm(t) and
consider the expected complete data log—hkehhood

N
Q= " q"™(i,j k) log " (u)

n=1 ijk

O (u) B (0)80;1, (v) i (1),
(23)

@ is then maximized with respect to the parameters
Oix(u), 05 (v) and 7y (¢). For instance for my(t) we take
the derivatives of the Lagrangian

Q- m(t) -
k

where we added a term to enforce), mi(t) = 1. For
the other parameters we add similar terms. Equating the
derivatives to zero, we obtain the updates for the M-step

(24)

N N

oY gk =Y ™Mk (25)
n=1 j n=1
N N

x> a0 k) =3 a6k (20)
n;l 7 n;l

o Y > d™M Gk =Y d™ (k) (27)
n=1 1ij n=1

For brev1ty we write ¢ (i, k) = > q"™ (i, j, k), similarly

for ¢ (j. k) and ¢ (k).
The E-step employs the current parameters ¢ and 7
q(n)(i’j’k) = ((n):ivxvn)_j’xt kj|$m(t)) (28)
(n) (n) (n)_g .(n)
Ly :Z7xu =7, k Z.
)
p(xjn(t))
B (1) () 85" ()03 (0) (1)
= o) . (30)
2k By (B)m(t)
This leads to expressions for the subterms
o B) (1) ;6 (0)0(0)
a™) (i, k) = o e
2B ()i ()
oy B @05k (0)me(t) 4 617 ()0 ()
(™ (k) = L 0Tt = @)
2ok B (O7k(T)
(n)

S B ()m(t)

Combining these formulas of the E-step with the M-step
we get the following multiplicative updates

B (u) 84 (v)

Oire(w) o< Oire () (1) ;9 k(v); m (34)

0k (v) o< ;1 (v)7k(t) Z Oir.(u) ; Zﬁm (35)

) oc Tt Z Oir (u zn: m (36)
APPENDIX B

TREE REFINEMENT

Tree refinement requires three steps:

1) bottom-up pass to generate 3 messages
2) top-down pass to generate o and @ messages
3) updating the conditional probability tables (CPTs)

In this section we define the messages as follows

Bi(t) = p(Tin(r)|2:=1) (37)
0% (t) p(t_Z‘mout(t))' (38)
Note that in Pearl’s notation (1988, see Egs. (4.15)

and (4.16)) our messages (3;(t) correspond to A(z;) =
(ez|z¢)], and a;(t) correspond to m(xy) = p(xlef).

B.1 Bottom-up propagation
For a leaf z; we have

1 if x; =i is observed

Bit) = { 0 otherwise. (39)
For all other nodes z; we have
Git)y=" T D 0u(s)8i(s) (40)

s€children(t) j

B.2 Top-down propagation

For the root node we simply copy the current distribu-
tion (denoted by « without round brackets)

; (t) = ;. (41)
For children we have
Qi (t) oc ag(pal(t)) H Z9jk(5)5j(5) (42)
sesiblings(t) Jj
(43)

t)=> ak(t)0i(t)
k

Note that @ (t) needs to be normalized.

10

B.3 Update CPTs

To estimate the parameters §;;, we need
q(i, k) (44)

(45)

= p(xr = i, Tpage) = k|zan)
o< Bi ()01 (t)ag(t).
Such ¢(i, k) is calculated for each data vector, thus we

write ¢ (4, k). All of these are summed up and normal-
ized, to yield updates for 6

O o< Y _ g™ (i, k). (46)
Similarly, for parameter 7, we have
q(k) = p(Troot = k|zan) (47)
x Bk (root)ay (48)
me o g™ (k) (49)
ACKNOWLEDGMENTS

We thank Nevin L. Zhang for making compiled code of
the algorithm in Zhang and Kocka (2004) available, and
Christoph Lampert for generating the vision datasets.
We thank the anonymous reviewers for their comments
that helped improve the paper; in particular we thank
the reviewer who pushed us to formalize the BIN-A
algorithm and compare it with BIN-G. Furthermore, SH
thanks Dominik Janzing and Hannes Nickisch for gen-
eral discussion. This work is supported in part by the
IST Programme of the European Community, under the
PASCAL Network of Excellence, IST-2002-506778. This
publication only reflects the authors’ views.

REFERENCES

Blei, D., Ng, A., & Jordan, M. (2003). Latent Dirichlet
Allocation. Journal of Machine Learning Research, 3, 993—
1022.

Bollen, K. A. (1989).
Variables. Wiley.
Chow, C. K., & Liu, C. N. (1968). Approximating Discrete
Probability Distributions with Dependence Trees. IEEE

Transactions on Information Theory, 14, 462-467.

Connolly, D. (1993). Constructing Hidden Variables in
Bayesian Networks via Conceptual Clustering. Pro-
ceedings of the Tenth International Conference on Machine
Learning (pp. 65-72).

Duda, R. O., & Hart, P. E. (1973). Pattern Classification
and Scene Analysis. New York: Wiley.

Felsenstein,]. (2004). Inferring Phylogenies. Sunderland,
Mass.: Sinauer Associates.

Feng, X., Williams, C. K. I., & Felderhof, S. N. (2002).
Combining Belief Networks and Neural Networks for
Scene Segmentation. IEEE Transasctions on Pattern
Analysis and Machine Intelligence, 24, 467-483.

Fisher, D. H. (1987). Knowledge Acquisition Via Incre-
mental Conceptual Clustering. Machine Learning, 2,
139-172.

Structural Equations with Latent

Friedman, N. (2003). Pcluster: Probabilistic Agglomer-
ative Clustering of Gene Expression Profiles (Technical
Report 80). Hebrew University.

Heller, K., & Ghahramani, Z. (2005). Bayesian Hierarchi-
cal Clustering. Twenty-second International Conference
on Machine Learning (pp. 297-304).

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A
fast Learning Algorithm for Deep Belief Nets. Neural
Computation, 18, 1527-1554.

Kemp, C., & Tenenbaum, J. B. (2008). The Discovery of
Structural Form. Proceedings of the National Academy of
Sciences, 105, 10687-10692.

Kohlmann, T., & Formann, A. K. (1997). Using Latent
Class Models to analyze Response Patterns in Epi-
demiologic Mail Surveys. In J. Rost and R. Langeheine
(Eds.), Applications of latent trait and latent class models
in the social sciences. Waxman Verlag.

Kojadinovic, I. (2004). Agglomerative Hierarchical Clus-
tering of Continuous Variables based on Mutual Infor-
mation. Computational Statistics and Data Analysis, 46,
269-294.

Lazarsfeld, P. F, & Henry, N. W. (1968). Latent Structure
Analysis. Boston, Mass.: Houghton Mifflin.

Neal, R. M. (2003). Density Modeling and Clustering
using Dirichlet Diffusion Trees. In J. M. Bernardo et al.
(Eds.), Bayesian Statistics 7, 619-629. Oxford University
Press.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Mateo, CA:
Morgan Kaufmann.

Teh, Y. W,, Daume III, H., & Roy, D. M. (2008). Bayesian
Agglomerative Clustering with Coalescents. In J. Platt,
D. Koller, Y. Singer and S. Roweis (Eds.), Advances in
Neural Information Processing Systems 20. MIT Press.

Wang, Y., Zhang, N., & Chen, T. (2008). Latent Tree Mod-
els and Approximate Inference in Bayesian Networks.
Journal of Artificial Intelligence Research, 32, 879-900.

Williams, C. K. I. (2000). A MCMC approach to Hierar-
chical Mixture Modelling . In S. A. Solla, T. K. Leen
and K.-R. Miiller (Eds.), Advances in Neural Information
Processing Systems 12. MIT Press.

Zhang, N. L. (2004). Hierachical Latent Class Models for
Cluster Analysis. Journal of Machine Learning Research,
5, 697-723.

Zhang, N. L., & Kocka, T. (2004). Efficient Learning
of Hierarchical Latent Class Models. Proceedings of
the 16th IEEE International Conference on Tools with Al
(ICTAI-2004).

11

Stefan Harmeling is a Research Scientist at
the Max Planck Institute for Biological Cyber-
netics in Prof Bernhard Schélkopf’s department
of Empirical Inference. His interests include ma-
chine learning, image processing, probabilistic
and causal inference, and general computer sci-
ence.

Dr Harmeling studied mathematics and logic
at the University of Minster (Dipl Math 1998)
and computer science with an emphasis on ar-
tificial intelligence at Stanford University (MSc
2000). During his doctoral studies he was a member of Prof Klaus-
Robert Muller’s research group at the Fraunhofer Institute FIRST (Dr
rer nat 2004). Thereafter he was a Marie Curie Fellow at the University
of Edinburgh from 2005 to 2007, and works since then at the Max Planck
Institute of Biological Cybernetics.

Christopher K.l. Williams is Professor of Ma-
chine Learning and Director of the Institute for
Adaptive and Neural Computation in the School
of Informatics, University of Edinburgh. He is
interested in a wide range of theoretical and
practical issues in machine learning, statistical
pattern recognition, probabilistic graphical mod-
els and computer vision.

He studied neural networks/Al with Prof Ge-
offrey Hinton at the University of Toronto (MSc
1990, PhD 1994). Subsequently he was a mem-
ber of the Neural Computing Research Group at Aston University from
1994 to 1998, before joining the School of Informatics, University of
Edinburgh.

Prof Williams is a member of the editorial boards of the Journal of
Machine Learning Research and the International Journal of Computer
Vision. He was program co-chair of the Neural Information Processing
Systems (NIPS) conference in 2009.

12

SIS

JUAWUIAAOT

Qouesur

N

SMOpuIM

[1eqaseq

zs_i asi o1 7 7 o1 7 wewny | | vapngo warsks 7 vep 7 aouas | [semnduwoo
N Nt . t7
7 oc1 7 7 spre 7 sorprus || sooueo 7 @ 7 m_.s__;i 7 o1 7 7 L1 7 seios 7 e | 7 Tz_a_ woou _gi 1onias 7.@_%; afewn | [oy | [e 7 7 o1 7 7 81 7 JE—
i i NN/ S NN/ S
€L1 7 oLt 7 soquinu | | asinod 7 €l 7 7 8¢l 7 vzl 7 7 151 7 7 Sl 7 081 7
~ i
oL 81 H 051 4 81 7 €81 wajqod 7 djoy 7

Fig. 2. Binary forest inferred by method BIN-G modelling co-occurrences in the 20 newsgroup dataset.

13

(=)) () B] [(o)) L] (] o) o] L) [o] [=]

Fig. 3. Binary forest inferred by method BIN-A modelling co-occurrences in the 20 newsgroup dataset.

Fig. 4. Binary forest inferred by method BIN-G modelling co-occurrences in the PASCAL VOC 2007 data.

i

IS

bus car

sofa tvmonitor

chair

diningtable

aeroplane bicycle bird boat 30(2) cat 29(2) dog sheep train
26(4) 28(2) cow horse
person 24(4) 25(2) 27(4)
/ / \1 \
motorbike 23(4) pottedplant 22(4) bottle 21(4)

14

