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Autoregressive Hidden Markov Models for the
Early Detection of Neonatal Sepsis

Ioan Stanculescu, Christopher K.I. Williams, and Yvonne Freer

Abstract—Late onset neonatal sepsis is one of the major clinical
concerns when premature babies receive intensive care. Current
practice relies on slow laboratory testing of blood cultures for
diagnosis. A valuable research question is whether sepsis can be
reliably detected before the blood sample is taken. This paper
investigates the extent to which physiological events observed in
the patient’s monitoring traces could be used for the early detec-
tion of neonatal sepsis. We model the distribution of these events
with an autoregressive hidden Markov model (AR-HMM).Both
learning and inference carefully use domain knowledge to extract
the baby’s true physiology from the monitoring data. Our model
can produce real-time predictions about the onset of the infection
and also handles missing data. We evaluate the effectiveness of
the AR-HMM for sepsis detection on a dataset collected from
the Neonatal Intensive Care Unit (NICU) at the Royal Infirmary
of Edinburgh.

Index Terms—neonatal sepsis, autoregressive hidden Markov
model, real-time inference, intensive care.

I. INTRODUCTION

Late onset neonatal sepsis is a bloodstream infection, usu-
ally bacterial, generally occurring after the third day of life. Its
onset is a major cause of mortality, lifelong neurodisability and
increased health care costs [1]. Estimates show that 10% of all
neonates and 25% of very low birth weight babies (VLBW,
< 1500 grams birth weight) are affected [2], [3]. This number
rises to 50% for extremely preterm infants [1].

The major challenge in successfully treating septic babies
is making the diagnosis of infection in the first place. Early
signs are subtle and yet it is at this stage that treatment will
be effective. A deterioration of the baby’s condition over the
course of a few hours is a strong symptom for neonatal sepsis,
and prompts clinicians to take a blood sample for laboratory
testing. However, laboratory culture results can take up to a
day before becoming available. Because of the dangers of
delaying treatment, antibiotic therapy is usually started at the
same time as taking the blood sample. However, applying low
thresholds in suspecting sepsis results in a high number of
patients being treated unnecessarily for each true case [4].
Thus, if achievable, a reliable early detection of sepsis based
on monitoring data would be of great value.

In modern NICUs, the patient’s vital signs are continuously
monitored and often recorded. In this work, we exclusively
rely on the information contained in these traces for building
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a sepsis detection system. Clinical events informative of the
baby’s health condition, such as bradycardias or oxygen de-
saturations, can be associated with patterns in the monitoring
data (see Figure 1 and Table I). However, accurately detecting
these events is a non-trivial task and the problem of high false
alarm rates is well-known [5]. A solution proposed by Quinn
et al. [6] is the Factorial Switching Linear Dynamical System
(FSLDS), which is closely related to other work generalising
state-space models [7], [8]. The FSLDS is shown to produce
accurate real-time inferences about clinical events affecting
NICU data.

In this paper, we propose a probabilistic approach for
monitoring the evolution of baby-generated clinical events. An
increased incidence of such events is a symptom of sepsis [1].
Starting from this hypothesis, we study the amount of predic-
tive information about neonatal sepsis that can be extracted
from the distribution of clinical events. First, using domain
knowledge, we define and annotate a set of clinical events.
Our main contribution is the formulation of sepsis detection
as inference and learning in an AR-HMM. In addition, we
show how exact inference can be obtained in the presence of
missing data. The effectiveness of the method is tested both
on prediction of sepsis/normality on a second-by-second basis,
and in terms of detected sepsis episodes. We also study the
relevance of individual clinical event streams.

Griffin, Moorman et al. [9], [10] have previously proposed
using heart rate data to discriminate sepsis (positive culture)
and sepsis-like (negative culture) babies pooled together, from
a control group (no culture). They observed a positive skew in
the inter-beat (RR) interval histograms in the hours before the
clinical suspicion of sepsis, and an absence of skew during nor-
mal periods. This finding was quantified by a set of summary
statistics referred to as the heart rate characteristics (HRC).
The HRC are then fed to a logistic regression classifier. A
larger dataset was employed for demonstrating that HRC add
predictive information to a classifier using only demographic
features to discriminate sepsis and sepsis-like illness patients
from controls [4]. More precisely, they showed an increase
in AUC (area under ROC curve) from 0.72 to 0.77 on a
test set. In recent work [11], they conducted a clinical trail
which showed that HRC monitoring can decrease mortality.
However, this approach does not fully exploit the sequential
nature of the monitoring data, nor does it explore the use of
other physiological channels for sepsis detection.

A novel case definition for neonatal bloodstream infection
is introduced in Modi et al [1]. This research is motivated by
statistics saying that around two-thirds of the positive cultures
are skin commensals or mixed growth. First, they identify 10
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Fig. 1. Examples of clinical events affecting neonatal monitoring data. In panel (a), several instances of bradycardia (’BR’) and mini-bradycardia (’MB’) can
be seen on the ECG heart rate trace (’HR’). Around time t = 1450, a sudden fall in both the core and peripheral temperatures (’TC’ and ’TP’) signals the
start of a handling (’HD’) event. Note that physiological events occuring during handling episodes are not used for sepsis detection. Panel (b) shows several
instances of physiological events. Since the pulse oximeter heart rate trace (’PR’) agrees with the HR trace, the two instances of desaturation (’DS’) annotated
on the oxygen saturation channel (’SO’) are genuine events.

binary clinical signs predictive of a positive blood culture.
Then, the number of present clinical signs is used to predict
a positive blood culture. Based on the classification results, a
new case definition is proposed: a baby is infected if either a
recognised pathogen is found or if the test yields mixed growth
or skin commensal and ≥ 3 clinical signs are present. Note
that this work still relies on laboratory results and thus is not
being directed towards an earlier detection of the infection.

The Artemis system [12], a stream computing project for
neonatal intensive care, sets the detection of sepsis as one of
its primary objectives. Their method introduces patient agents
(PAs) able to perform multi-dimensional temporal abstraction
on monitoring data [13]. In [14], they propose the use of both
heart rate and respiratory rate variabilities for real-time sepsis
detection. The latter is intended to help discriminate sepsis
from confounding factors such as surgery or narcotics. A
performance evaluation of this approach is yet to be published.

The times series model we use for the early detection of
neonatal sepsis is described in Section II. Inference in the
presence of missing data is discussed and we also explain how
durations can be explicitly modelled. Section III begins by
discussing the diagnosis of neonatal sepsis. We then describe
the data we have collected and the set of clinical events that
affect it. We follow by showing how the model introduced
in the previous section is trained. The results are presented
and analysed in Section IV. We conclude and highlight the
directions of future research in Section V.

II. HIDDEN STATE MODELS

The family of hidden Markov models (HMMs) is a flexible
tool for generative probabilistic modelling of sequential data.
It is often employed solving for sequential classification tasks.
Its applicability has been long proven in areas such as speech

recognition [15], natural language processing [16], biological
sequence analysis [17] or electrocardiography [18], [19]. For
sepsis modelling, we restrict the discussion to a particular type
of HMM: the autoregressive HMM.

A. The autoregressive hidden Markov model

An AR-HMM enhances the HMM architecture by intro-
ducing a direct stochastic dependence between observations
[20], [21]. It is designed to explicitly model the (possibly
long range) correlations in sequential data. We first give a
brief description of the model and then explain how it can be
applied for neonatal sepsis detection.

Like the HMM, the AR-HMM models two types of vari-
ables: hidden discrete states zt and observations xt. In an
HMM, the current observation is independent of all the other
observations given the current state. Consequently, there is no
explicit constraint on HMM samples to be smooth. The AR-
HMM encourages correlation amongst observations by adding
direct dependencies between them. Samples drawn from an
AR-HMM are thus smoother than samples from an HMM,
usually making the former a better generative model in time
series problems.

The hidden states of an AR-HMM can take one of J
values and are organised as a first order Markov chain with
parameters θj|i = p(zt = j|zt−1 = i) and πj = p(z1 = j).
Observations in the general AR-HMM can be continuous, but
for our purposes we restrict the discussion to the discrete case.
Furthermore, we introduce direct dependencies only between
consecutive observations. The corresponding Directed Acyclic
Graph (DAG) is shown in Figure 2. Conditioned on the state
zt, the emission process is again a first order Markov chain
parametrised by φl|kj = p(xt = l|xt−1 = k, zt = j) and
πl|j = p(x1 = l|z1 = j). The joint probability distribution for
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Fig. 2. DAG of the AR-HMM for sepsis detection. Squares indicate discrete
variables and shaded nodes are observed.

a sequence of length T is:

p(z1:T , x1:T ) = πz1πx1|z1

T∏
t=2

θzt|zt−1φxt|xt−1zt
, (1)

where we have employed the notational convention at0:t1 ,
at0 , at0+1, . . . , at1 .

For neonatal condition monitoring, the hidden state vari-
ables are modelling the state of the infection. At each
time step t, we are observing a set of S clinical events
x

(1)
t , x

(2)
t , . . . , x

(S)
t . For each of them, x(s)

t denotes which of
its possible L(s) settings clinical event s takes on at time t.
Thus, AR-HMM observations are given by the cross product:

xt = x
(1)
t ⊗ x

(2)
t ⊗ ...⊗ x

(S)
t

and can take one of L =
∏S
s=1 L

(s) settings. The events are
assumed to be conditionally independent given the state:

p(xt | xt−1, zt) =
S∏
s=1

p(x(s)
t | x

(s)
t−1, zt)

Each of the events is modelled as a Markov chain with
parameters {φ(s)

l|kj , π
(s)
l|j }. Importantly, clinical event streams

tend to have long runs in the same setting. This motivates our
preference for an AR-HMM over a standard HMM, where
observations are correlated only through the hidden variables.
Notice that, in general, clinical events are not marginally
independent.

B. Inference

For real time prediction we are interested in inferring the
presence of neonatal sepsis from the patient’s historical data
up to a query time. Technically, this corresponds to computing
the filtering distribution p(zt|x1:t). It is also useful to study
if observing future data improves the filtering prediction. This
means computing the smoothing distribution p(zt|x1:T ). The
latter is also useful for unsupervised parameter estimation. We
first show how the forward-backward algorithm [15] is applied
for AR-HMM inference. Then we explain how we extend it
to address the problem of missing data.

The forward-backward algorithm is a message passing
routine which exploits conditional independence relationships
for doing exact inference in HMMs. In the AR-HMM, the
past observations are independent of the future observations
given both the current state and the current observation:
xt0 ⊥⊥ xt1 |zt, xt, ∀t0, t1 t0 < t < t1. Using this we can

write:

p(zt, x1:T ) = p(zt, x1:t)p(xt+1:T |zt, x1:t)
= p(zt, x1:t)p(xt+1:T |zt, xt)
= α(zt)β(zt), (2)

where we have defined the forward message
α(zt) , p(zt, x1:t) and the backward message
β(zt) , p(xt+1:T |zt, xt). The messages can be computed
recursively in a forward pass for α and in a backward pass
for β [20], [21]. When the likelihoods are precomputed, the
total computational cost is O(TJ2).

If is often the case that we do not have access to observa-
tions at all time steps. We make a Missing at Random (MAR)
assumption [22], which means there is no need to explicitly
model the missing data mechanism. For sepsis modelling
missing data issues mainly occur when the patient is being
handled by clinical staff. This will be detailed in Section III-C.

One advantage of generative probabilistic models is that
they can handle missing data in a principled way by marginal-
isation. For a sequence of length T , let V be the set of time
steps for which we have observations. We define xvt0:t1 =
{xt|t0 ≤ t ≤ t1, t ∈ V} as the set of observed variables
between t0 and t1. Using this notation, xv1:T is the set
of observed variables for the given sequence. Similarly let
M = {1 : T}\V and xm1:T be the set of missing observations.
The goal of filtering becomes computing

p(zt|xv1:t) =
∑
xm
1:t

p(zt, xm1:t|xv1:t),

while for smoothing we want

p(zt|xv1:T ) =
∑
xm
1:T

p(zt, xm1:T |xv1:T ).

In the AR-HMM such marginalisations need to consider the
direct dependencies between consecutive observations. For
instance, if t − 1 ∈ M then the forward message at time
t must take into account the uncertainty about the unobserved
quantity xmt−1. Our solution is a simple extension of AR-HMM
inference. For t ∈ M only, we now compute α(zt, xmt ) ,
p(zt, xmt |xv1:t) and β(zt, xmt ) = p(xvt+1:T |zt, xmt ). A full ex-
planation is given in the Appendix. After recursively obtaining
these messages the desired inference results for t ∈M are ob-
tained by marginalisation (e.g. p(zt|xv1:t) =

∑
xm

t
α(zt, xmt )).

If |V| = Tv and |M| = Tm, then the computational expense
increases to O(TvJ2 +TmJ2L3). Since we expect the amount
of missing data to be relatively small compared to the size of
the dataset, the increase will be modest.

For neonatal condition monitoring the observations are a
cross-product of discrete variables (Section II-A). Missing data
can independently occur for each of the monitored events. This
means that at certain time steps only some dimensions of xt
are observed. We only need to marginalise over the remaining
ones. Extending the missing data inference routine for this
case was straightforward.

In practice, forward and backward messages defined as
above exponentially decay to zero. For preventing this we have
derived a scaled version of the recursions [23]. It follows the
same reasoning as shown in [24, §13.2.4] for the HMM.
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Fig. 3. Topology giving the transition matrix for the new hidden state variables
in a explicit duration model with τ0 = 4.

C. Explicit duration modelling

HMM-like models make the implicit assumption that the
time spent in each hidden state follows a geometric distribu-
tion. For sepsis monitoring, we expect episodes of infection
to last for at least a few hours. Thus, assuming a geometric
distribution for their duration is likely to be a performance
limiting factor. There is a large body of work on methods that
explicitly model the time spent in each regime (e.g. [15], [25]).

One solution discussed in [25], [26] is to replace each state
variable with τ0 copies of itself. Each copy shares the same
emission distribution as the original variable. Transitioning
between the new states is given by the topology exemplified
in Figure 3. The distribution of staying times becomes:

p(τ |p, τ0) =
(
τ − 1
τ0 − 1

)
pτ−τ0(1− p)τ0 . (3)

It is defined for τ ≥ τ0 and is equivalent to the negative
binomial distribution [26]. Its mean and variance are E[τ ] =
τ0/1−p and V ar[τ ] = pτ0/(1−p)2 respectively. Inference in
the explicit duration AR-HMM shares the same routines with
a standard AR-HMM. Taking advantage of the state topology
constraints explained above, the cost of the forward backward
algorithm becomes O(TJ(J + 2(τ0 − 1))).

III. METHODS

A. Neonatal Sepsis Diagnosis

The result of the blood culture is widely regarded as the
“gold standard” for diagnosing neonatal sepsis. Nevertheless,
it is acknowledged that the test can have a poor accuracy [1],
[4], [9]. First, small sample volumes and antibiotic therapy
can give false-negative results [1]. Estimates show that 30%
to 40% of sepsis cases have negative blood tests [9]. Second,
positive blood cultures do not always imply infection. The
reason is that blood samples often contain contaminants [1].

In the NICU at the Royal Infirmary of Edinburgh, the
diagnosis method follows the work of Modi et al. [1]. Positive
cultures are classified as either recognised pathogens, mixed
growth, or skin commensal. For cultures in the first category,
clinicians are certain that the patient is infected and the
diagnosis is “proven sepsis”. The latter two categories cannot
distinguish true infection from sample contamination and, if
corroborated with the presence of ≥ 3 clinical signs, the
diagnosis is recorded as “suspected” sepsis.

B. Neonatal Monitoring Data

We have collected anonymised data from VLBW babies
admitted at the NICU in the Royal Infirmary of Edinburgh
between 2008 and 2011. All the analysed patients were
intrinsically unstable, and thus nursed in incubators. The data

consists exclusively of physiological monitoring channels sam-
pled once per second. These are: heart rate, core and peripheral
temperatures (’TC’ and ’TP’) and oxygen saturation (’SO’).
Heart rate measurements are available from two sources: ECG
leads (’HR’) and pulse oximeter (’PR’). Our samples are
monitoring windows with a duration of 30 hours and fall into
one of the following two categories: the sepsis group or the
control group. Sepsis samples have been selected such that the
time the positive blood sample was taken occurs precisely 24
hours after the start of the window.

For the sepsis group, we firstly considered monitoring all
babies who had at least one blood sample taken for culture
analysis. The group was refined to include only samples where
the culture grew organisms ordinarily considered as pathogenic
leading to a diagnosis of “proven sepsis”. This was 10% of the
original group, as 65% of the samples were negative, and the
remaining 25% were allocated to either the mixed growth or
skin commensal categories. For the control group, there was
no suspicion of sepsis in a consecutive 3 day period around
the selected intervals and no blood sample had been analysed.

In order to investigate the utility of multi-channel data for
sepsis detection, we selected babies for which all the channels
above were present. These are needed for defining the events
given in Table I. Since there was no systematic reason for
the absence of any of these five channels, this is an unbiased
selection criterion. During this step, 20% of the sepsis samples
were removed. Finally, in some cases, the bedside devices
consistently failed to record measurements (or probes were
displaced) for extended periods of time. We placed a data
availability threshold of 50% for all channels. This resulted in
a reduction from 26 to 18 sepsis samples.

Under the same data availability criteria, we selected suffi-
cient control samples to provide an equal amount of data to
the sepsis group. In summary, we are studying 36 samples
divided as follows:
• the sepsis group: 18 samples obtained from 18 different

patients, mean gestation 27.2 weeks (SD = 1.5), mean
birth weight 873 grams (SD = 256) and mean age 14.5
days (SD = 8.5),

• the control group: 18 samples obtained by taking 2
samples from each of 9 different patients1, mean gestation
26.7 weeks (SD = 1.7), mean birth weight 837 grams
(SD = 139) and mean age 15.2 days (SD = 14.0).

Three patients have samples in both sepsis and control groups,
which means we are analysing a total of 24 different neonates.

C. Clinical events for sepsis detection

This work is centred around the idea that the onset of
neonatal sepsis is associated with an increase in clinically sig-
nificant events. In the following, we summarise the knowledge
about NICU monitoring data used for defining and annotating
these events. We then discuss some summary results of the
annotation process.

1One control sample initially selected has been discarded due to an atypical
oxygen saturation trace. This was most likely caused by a fault with the
monitoring equipment. The sample was readily classified as an outlier.
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TABLE I
EXHAUSTIVE LIST OF CLINICAL EVENTS MONITORED FOR DETECTING NEONATAL SEPSIS.

Event Type Brief Description
Probe dropout artifactual lack of monitoring data due to temporary removal or malfunctioning of the monitoring devices
Handling physiological some clinical procedure is performed (e.g changing nappies); the incubator’s door are thus open; the presentation is

a decay in ’TC’ and/or ’TP’ together with increased variability or dropouts on the other physiological channels
Bradycardia physiological sharp fall in ’HR’ (’PR’) of at least 30 beats per minute (bpm) from a reference level followed by a sharp recovery
Oximeter error artifactual disagreement between the oximeter (’PR’) and EEG (’HR’) heart rates; the disagreement is associated with temporary

malfunctioning of the oximeter; this translates into the unreliability of the ’SO’ trace
Desaturation physiological sudden fall in ’SO’ followed by recovery; desaturations are commonly associated with ’SO’ falling below 85%
X-factor any non-normal pattern occurring on at least one physiological channel that cannot be explained by ANY of the events

above

It is useful to classify clinical events into physiological
events and artifactual events. During physiological events the
monitoring traces reflect the true values of the baby’s vital
signs. Artifactual events occur when the traces are corrupted
by faults with the monitoring equipment and do not reflect
the true state of the patient. Table I gives the list of clinical
events we use, together with their brief descriptions. This list
is adapted from the one proposed in [6] for the purposes of
this work. Here, we chose not to monitor blood sampling
episodes, because of the small amount of blood pressure data
available. Several examples of clinical events are shown in
Figure 1. Note that the inclusion of the X-factor [6] makes
the list exhaustively cover all the patterns appearing in the
monitoring data. Since the X-factor can be either physiological
or artifactual, it cannot be directly used for inferring the
patient’s state of health.

For all the monitoring data in our study, expert annotations
were initially obtained for bradycardia, desaturation, handling
and for the X-factor. In subsequent data exploration, the X-
factor annotations were inspected for any recurring patterns
potentially predictive of sepsis. Annotators found low ampli-
tude bradycardia-like patterns to display a higher incidence in
the hours before the positive test (Figure 4c). These would
often appear in clusters and close to significant drops in
heart rate. They were not initially annotated as bradycardias
because they did not fall into our standard working definition
(Table I). We chose to separately define these events as mini-
bradycardias, bradycardias with a drop of 15 to 30 bpm. Thus,
annotations for mini-bradycardias were a later addition.

Less clinical expertise is required for annotating the remain-
ing two events, probe dropouts and oximeter errors. Thus,
these artifactual events were handled automatically. The mon-
itoring equipment already marks probe dropouts by recording
the value 0. Dropout statistics depend on the channels affected
by each clinical event, but on average we lack monitoring data
for 2% of the time. Oximeter errors are characterised by a
disagreement between the two heart rate channels (Table I).
We first aligned ’HR’ traces with respect to the ’PR’ ones by
maximizing their cross-correlation. An HMM finding periods
of oximeter error was then applied to the difference between
the aligned ’HR’ and ’PR’. We tested this procedure by
comparing it against expert annotations obtained for a subset
of our data. An AUC of 0.96 obtained by cross-validation
encouraged us to apply the method on the whole dataset.

We frequently observe instances of the other physiological

TABLE II
CLINICAL EVENT INCIDENCE (NUMBER OF EVENTS), TOTAL AND MEDIAN
DURATIONS FOR THE SEPSIS/CONTROL GROUPS. ONLY BABY GENERATED
PHYSIOLOGICAL EVENTS HAVE BEEN CONSIDERED. THE TOTAL AMOUNT

OF DATA FOR EACH GROUP IS 18× 30 = 540 HOURS

Event Group Incidence Total (hrs) Median (sec)

Bradycardia Sepsis 1128 13.9 38.5
Control 773 8.4 37

Desaturation Sepsis 742 32.3 101
Control 231 10.5 124

Mini-Bradycardia Sepsis 598 10.7 42
Control 374 4.1 34

Handling Sepsis 201 41.7 510
Control 205 53.7 592

X Sepsis 227 10.3 94
Control 175 7.0 114

Oximeter error Sepsis 4051 44.6 16
Control 3395 36.4 18

events during handling episodes. An example is shown in
Figure 1a. In such cases we cannot distinguish whether the
events are caused by the baby’s true state of health or because
an extremely fragile patient is being handled by staff. Our
solution is to not use these instances for sepsis detection.
Consequently, we rely exclusively on physiological events
happening outside handling episodes. Such instances can be
confidently classified as being baby generated.

Table II summarizes the output of the data annotation
process. Baby-generated physiological events display a higher
incidence in the sepsis group. Also, the amount of patient
handling does not differ much between the two groups. The
same conclusion can be drawn about the numbers of both X
episodes and oximeter errors.

A visualisation of the time evolution of the number of
baby generated physiological events is shown in Figure 4.
The samples in the sepsis group are naturally aligned using
the time of the positive blood test. Importantly, labels for
baby generated physiological events cannot be provided for
all the data. First, as already explained, handling periods were
discarded. Second, during probe dropouts there is no access to
the true values of the baby’s vital signs and consequently it is
impossible to provide annotations. Similarly, during oximeter
error events one cannot annotate desaturations. The counts
shown have been weighted according to this information.
More precisely, if p% of a monitoring interval could be
annotated, the count for that interval was multiplied by 100/p.
For the sepsis group, there is an increase in baby generated
bradycardias and mini-bradycardias in the 9 hours before the
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Fig. 4. Time evolution of the median weighted number of baby generated physiological events for both sepsis and control groups. The data has been aligned
such that for babies in the sepsis group 0 denotes the time the positive blood sample was taken. The counts are computed hourly and summarize the preceding
3 hour period. The error bars mark the first and third quartiles. We have used a small offset between the two patient groups to improve readability.

positive test. Desaturations are generally more present in the
sepsis group, but seem to be less informative about the onset
of the infection.

These findings can be associated with the work of Griffin,
Moorman et al. [9], [10]. We do not have access to inter-
beat (RR) data, but a positive skew in the RR histograms
translates into a negative skew of ’HR’ data, due to the inverse
relationship between intervals and frequencies. By computing
the sample skewness of the ’HR’ channel, we found that
indeed lower values of skewness often characterise the hours
before the positive blood test. However, by removing the
bradycardias and mini-bradycardias from the analysis most of
the skewness is eliminated. Thus, the distribution of heart rate
events and the skew of RR histograms can be interpreted as
different observations of the same phenomenon. Our findings
about mini-bradycardia events preceding the neonatal sepsis
diagnosis provide quantitative evidence with respect to the
claims about patterns in heart-rate decelerations made in [27].

The periods of time for which annotations of baby generated
events could not be provided will be treated as missing data.
The sources of missing data identified in this section are
handling episodes, probe dropouts and oximeter errors. As
discussed above, the summary statistics of these events do not
substantially differ between the two patient groups, justifying
the MAR assumption made in Section II-B.

D. Model fitting

We fit an AR-HMM model to observations of S = 3 baby
generated physiological events: bradycardias, desaturations
and mini-bradycardias. The hidden state is chosen to be a
binary variable which can take on values zt = normal or
zt = sepsis. In the following, we explain how we label the
presence of sepsis in the training data. These labels are then
used for supervised learning of the AR-HMM parameters.

Labelling the sepsis variable is different for the two patient
groups. For the sepsis group, we know the exact time of the
positive blood test. Following consultation with clinicians, it
was agreed that labelling the period of 6 hours before this
moment as sepsis would be reasonable. The onset of the
infection cannot be assumed to be an instantaneous event.

Thus, we define a transition period in which the patient
progresses from being in the normal state to being in the
sepsis state. We take this to be the 12 hours between between
18 and 6 hours before the positive test. This period is left
unlabelled and will not be used for either training or testing.
All monitoring data before the transition period (i.e. the first 6
hours of a sample in the sepsis group) is labelled as normal.
We do not assign a label to the data after the positive test,
as this is likely to be affected by the patient’s response to
treatment and has less relevance for the task of real-time sepsis
detection. All the data in the control group is labelled as
normal.

The use of the annotations simplifies parameter estimation.
Our optimization goal is maximizing the joint probability of
the labelled hidden states and the corresponding observations.
Maximum a posteriori (MAP) estimates of the state transition
probabilities are given by:

θ̂j|i =
nj|i + ξ∑
j′(nj′|i + ξ)

, (4)

where nj|i is the number of times we transition from hidden
state i to hidden state j. Here we use a symmetric Dirichlet
prior with parameter ξ = 1, in order to prevent estimates from
being too small when data counts are low. Similarly, we learn
the emission probability parameters using:

φ̂
(s)
l|kj =

n
(s)
l|kj + ξ∑

l′(n
(s)
l′|kj + ξ)

, (5)

where n(s)
l|kj is the number of times event s transitions from

setting k to setting l when the hidden state takes on value j. In
Section III-C we explained why it was not always possible to
annotate baby-generated events. We could use an expectation-
maximization (EM) procedure to account for missing data
when estimating parameters. However, the total amount of
annotated data is much larger than the amount of missing data.
Thus, we would expect the benefits to be minimal.

Note that in the absence of any sepsis labels the AR-
HMM can be trained unsupervised. Maximum likelihood (ML)
parameters are usually determined by optimizing the proba-
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Fig. 5. ROC curves corresponding to different models for sepsis detection.

bility of the observations with EM. The inference procedure
described in Section II-B can be used in the expectation step.

IV. RESULTS

In this section we describe experimental results for detecting
neonatal sepsis on the data introduced in Section III-B. We
show the models’ performance and discuss learnt parameters in
Section IV-A. The relevance of individual physiological event
streams is examined in Section IV-B. An alternative episode-
based analysis is presented in Section IV-C.

The following results have been obtained using leave-one-
out cross-validation. The quality of the second by second
inferences is measured against the sepsis labelling defined in
section III-D. We draw ROC curves showing the dependence
between the false positive rate (FPR) and the true positive
rate (TPR). We report the area under the ROC curve (AUC)
and the equal error rate (EER)2. These evaluation criteria
are preferred because they account for the class imbalance
in our dataset. If misclassification costs had been available,
we could have visualised the expected cost in ROC space as
explained in [28]. Posterior distributions are given as gray-
scale horizontal bars, with white meaning 0 sepsis probability
and black corresponding to probability 1. For the episode-
based analysis, we use precision-recall (PR) curves3 [29].
We report the average precision (AP) [30] and the maximum
F-score4. Both the second-by-second and the episode-based
analyses are projections of the inferences onto different metrics
and can reveal different performance aspects.

A. Model evaluation with a second-by-second analysis

ROC curves for several sepsis models are given in Figure 5,
and the corresponding summary statistics are presented in
Table III. We are mainly interested in real time prediction.
Smoothing results can be interpreted as an upper bound for
the predictive power of the selected physiological events.

“AR-HMM md” is the standard AR-HMM model which
handles missing data. If we do label the missing data assuming
no baby-generated physiological event was happening, we

2EER is the error rate computed at the threshold for which the FPR equals
the false negative rate (FNR). Note that FNR = 1 - TPR.

3Precision is defined as TP/(TP+FP) and recall equals the TPR.
4The F-score is the harmonic mean of precision and recall.

TABLE III
SUMMARY STATISTICS OBTAINED BY CROSS-VALIDATION IN A

SECOND-BY-SECOND ANALYSIS.

Filtering Smoothing
AUC EER AUC EER

AR-HMM md 0.74 0.33 0.75 0.29
AR-HMM wmd 0.72 0.34 0.73 0.32

HMM 0.50 0.46 0.53 0.40
AR-HMM ed 0.80 0.30 0.79 0.27

TABLE IV
MONTE CARLO ESTIMATES OF THE EXPECTED NUMBER OF BABY

GENERATED EVENTS OVER A T = 3 HOUR PERIOD.

State Bradycardia Desaturation Mini-Bradycardia
Normal 4.29 1.63 2.10
Sepsis 11.01 5.95 6.65

obtain a model without any missing data, “AR-HMM wmd”.
This approach performs worse, mostly due to long handling
events happening during sepsis episodes wrongly classified as
normal. The marginalisation performed in the missing data
approach helps to correctly classify these periods as sepsis.
The benefits of explicitly modelling events as Markov chains
with AR-HMMs are clear when compared to an “HMM”,
whose performance is close to that of a random classifier. “AR-
HMM ed” explicitly models staying times in the hidden states.
For each hidden state, the parameters of the corresponding
event duration distribution (3) can be learnt from the sepsis
labelling. However, due to the lack of diversity in the length
of labelled sepsis episodes, we treat τ0 as a hyper-parameter,
and consider values in {5, 10, 15, 25, 50, 100}. To avoid bias,
we determine the performance of the explicit duration model
using nested cross-validation (see e.g. [31]). In the inner cross-
validation steps, selection for τ0 was performed using the
filtering AUC. Table III shows that the explicit duration model
delivers the best performance for both filtering and smoothing.
The fitted emission distributions can be used to characterise the
sepsis and normal regimes. Since the learnt φ’s are hard to
interpret directly, we show an alternative representation which
can be easily associated with the information in Figure 4. More
precisely, we used a Monte Carlo approach to estimate the
expected number of physiological events over a T = 3 hour
period. For each event-regime pair, we separately sampled the
corresponding Markov chain. In all cases, N = 5000 samples
of length T = 3 hours have been empirically found to suffice
for convergence. Table IV shows these estimates. In the sepsis
state we see an approximately 3-fold increase in the expected
incidence of the monitored events compared to periods when
the patients are not infected.

Figure 6 shows inference results for the model delivering
the best performance, the explicit duration AR-HMM. For 12
samples in the sepsis group (s1−7, s9, s11, s12, s16 and s18)
a significantly long sepsis episode is identified during the 6
hours before the positive blood test. In all but 2 samples (s2

and s3), the sepsis episode is detected at least 3 hours before
the positive test. For 2 cases (s10 and s14) sepsis episodes
are flagged mostly during the transition period rather than the
sepsis one. In the remaining 4 samples (s8, s13, s15 and s17)
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Fig. 6. Cross-validation inference for both patient groups using the explicit-duration AR-HMM. The top row of each figure represents the sepsis labelling.
Normal periods are white, sepsis periods are black. Transitioning and treatment periods are not assigned any label. For each sepsis sample sk or control
sample ck the top row of the corresponding image represents the filtering distribution and the bottom row represents the smoothing distribution.

no clear sepsis episode has been identified. The sepsis periods
flagged in the control group are usually short. We believe that
many of them can be explained by handling events which do
not display corresponding falls in either ’TC’ or ’TP’ channels.

B. Physiological event evaluation

It is useful to understand which types of physiological
events contribute most for detecting sepsis. Since bradycardias
and mini-bradycardias are intimately related, we phrase this
question as asking whether monitoring desaturations brings ad-
ditional information about sepsis compared to only monitoring
the heart rate. In Figure 7 and Table V we compare an explicit
duration AR-HMM monitoring all events (“ALL”) with one
monitoring only heart rate channel events (“BR+MB”) and one
looking only at desaturations (“DS”). For all event types, ROC
curves have been obtained using nested cross-validation. This
analysis shows that monitoring desaturations on top of moni-
toring the heart rate channel does not give better performance.
Also, due to better TPR values at high FPRs, monitoring
only desaturations delivers a surprisingly good performance.
However, when choosing an operating point from these ROC
curves, we are more interested in the performance at low FPRs.

The event-type analysis is continued in the next section
when looking at episode-based analysis.

TABLE V
SUMMARY STATISTICS FOR THE SECOND-BY-SECOND ANALYSIS OF

EXPLICIT DURATION AR-HMMS MODELLING SEVERAL SETS OF
PHYSIOLOGICAL EVENTS.

ALL BR+MB DS

Filtering AUC 0.80 0.80 0.78
EER 0.30 0.30 0.30

Smoothing AUC 0.79 0.79 0.76
EER 0.27 0.27 0.32
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Fig. 7. ROC curves corresponding to different sets of physiological events
modelled with an explicit duration AR-HMM for sepsis detection.

C. Episode-based analysis

We have also evaluated our models from the perspective
of detecting episodes of infection. This analysis is intended
to be closer to clinical practice than the second-by-second
evaluation. Similar procedures have been used in applications
such as object detection [30] or keyword spotting [32, §17.19].

First, the posteriors are thresholded to give a binary output.
Strings of 1’s are predicted sepsis episodes. Since true episodes
last for at least a few hours, we keep only instances longer
than 1 hour. An inferred episode overlapping with the sepsis
period but not with any normal period is a true positive (TP).
If multiple true positives are detected for a sepsis patient, then
only the first is recorded. Episodes exclusively contained in
either the transition or treatment periods are not labelled. All
remaining episodes are false positives (FP). The number of
positive examples is the number of infected patients. In this
setting, evaluation via a PR curve is a better choice than via
a ROC one, as true negative episodes are hard to define, and
are not necessary for a PR curve.

Table VI shows the AP and maximum F-score for the same
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TABLE VI
SUMMARY STATISTICS OBTAINED BY CROSS-VALIDATION IN AN

EPISODE-BASED ANALYSIS.

Filtering Smoothing
AP F-score AP F-score

AR-HMM md 0.59 0.61 0.60 0.65
AR-HMM wmd 0.56 0.59 0.57 0.63

HMM 0.10 0.29 0.19 0.32
AR-HMM ed 0.59 0.65 0.63 0.69

TABLE VII
SUMMARY STATISTICS FOR THE EPISODE-BASED ANALYSIS OF EXPLICIT
DURATION AR-HMMS MODELLING SEVERAL SETS OF PHYSIOLOGICAL

EVENTS.

ALL BR+MB DS

Filtering AP 0.59 0.53 0.33
F-score 0.65 0.59 0.46

Smoothing AP 0.63 0.61 0.25
F-score 0.69 0.65 0.42

set of models discussed in Section IV-A. The performance of
the explicit duration model is again computed using nested
cross-validation. However, we now optimise the filtering AP
in the inner cross-validation. Most of the findings in Table III
are confirmed in PR space as well. Again, the explicit duration
model dominates the other models, although its filtering AP
score equals that of the standard AR-HMM model.

It was interesting to perform the evaluation of Section IV-B
using the episode-based analysis. The summary statistics are
given in Table VII. The episode-based analysis reveals big-
ger performance differences between the models. Monitoring
desaturations on top of monitoring the heart rate channels
improves both filtering and smoothing performance. Monitor-
ing only desaturations does much worse when we assess the
detected infection episodes.

V. DISCUSSION

This paper introduces a hidden variable probabilistic model
capable of making early predictions about the onset of neonatal
sepsis. Our approach extensively uses domain knowledge to
facilitate learning and inference. We have explained how
missing data can be treated and experimented with explicit
duration modelling. The results show that by monitoring the
incidence of baby-generated physiological events we can often
detect sepsis well in advance of the time when a positive blood
test was taken. In the remainder we discuss a number of ways
in which this work can be extended.

The primary direction is to directly use the raw physi-
ological data to infer sepsis. A hierarchical model can be
obtained assuming the clinical events are unobserved and
placing the hidden state variables of the AR-HMM on top
of the FSLDS of Quinn et al. [6]. Inference in the resulting
model can be performed using the same methods as for the
FSLDS [33]. A direct comparison against the results presented
in Section IV is possible, partly because the AR-HMM can
be obtained by conditioning the hierarchical model on the
clinical events. We can interpret the AR-HMM results as an
upper bound for the performance of a fully automated sepsis
detection system relying on the distribution of clinical events.

The bound is justified by the fact that any automated system
for inferring clinical events from monitoring data cannot
outperform an expert annotator. Automatically detecting sepsis
from monitoring data also opens up the opportunity to study
much larger datasets.

In section III-C, we have explained how the distribution of
physiological events is related to previous work on using the
loss of variability in the vital signs for sepsis prediction [9],
[14]. It would be interesting to define such events and see what
predictive effect they have in our framework, either on their
own or combined with the other events. However, assessment
of variability requires comparison of data over a given time
frame, and there are many possible ways to come up with
measures of variability. It could be interesting to look at this
question in the FSLDS framework [6], where a new factor and
dynamical model for low variability could be introduced.

In Section III-D, we have explained a method for labelling
periods of infection. The main difficulty was that while the
time of the positive test is known, the time of the sepsis
onset cannot be exactly determined. An interesting alternative
is to construct a probabilistic labelling of sepsis. At the
time of the positive test the probability of sepsis should be
1 and going back in time it should monotonically decay
to 0. In this case, the goal of learning is to minimize the
Kullback-Leibler (KL) divergence between the labelling and
the posterior distribution of the AR-HMM. This objective can
be optimised by a gradient descent method using inference as
a subroutine. The procedure is closely related to discriminative
training of HMMs [34], [35]. A difficulty of this approach is
that some parametric form of the labelling distribution should
be fixed a priori.

APPENDIX
AR-HMM INFERENCE WITH MISSING DATA

When there is no missing data, the messages in (2) can be
recursively computed as follows:

α(zt) = p(xt|zt, xt−1)
∑
zt−1

p(zt|zt−1)α(zt−1), (6)

β(zt) =
∑
zt+1

p(zt+1|zt)p(xt+1|zt+1, xt)β(zt+1). (7)

In the presence of missing data, V is the set of time steps
for which we have observations. We would like to treat both
t ∈ V and t /∈ V in a unified framework. Thus, we introduce
a function V (xt) : {1, . . . , L} → {0, 1}

V (xt) =
{
δxtxv

t
if t ∈ V

1 if t /∈ V,

where δij is the Kronecker delta. For any t0 < t < t1, the
following holds:

p(zt, xvt0:t1) =
∑
xt

p(zt, xvt0:t−1, xt, x
v
t+1:t1)V (xt). (8)

If xt is not observed, the summation in (8) represents the
marginalization of the hidden variable xt from p(zt, xvt0:t1 , xt).
If xt is observed, then the summation only selects the term
p(zt, xvt0:t−1, x

v
t+1:t1 , x

v
t ).
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Applying (8) together with (2) we get:

p(zt,xv1:T ) =
∑
xt

p(zt, xv1:t−1, xt, x
v
t+1:T )V (xt)

=
∑
xt

p(zt, xv1:t−1, xt)p(x
v
t+1:T |zt, xt, xv1:t−1)V (xt)

=
∑
xt

p(zt, xv1:t−1, xt)p(x
v
t+1:T |zt, xt)V (xt)

=
∑
xt

α(zt, xt)β(zt, xt),

where we have defined the messages:

α(zt, xt) , p(zt, xv1:t−1, xt)V (xt),

β(zt, xt) , p(xvt+1:T |zt, xt)V (xt),

and we have used the fact that V 2(xt) = V (xt). Similarly to
eqs. (6) and (7), the following recursions can be written:

α(zt, xt) = V (xt)
∑
xt−1

p(zt, xv1:t−2, xt−1, xt)V (xt−1)

= V (xt)
∑
xt−1

∑
zt−1

p(zt−1, zt, x
v
1:t−2, xt−1, xt)V (xt−1)

= V (xt)
∑
xt−1

p(xt|zt, xt−1)

×
∑
zt−1

p(zt−1, zt, x
v
1:t−2, xt−1)V (xt−1)

= V (xt)
∑
xt−1

p(xt|zt, xt−1)
∑
zt−1

p(zt|zt−1)α(zt−1, xt−1),

β(zt, xt) = V (xt)
∑
xt+1

p(xt+1, x
v
t+2:T |zt, xt)V (xt+1)

= V (xt)
∑
xt+1

∑
zt+1

p(zt+1, xt+1, x
v
t+2:T |zt, xt)V (xt+1)

= V (xt)
∑
xt+1

∑
zt+1

p(zt+1|zt)p(xt+1, x
v
t+2:T |zt+1, xt)V (xt+1)

= V (xt)
∑
zt+1

p(zt+1|zt)
∑
xt+1

p(xt+1|zt+1, xt)β(zt+1, xt+1).

When training an AR-HMM with missing data via EM, the
following quantities are needed in the M-step:

p(zt, zt−1, x
v
1:T ) =

=
∑

xt,xt−1

p(zt, zt−1, x
v
1:t−2, xt−1, xt, x

v
t+1:T )V (xt)V (xt−1)

=
∑

xt,xt−1

α(zt−1, xt−1)p(zt|zt−1)p(xt|zt, xt−1)β(zt, xt),

p(zt, xv1:t−2, xt−1, xt, x
v
t+1:T )V (xt)V (xt−1) =

=
∑
zt−1

p(zt, zt−1, x
v
1:t−2, xt−1, xt, x

v
t+1:T )V (xt)V (xt−1)

=
∑
zt−1

α(zt−1, xt−1)p(zt|zt−1)p(xt|zt, xt−1)β(zt, xt).
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