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Abstract

The Gaussian Process Latent Variable Model (GPLVM) [1] is an attractive model
for dimensionality reduction, but the optimization of the GPLVM likelihood with
respect to the latent point locations is difficult, and prone to local optima. Here
we start from the insight that in the GPLVM, we should have that k(xi,xj) ' sij ,
where k(xi,xj) is the kernel function evaluated at latent points xi and xj , and sij
is the corresponding estimate from the data. For an isotropic covariance function
this relationship can be inverted to yield an estimate of the interpoint distances
{dij} in the latent space, and these can be fed into a multidimensional scaling
(MDS) algorithm. This yields an initial estimate of the latent locations, which can
be subsequently optimized in the usual GPLVM fashion. We compare two variants
of this approach to the standard PCA initialization and to the ISOMAP algorithm
[2], and show that our initialization converges to the best GPLVM likelihoods on
all six tested motion capture data sets.

1 Introduction

The Gaussian Process Latent Variable Model (GPLVM) [1] has recently gained attention as a non-
linear dimensionality reduction method which can provide a powerful generative model of the data.
This is particularly useful for the generation of new motion from examples [3, 4] or embedded in a
tracking system [5]. Another advantage of the GPLVM, from a practitioner’s point of view, is that
prior information can be conveniently incorporated into the model in form of a prior on the latent
points [e.g. 6, 7]. On the other hand, the GPLVM suffers from high computational demands and
the complexity of the underlying optimization problem. In this paper we address the latter issue
by relating the GPLVM to metric multidimensional scaling (MDS) which in return yields a novel
initialization for the GPLVM optimization.

In particular, given a data set Y ∈ RN×D of N vectors in D dimensions the GPLVM maximizes
the following log-likelihood with respect to a latent configuration of points X ∈ RN×M in a lower
dimensional space (M < D):

L = −DN
2

log 2π − D

2
log |K| − D

2
tr(K−1S) (1)

where K is the N ×N Gram matrix with entries kij = k(xi,xj), xi is the ith column of XT , k(·, ·)
is a kernel function, and S = 1

DYYT is the N ×N matrix with entries sij =
∑D

d=1 yidyjd/D. For
a nonlinear kernel function, maximization of the log-likelihood thus implements nonlinear dimen-
sionality reduction, but we also see that we then have to optimize with respect to NM nonlinearly
related parameters X plus additional parameters of the kernel function. As the optimization land-
scape of this problem is highly complex with many local optima, the initialization of X is critical for
successful application of the GPLVM. Part of the success of the GPLVM can, therefore, be attributed
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to the insight that the result of (probabilistic) PCA often is a good, heuristic initialization. In the
following we present an alternative initialization for the GPLVM which we derive directly from the
model. In contrast to PCA it is nonlinear and in contrast to other potential initializations, like Isomap
[2], it is particularly suited for the use with the GPLVM. Parts of this work with more detailed theo-
retical explanations are also published in the author’s PhD thesis [8] and further experimental results
will be available in a forthcoming technical report [9].

2 Relating the GPLVM to Metric MDS

The model defined by eq. (1) corresponds to D independent draws from a common Gaussian Pro-
cess [10] with mean function m(x) = 0 and covariance function k(xi,xj). Thus a sensible pre-
processing of the data is to centre each column yc of Y to have zero mean for c = 1, . . . , D, and
rescale each one to have the same variance1 (taken here to be unity). We assume below that S is
computed using this pre-processed data.

Our initialization is based on the insight that the free-form maximization of the likelihood in eq.
(1) over K is obtained by setting K = S. Of course, as K is parameterized by X it will not in
general be possible to find locations X so as to make this happen. However, it does suggest that
we might try setting k(xi,xj) ' sij for all i, j. If the kernel function k is isotropic, i.e. it is a
function of d2ij = |xi − xj |2 so that k(xi,xj) = f(d2ij), then we have d2ij ' f−1(sij) ∀ i, j.
For example, the squared exponential (SE) covariance function sets kij = exp(−d2ij/2`2), so that
d2ij ' −2`2 log(sij). Given an N ×N matrix of distances with entries d2ij it is then straightforward
to solve for the best M -dimensional Euclidean configuration using classical MDS [11].

Scaling S: It is sensible to impose the constraint that the diagonal entries in S are such that d2ii = 0
for all i = 1, . . . , N . Assuming that f−1(1) = 0 (which holds e.g. for the SE covariance function),
then this can be achieved by replacing S by its rescaled version R, where

rij =
sij√
siisjj

, (2)

so that rii = 1 for i = 1, . . . , N . (This is similar to the construction of the correlation matrix from
a covariance matrix, except that here the notions of sample and variable are interchanged so that S
and R are N ×N , not D×D.) This, additionally, ensures that d2ij ' −2`2 log(rij) produces valid,
i.e., positive distances. We assume below that R is used in place of S.

A problem: It may happen that there is no dij corresponding to values of rij in a certain range. For
example, with the SE kernel we cannot find dij’s corresponding to rij ≤ 0, but such values may well
arise in practice. Indeed, due to sampling fluctuations, negative empirical rij’s could occur even if
the “true” value were positive, but they could also arise through model mis-specification. A simple
approach in this case is to treat the entries with rij ≤ 0 as missing, and apply an MDS algorithm
that handles missing data as described below. However, note that small rij corresponds to large dij
for the SE kernel, so there is an expectation that these missing distances in x-space will be large.

MDS with Missing Data: Iterative Minimization of Stress. When we have missing entries in
the matrix of dissimilarities we cannot compute the eigendecomposition of it anymore and have
to resort to other techniques. Several algorithms for MDS with missing data have been pro-
posed, one of which is the iterative minimization of the Stress criterion [e.g. 12]: Stress(X) =(∑

i,j wij(dij−|xi−xj |)2∑
i,j wijd2

ij

) 1
2

, which minimizes the normalized squared error between the given dis-

similarities and the distances between the estimated latent points. The weights wij can then be used
to accommodate missing values by setting corresponding weights to 0. Stress can then be minimized
with gradient descent. We employ the routine provided in the Matlab statistics toolbox (mdscale).
We repeat iterative MDS with R different random initializations of X and select the resulting recon-
struction of points which gives the highest GPLVM log-likelihood. In all experiments below we set
R = 100.

We name this method GPLVM-Stress, as it is based on finding a latent configuration from the in-
complete, approximated distance matrix via the minimization of Stress. The computational cost of

1This saves needing a separate signal variance parameter for each column of Y .
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GPLVM-Stress isO(RIN2) whereR is the number of repetitions described above,N is the number
of data points and I is the number of iterations typically needed for the gradient descent on Stress
to converge. When I is much larger than N , GPLVM-Stress can, therefore, be considerably slower
than the original optimisation of the GPLVM which has a cost of O(JN3) where J is the number
of GPLVM gradient steps.

As an alternative to Stress minimization we also used Isomap to find a latent configuration from
the approximated distances. This is based on the insight that predominantly large distances will
be missing, and that Isomap only uses the k nearest neighbours to approximate geodesic distances
between all data points and so automatically fills in the missing distances. We name this method
GPLVM-Isomap-low, because the low-dimensional distances are used. In contrast, when we apply
Isomap directly on the distances between data points Y, we name this GPLVM-Isomap-high. In
both cases we select k to maximise the GPLVM (log-)likelihood.

After completing our work we became aware of [13] in which Modayil also developed the idea
to use correlations between observed variables to define a low-dimensional embedding of the data.
His work is in the context of discovering spatial relations between sensors of robots and he does
not discuss the relation to the GPLVM. Instead of Isomap he uses regularized maximum variance
unfolding [14] to fill in missing distances which gave results similar to GPLVM-Isomap-low in
initial tests with our data sets, but which was roughly one order of magnitude slower than Isomap.

Variability of Covariance Estimates. Under the GPLVM model the columns of the matrix of ob-
servations Y are independent samples from a multivariate Gaussian distribution with mean 0 and
covariance K. Thus, the matrix YYT is Wishart distributed [15] with parameter K and D de-
grees of freedom: YYT ∼ WN (K, D). The Wishart distribution has mean E(YYT ) = DK and
the elements of YYT have variance V (yT

i yj) = D(k2ij + kiikjj) [see e.g. 16, ch. 3.2]. Con-
sequently, the mean and variance for the sample covariance are E(S) = 1

DE(YYT ) = K and
V (sij) = 1

D2V (yT
i yj) = 1

D (k2ij + kiikjj). Therefore, S is an unbiased estimator of K and the
estimate improves as the number of observation vectors D increases. In other words, as we obtain
more samples of the covariances between data points from different dimensions, our estimate of the
underlying covariances becomes better.

3 Experiments

Synthetic Data. In extensive evaluations on synthetic data we have confirmed this somewhat
surprising result which means that results of dimensionality reduction improve (better reflecting
the true underlying configuration of points) with increasing dimensionality of the data, if the
data follows the assumptions of the model. We also showed that a predominant part of the er-
ror in representing the true latent configuration is contributed by badly-approximated small co-
variances which correspond to large distances. Furthermore, we demonstrated that the resulting
GPLVM-Stress and, especially, GPLVM-Isomap-low configurations were indeed better initializa-
tions of the GPLVM than the standard PCA initialisation in terms of log likelihood (before and
after GPLVM optimization). In particular, we investigated data sets with varying dimensionality
(D ∈ {3, 5, 8, 14, 23, 39, 65, 108, 180, 300}) and we found that for data sets with marked nonlinear-
ities and D ≥ 14 initialization of the GPLVM with GPLVM-Isomap-low lead to larger likelihoods
after GPLVM optimization in 99, 75 and 87 per cent of the tested data sets (336 in total) when com-
pared to PCA, GPLVM-Stress and GPLVM-Isomap-high, respectively. For further details of these
experiments we refer the interested reader to the forthcoming technical report [9].

Human Motion Capture Data. We tested the four initialization methods on 6 different motion
capture data sets. The first two were our own and represent punches of a single person; the first
consisted of the full recorded movements of three punches, while in the second we cut out the
retraction at the end of the punches. The remaining data sets have been used in other publications
to demonstrate the working of the GPLVM and its variants. In particular, data set 3 (running) has
been used in Lawrence and Quinonero-Candela [17] and data sets 4 (walking of a single person),
5 (walking of 4 different people) and 6 (4 golf swings of a single person) in Wang et al. [6]. We
normalized these data sets (see [9] for details) and chose latent dimensionality M according to our
prior beliefs about the intrinsic dimensionality of the data (3, 2, 3, 3, 3 and 3, respectively, for the 6
data sets). The data sets contained 264, 97, 217, 130, 288 and 255 data points in 57, 57, 102, 53, 53
and 52 dimensions, respectively.
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(a) before optimization
DS1 DS2 DS3 DS4 DS5 DS6

PCA −458 −365 6 −257 −733 −141
ISO-high 45 −54 185 −160 −597 23

Stress 66 −5 173 −128 −426 43
ISO-low 114 35 193 −120 −499 71

(b) after optimization
DS1 DS2 DS3 DS4 DS5 DS6

PCA 635 200 587 −5 106 276
ISO-high 658 204 597 −3 109 276

Stress 689 208 589 −3 107 281
ISO-low 702 209 601 −2 109 289

Table 1: Normalized GPLVM log-likelihoods (L/D in eq. 1) for the 6 mocap data sets (1-uncut punches,
2-cut punches, 3-run, 4-walk, 5-walks of 4 people, 6-golf swings)

After normalization we applied PCA, GPLVM-Isomap-high, GPLVM-Isomap-low and GPLVM-
Stress to the motion capture data sets, and initialized a GPLVM with the resulting latent points and
covariance function parameters ` = 1, φ = 1 and σ2 = 0.01. We computed GPLVM log-likelihoods
using eq. (1) as before. Subsequently, we optimized the GPLVM using scaled conjugate gradients
for 500 steps and recorded the log-likelihood of the result. We note that more than 50% of the
entries in the matrix S were negative in all data sets (52, 56, 58, 56, 55 and 52% for the 6 data sets).
From our experience with the synthetic data we, therefore, did not expect GPLVM-Stress to perform
well on these data sets. Nevertheless, it consistently achieved better GPLVM likelihoods than PCA
before and after optimization, although likelihoods after optimization were quite similar on three
data sets (see Table 1). However, the advantage of our approach is even clearer for GPLVM-Isomap-
low which outperformed all other methods before and after optimization except on data set 5. As an
example, we show in Fig. 1 the two-dimensional latent configurations resulting from data set 2.

4 Discussion

In this paper we have derived a relationship between metric MDS and the GPLVM which allows
us to kickstart the optimization of the GPLVM likelihood using MDS procedures which can cope
with missing distances. The resulting method is a particular instance of metric MDS based on the
inverse of an isotropic covariance function. Our experiments on synthetic data have shown that
GPLVM-Stress and GPLVM-Isomap-low clearly outperform PCA as initialization for the GPLVM,
and outperform GPLVM-Isomap-high in the majority of cases.

We noted that using GPLVM-Stress may lead to a substantial increase in computational costs.
GPLVM-Isomap-low, on the other hand, is as fast as GPLVM-Isomap-high and performs best on
all real-world data sets. We note that although GPLVM-Stress and GPLVM-Isomap-low are based
on the same approximated distances in latent space the resulting configuration of latent points may
still differ considerably (e.g. Fig. 1).

Acknowledgements: This work is supported in part by the IST Programme of the European Com-
munity, under the PASCAL2 Network of Excellence, IST-2007- 216886. This publication only
reflects the authors’ views.
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(a) PCA, before optimisation (-
365)
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(b) PCA, after optimisation (200)
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(c) ISO-high, before optimisation (-54)
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(d) ISO-high, after optimisation (204)
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(e) ISO-low, before optimisation (35)
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(f) ISO-low, after optimisation (209)
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Figure 1: Latent points and log GPLVM predictive confidences (shading) before and after GPLVM
optimisation for data set 2 (3 punches without retraction). Numbers in parantheses are normalised
log-likelihoods repeated from Table 1. Note that on this data set GPLVM-ISO-low had the largest
GPLVM log-likelihood after optimisation. Gray lines indicate temporal order of data points.
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