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Abstract

We describe a method of recognizing handwritten digits by �tting generative models that

are built from deformable B-splines with Gaussian \ink generators" spaced along the length

of the spline. The splines are adjusted using a novel elastic matching procedure based on

the Expectation Maximization (EM) algorithm that maximizes the likelihood of the model

generating the data. This approach has many advantages. (1) After identifying the model

most likely to have generated the data, the system not only produces a classi�cation of the

digit but also a rich description of the instantiation parameters which can yield information

such as the writing style. (2) During the process of explaining the image, generative models

can perform recognition driven segmentation. (3) The method involves a relatively small

number of parameters and hence training is relatively easy and fast. (4) Unlike many other

recognition schemes it does not rely on some form of pre-normalization of input images, but

can handle arbitrary scalings, translations and a limited degree of image rotation. We have

demonstrated our method of �tting models to images does not get trapped in poor local

minima. The main disadvantage of the method is it requires much more computation than

more standard OCR techniques.

Index TermsDeformable model, elastic net, optical character recognition, generativemodel,

probabilistic model, mixture model.



I. Introduction

The conventional statistical approach to performing classi�cation is to use a discriminant

classi�er that constructs boundaries which discriminate between objects of di�erent cate-

gories. An alternative approach is to use generative models. This paper explores the use of

generative models for recognizing handwritten digits. In the simplest version there is one

model for each digit. Given an image of an unidenti�ed digit the idea is to search for the

model that is most likely to have generated that image. This approach has the attractive

property that, in addition to providing a label, it can also say something about the partic-

ular way in which the digit is instantiated. So, in some sense, it explains the image rather

than just labeling it. This is important when the recognizer forms part of a larger computer

vision system since there may be interest in more than just the labels. For example, given

a roughly segmented image of a single digit we may want to know which parts of the image

represent the digit and which parts are caused by noise or by some incorrectly segmented

neighbouring digit. We may also want to know the pose of the digit (i.e. its position, size,

orientation, shear and elongation) so that we can check for consistency with its neighbours.

We chose unconstrained handwritten digit recognition because it is a task of great practical

importance for which there are standard databases that allow di�erent approaches to be

compared. It also has the attractive property that there are only ten di�erent classes so it is

feasible to explore all ten di�erent ways of generating each unidenti�ed digit image. Although

handwritten digit recognition is an easier task than general 3-dimensional object recognition,

it retains, albeit in reduced form, many of the problems associated with general computer

vision such as variability in shape and pose, overlapping objects and both structured and

unstructured noise.

The paper is organized as follows: Following a brief review of some past approaches to

optical character recognition, we discuss elastic models which have been used for at least

two decades to deal with signal and image variability. In section III, we introduce our basic

elastic model for handwritten digits. We use the probabilistic interpretation of elastic models

introduced in an analysis of the elastic net algorithm [1]. In section IV, we show how the

underlying parameters of the models may be learned. Section V discusses re�nements of the

basic ideas. Section VI describes the performance of our system on a realistic database of

handwritten digits. The �nal two sections discuss some implications of the approach and

present conclusions.
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II. Review of past work

We will not attempt to review here the voluminous work on optical character recognition

that has spanned more than three decades (useful reviews can be found in [2], [3]). However,

it is helpful to summarize the trends. Most researchers have adopted the classical pattern

recognition approach in which image pre-processing is followed by feature extraction and

classi�cation. There have been many variations, but these may be roughly described using

two dimensions: statistical/structural and global/local

1

. As an example of a global, statis-

tical approach, [4] extracts 8 central and 2 raw moments as features. On the other hand

the recognizer used by Lam and Suen [5] uses local features. They extract local geometric

primitives consisting of line segments and convex polygons and use these as input to a struc-

tural classi�er. Others extract topological features which depend on the global properties of

the data. For example, Shridhar and Badreldin [6] use features derived from the character

pro�les in the image. They then feed these features into a tree classi�er. More recently there

have been a number [7], [8], [9] of successful attempts to automatically learn appropriate lo-

cal features using feed forward neural networks. Some researchers [10], [3], [11] have boosted

performance using combinations of classi�ers.

Signi�cant progress has been made in OCR. On a standard database of lightly constrained

pre-segmented handwritten digits the very best systems achieve error rates of about 1.5%

with no rejections [12]. But more work is required to match human performance, especially

on unsegmented strings of digits. We hypothesize that in order to achieve human perfor-

mance without astronomically large training sets, recognizers must embed some form of prior

knowledge about the objects they expect to �nd in images. This is common in structural

systems but rarer in statistical systems. There have been some statistical systems that allow

for typical digit transformations [13], but discriminant classi�ers generally do not address

the issue of explicitly \explaining the data". This leads to a number of weaknesses that may

limit the achievable performance:

1. Conventionally, a recognizer does not help to guide segmentation by dividing the image

into signi�cant and irrelevant parts. So a system typically [14] tries many candidate

segmentations and all the recognizer can indicate is whether a particular segmentation

leads to con�dent recognition. In general, this type of hypothesize-and-test search

procedure is much less e�cient than a procedure that can use information from the

1

These are broad terms applied to the object recognizer as a complete entity. Obviously feature selection

and classi�er design may be independently described.
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recognition to re�ne the segmentation hypothesis.

2. Statistical recognizers can occasionally con�dently classify images that do not look

anything like a character [15]. This can be ameliorated by training the system to

reject junk images [16], but it is hard to get a good sample of rare types of junk.

3. Systems that do not incorporate any prior knowledge about the shapes of characters

must learn all their knowledge from the training examples. We already know that digits

are composed of one-dimensional strokes and so it seems wasteful to use up training

data to learn this.

4. A recognizer that \understands" an image should be able to not only label it with

the correct class, but should also be able to return the instantiation parameters such

as the position, size, orientation, shear and elongation. For handwritten digits we

may also want information on the writing style since this is occasionally crucial in

disambiguating other digits in the same string.

Motivated by the success of model-based shape recognition in overcoming some of these

shortcomings [17], we have investigated the use of deformable elastic models for handwritten

digit recognition [18]. Models of this general type have been used in computer vision since

the early 1970's. Ullmann [19] discusses the idea of �nding a distortion mapping from a test

image to a stored template such that there is correspondence between like features rather

than exact matches. Widrow [20], also suggests the idea of using rubber templates to achieve

fuzzy matches to a variety of natural objects and waveforms.

Burr presents an iterative framework for computing elastic matches in dot and grey-scale

images [21] and line drawings [22]. Using a coarse-to-�ne matching strategy he shows how

an image can be progressively deformed under the inuence of misalignment force �elds to

�t another image. In a later version [23], global size and rotation adjustments were included.

The method has been adapted to match tomographic [24] and thermographic images [25].

One weakness with the approach is that it does not allow the amount of deformation to be

traded o� against the �delity of the data match. It also has no principled way of handling

noise or missing data.

Bajcsy and co-workers [26], [27] integrate the notion of a trade-o� between data �t and

deformation in their multiresolution elastic matching scheme for registering an image with

respect to a template. They consider a test image to be drawn on an elastic membrane.

The membrane is subjected to external forces which are proportional to the gradient of
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the similarity measure. The system iterates until an equilibrium exists between the forces

trying to increase the similarity measure (a measure of cross-correlation between the two

images) and the restraining forces arising from the elastic properties of the membrane. The

multiresolution approach is attractive as it initially concentrates on achieving large-scale

registration between the images with �ne-scale matching coming later in the process.

Early work by Fischler and Elschlager [28] described a model with local (data �t) and global

(model deformation) energy terms. Their model is composed of (rigid) features whose spatial

arrangement is constrained by springs and hence the deformation is related to the energy

required to stretch or compress these springs. Their matching procedure works on a coarse

scale, but it is scale dependent and degrades in the presence of noise [29]. The facial feature

model example they used has been extended by Yuille [29], who constructs a more detailed

descriptions of the feature shapes and global matching criteria in terms of peak, valley and

edge intensities. In addition, the original dynamic programming search was replaced with a

gradient method. From an image explanation point of view this type of matching scheme

is de�cient as it does not account for the entire image. Instead of ensuring that every part

of the image is explained by the model (or explicitly attributed to some additional noise

process) the matching process tries to ensure that every part of the model is supported by

some part of the image and a match may be good even though it leaves large parts of the

image unaccounted for. \Snakes" [30], use di�erent shape constraints, but also attempt

to match each part of the model to some part of the image rather than vice versa. Point

distribution models [31], recognize the importance of doing both types of matching, i.e. the

model must be supported by the data and the model should explain the data.

The digit models we propose have a sound generative probabilistic basis and explicitly in-

corporate much prior knowledge of handwritten digits, for example, that they are made

up of strokes and that they are globally invariant to a�ne transformations, unlike other

implementations [13] which attempt to achieve only local invariance.

III. Matching Elastic Spline Models to Images

A. Overview

Each of the ten digits has its own elastic model

2

. A digit-image is recognized by choosing

the elastic model which best matches the image. During the matching process, the model is

2

C-code implementing the model is available from http://www.cs.toronto.edu/�revow
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deformed in an attempt to ensure that every piece of ink in the image is close to some part

of the model. The �delity of the �nal match depends on the amount of deformation of the

model, the amount of ink that is attributed to noise, and the distance of the remaining ink

from the deformed model.

Unlike the approach taken in many OCR systems, we do not pre-process images in order

to remove the e�ects of translation, scale, rotations, shear, etc. Instead we handle arbi-

trary global a�ne transformations of the image by de�ning the model in an \object-based"

frame which is mapped through an a�ne transformation into the \image-frame". The a�ne

transformation is re�ned during the matching process so that knowledge about the shape of

the digit can inuence the choice of a�ne transformation. This is not possible if normal-

ization precedes recognition. A�ne transformations are not penalized during the matching

process, so deformations are only used to handle true variations in shape that cannot be

accommodated by global a�ne transformations.

Similarly, we do not assume that the image has been perfectly segmented. The matching

process decides which pieces of the model correspond to which pieces of the image and it

can explicitly reject some parts of the image as noise. Thus knowledge about the shape can

be used to re�ne the segmentation.

What we have just described is an instantiation of the general framework of generative or

latent variable models [32]. The key idea is that the manifest variables are attributable

to a smaller number of underlying hidden or latent variables. In our case, the manifest

variables are the pixels and the hidden variables are the positions of the elastic model's

control points in the image-frame. Section III.B describes the elastic model. Section III.C

gives the underlying probabilistic interpretation of how the model generates an image from

the hidden variables (required for computing the log-likelihood of the image given a model

instantiation). An algorithm for the more di�cult problem of inferring the hidden variables

from the manifest variables is presented in III.D.

B. Elastic Spline Models

We model each digit with a uniform, cubic B-spline [33]. Each model has at most 8 control

points

3

. Let X � fx

1

;x

2

; : : : ;x

n

g = fx

1

; x

2

; : : : ; x

2n�1

; x

2n

g denote an instantiation of the

model in terms of its n control points. The i

th

control point is located at (x

2i�1

; x

2i

). Simi-

larly,H = fh

1

; : : : ;h

n

g indicates the home or undeformed control point locations and Y the

3

The model of a one needs only 3 control points while the seven-model uses 5.
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a�ne transformation with its 6 degrees of freedom. The location of any point

4

, s(b), on the

spline can be written as a linear function [33] of the control points locations

5

.

s(b) =

n

X

l=1



l

(b)x

l

(1)

Because of the local control feature of B-splines some of the coe�cients, 

l

(b), will be zero.

For future convenience, we also write (1) as:

s(b) =

0

B

@

P

2n

j=1



x

j

(b)x

j

P

2n

j=1



y

j

(b)x

j

1

C

A

To generate an ideal example of a digit we put the control points at their home locations.

To deform the digit we move the control points away from their home locations. Assuming

a Gaussian distribution for these deformations, the probability of the n control points lying

within a small hypervolume �V is approximately:

P (X) = �V

1

(2�)

n

j�j

1=2

exp[�

1

2

(X�H)

T

�

�1

(X�H)] (2)

where � is the covariance matrix of the distribution. Thus a single deformable model de�nes

an entire probability distribution across shape instances.

Following [1] and [34] we de�ne the deformation energy, E

def

, to be the negative log proba-

bility of the deformation.

E

def

(X) =

1

2

(X�H)

T

�

�1

(X�H) +

1

2

log j�j+ const (3)

Splines are a convenient method for modeling handwritten digits as it is easy to incorporate

topological variations. For example, small changes in the relative locations of the control

points can turn the loop of a 2 into a cusp or an open bend (�gure 1). This advantage of

spline models is pointed out in [35] where a di�erent kind of spline is used to �t on-line

character data by directly locating candidate control points on strokes in the image. It is

lost (as pointed out in [36]) when models based more directly on Durbin and Willshaw's

elastic net are employed [37].

4

The spline is a one dimensional continuous curve parameterized by b. In the development we consider a

discrete version.

5

We treat the �rst and last control points as if they are doubled.

6



Figure 1: Illustrates the exibility of spline models to capture topological variations. The

large loop of the 2 can smoothly decrease in size and eventually become a cusp. The control

points are labelled 1 through 8.

C. Generative Models

Although we use our digit models for recognition, it is helpful to consider how we would

use them for generating images. The generative model is an elaboration of the probabilistic

interpretation of the elastic net given in [1]. To generate a noisy image of a particular digit

class, run the following procedure:

(1) Pick a deformation of the model (i.e. move the control points away from their home

locations) to give a particular realization X. This de�nes the spline in object-based co-

ordinates. The log probability of picking a deformation is proportional to the quadratic

term in (3). It is important that the deformation is measured in object-based coordi-

nates.

(2) Pick an a�ne transformation

6

from the model's intrinsic reference frame to the image

frame (i.e. pick a size, position, orientation, slant and elongation for the digit).

(3) Map the spline into image coordinates and place beads uniformly along its length. Each

bead is a circular Gaussian ink generator. The number of beads and their variance can

easily be changed without changing the spline itself. Typically the variance is chosen

so that the bead centres are two standard deviations apart.

(4) Repeat many times:

Either (with probability �

n

) add a randomly positioned noise pixel to the image

6

Using our prior knowledge that ones tend to be stroke-like, we used a similarity transformation for the

one-model.
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Or pick a bead at random and generate an inked pixel from the Gaussian

distribution de�ned by the bead.

This is not a good generative model of the way in which handwritten digits are actually

produced. If, for example, the beads have large variances the inked pixels in the image will

have the correct overall shape but will be disconnected and much too scattered. However,

the generative model is useful for recognizing digits as explained in the following sections.

D. Fitting a model to an image

In this section, a Bayesian interpretation of the �tting process is adopted and we demon-

strate how using a maximum posterior framework (see, for example [38]) yields a practical

algorithm. First we need to re�ne the notation; A superscript

O

or

I

is used to qualify if

a quantity is in the object or image frame respectively. So X

O

represents control points

locations in the object frame. We can parameterize a model instantiation in the image frame

by � � fX

O

;Yg.

To classify an image, I, speci�ed as a vector of locations of its N

I

inked pixels fz

1

; : : : ; z

N

I

g,

each ofmmodels is �tted to the data and the model that best \explains" the image is chosen.

Using a uniform prior over all digits, the posterior probability, P (mjI), for each model is

proportional to the evidence , P (Ijm):

P (Ijm) =

Z

P (Ij�;m)P (�jm)d� (4)

Performing the integration over instantiation parameter space is infeasible, so instead we

compute the most probable parameter values (�

�

).

7

The evidence is approximated by the

height of the posterior peak (P (Ij�

�

;m)P (�

�

jm)), multiplied by the volume of the parameter

space under the peak. The negative logarithm of the evidence is then:

� logP (Ijm) � � logP (Ij�

�

;m)� log P (�

�

jm)�K (5)

where K is the logarithm of the volume term. When the posterior is well modelled by a

Gaussian, thenK =

k

2

log 2��

1

2

log jHj, withH = �rr logP (�jI;m) the Hessian evaluated

at �

�

. In the sequel we treat K as a constant, but we allow it to be a di�erent constant

for each model (see section VI). The second term is just E

def

(3). The �rst term is the

7

This is reasonable for this problem because there will usually only be one setting of the control points

and a�ne transformation that will provide a good �t.
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log-likelihood of the image given a particular instantiated model. We refer to this as the

data �t (E

fit

). This leads to a convenient objective function consisting of just two energy

terms:

E

tot

= E

fit

+ E

def

(6)

If each inked pixel z

k

in the image is generated independently from a distribution de�ned

by B circularly symmetric Gaussian beads, each with a mean s(b) and variance �

2

b

, and a

uniform noise �eld, then the data �t term is the sum of log probabilities of each inked pixel.

�

N

I

X

k=1

logP

k

(7)

where P

k

is the probability of inking pixel k:

P

k

=

�

n

N

+

1 � �

n

B

B

X

b=1

P

kb

(8)

P

kb

=

1

2��

2

b

exp�js(b)� z

k

j

2

=2�

2

b

(9)

with N the number of pixels which the uniform noise �eld is distributed over (normally the

whole image) and �

n

the mixing proportion of a uniform noise �eld. Using (7) to compute

E

fit

has the undesirable property that it depends on the number of inked pixels in the image.

For example, a simple resizing of the image, will change E

fit

whereas E

def

, being de�ned in

object based frame, is invariant to scale changes. In order to mitigate this, we allow each

pixel to have its own weight W

k

. Thus we compute E

fit

using:

E

fit

= �

N

I

X

k=1

W

k

log P

k

(10)

Normally we set W

k

= �=N

I

where � is a constant. This has the desired e�ect of ensuring

that all images have the same total weight of ink and therefore about the same tradeo�

between E

fit

and E

def

regardless of the number of inked pixels. However, it is also possible

that a bottom up processor could assign di�erent weights to pixels based on other knowledge.

We assume that the deformations and a�ne are independent (for example the size of a digit

or its location in the image is unlikely to be correlated with its style), so the second term

in (5) can be factorized into the sum of E

def

and a term involving the a�ne parameters.

During the �tting procedure, we treat the a�ne parameters as if they have a uniform prior.
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However, in section VI, we show how solutions with unusual a�nes may be penalized after

the �tting procedure is complete.

The objective in �tting a model to an image is to �nd the � which minimizes E

tot

. We

start with zero deformations and an initial guess for the a�ne parameters which ensure that

the control points are mapped within an upright rectangular box around the inked pixels in

the image. A small number of beads with equal, large variance are placed along the spline.

These large variance beads form a broad, smooth ridge of high ink-probability along the

spline. Because of the high variance, the beads are attracted to inked pixels even if they are

fairly far away so the spline is quickly pulled towards the data. During the �tting process

the variance of the beads will generally decrease and the number of beads increase as the

model gets closer to the data and begins to explain its �ner structure. The �tting technique

resembles the elastic net algorithm of Durbin and Willshaw [39] except that our elastic energy

function is much more complex and we are also �tting an a�ne transformation.

In early experiments, we used a conjugate gradient method to optimize E

tot

. Unfortunately

this method is slow because each conjugate gradient step may require a few evaluations of

E

tot

, each of which is of the order of B�N operations. Our preferred method is based upon

the Expectation Maximization (EM) algorithm [40]. This involves the repeated application

of a two step procedure which will not increase E

tot

as � is adjusted at each application.

During the expectation (E) step, the beads are frozen at their current locations and the

responsibility that each bead has for each inked pixel is computed. This is just the probability

of generating the pixel under the Gaussian distribution for the bead normalized by the total

probability of generating the pixel (r

kb

=

1��

n

B

P

kb

P

k

). Because the negative log likelihood

(energy) under a Gaussian distribution is quadratic in the distance from the mean, it is

sometimes convenient to think of minimizing E

tot

as analogous to �nding the minimum

energy con�guration of a system of springs. For a �xed bead variance, consider a system in

which each �xed pixel is attached to mobile beads by springs whose sti�ness is proportional

to the responsibility of the bead for the pixel. As we show shortly the EM method �nds the

minimum energy con�guration of the system of springs.

In the second (M) step, the responsibilities are �xed, and new values of � computed to

minimize E

tot

. In the conventional application of EM, the beads would be unconstrained,

and hence a bead would move to the centre of gravity of the data (pixels), weighted by the

responsibilities that the bead has for each pixel:

s

0

(b) =

P

k

z

k

r

kb

W

k

P

k

r

kb

W

k

(11)
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However in our system the beads are constrained to lie on the spline de�ned by the control

points; the free variables are really the control point locations and the a�ne parameters.

Directly minimizingE

tot

results in a set of non-linear equations. We circumvent the expensive

step of solving a set of non-linear equations using a two stage procedure. In the �rst stage,

the a�ne transformation Y is held constant

8

. This means we can do the minimization

exclusively in the image frame. To do this we �rst need to de�ne the deformation energy

there. This involves mapping the control point covariance matrix, �

O

, through the a�ne

(see below). Setting @E

I

tot

=@X

I

= 0 and with the help of (6), (1), (3), (10) and (11) we

update the control point locations by solving the set of linear equations:

BX

I

= d

B

mn

= (�

I

)

�1

mn

+

X

b



m

m

(b)

m

n

(b) R

b

�

2

b

(12)

d

m

=

X

k

(�

I

)

�1

mk

h

I

k

+

X

b

R

b



m

m

(b)s

0

(b)

�

2

b

with R

b

=

P

k

W

k

r

kb

. In equation (12), we have used the shorthand; 

m

n

to denote 

x

n

(

y

n

)

and s

0

the x (y) component of s

0

for m odd (even).

In the spring system analogy this stage corresponds to �nding the minimum energy equilib-

rium point where the forces pulling the beads towards the nearby pixels are balanced by the

forces pulling the beads towards their home locations

9

.

In the second stage of the M-step, the control point locations in the image are kept constant

and the deformations (as measured in the object based frame) and a�ne parameters are

adjusted so as minimize the deformation energy. In e�ect, we are absorbing as much of

the deformation as possible into the global a�ne transformation. This cannot increase E

fit

because this energy depends only upon the image locations of the beads and their variances

and these are unchanged during this stage. The minimization is achieved by considering the

deformation energy in the image based frame:

E

I

def

=

1

2

(X

I

�AH

O

�T)

T

(�

I

)

�1

(X

I

�AH

O

�T) +

1

2

log j�

I

j+ const (13)

where (AH

O

+ T) is the vector of control point home locations when transformed into the

image frame through the a�ne transform, represented in (13) by (A;T). Since all control

8

This is an example of Expectation/Conditional Maximization [41]

9

More precisely, the pixel forces on the beads can be transferred onto the control points and at equilibrium

there is a balance between these forces and those pulling the control points towards their home locations.
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1. Map the the current control point locations from the object frame into the image frame

X

I

= AX

O

+T

2. Construct the spline (1) and place the Gaussian beads 2�

b

apart.

3. Evaluate probabilities of inking pixels (9)

4. Compute new control point and bead locations (12) and (1)

5. Given these new locations choose the new a�ne and X

O

to minimize (13).

6. Update the bead variance (14) and the new E

tot

using (6), (10) and (3).

Figure 2: The �tting algorithm iterates over steps 1-6 until E

tot

converges

points undergo the same global a�ne transform, matrix A is a block diagonal matrix formed

by repeating the 2�2 a�ne along the main diagonal and T is the concatenation of the (same)

translations for each control point. Notice that A has only 4 degrees of freedomwhileT has 2.

�

I

is the covariance matrix referred to the image reference frame ((�

I

)

�1

= A

�T

(�

O

)

�1

A

�1

).

The minimization of (13) with respect to the a�ne parameters is a non-linear problem, but

we have found that satisfactory results are obtained when we treat �

I

as a constant during

the minimization, that is we ignore the fact that the contour lines of equal deformation

energy change as the a�ne varies. The deformation energy is then a quadratic form of the

a�ne parameters and the minimization is straightforward

10

.

After each complete iteration of the algorithm, the bead variances (all beads are constrained

to have equal variance) are set to the variance that maximizes the log likelihood of the N

I

inked pixels given the current positions of the beads using the update:

�

2

b

= �

2

=

1

2N

I

N

I

X

k=1

B

X

b=1

r

kb

ks(b)� z

k

k

2

(b = 1 : : : B) (14)

In order to ensure that bead centres remain approximately two standard deviations apart,

the number of beads along the spline is periodically adjusted. The �tting algorithm is

summarized in �gure 2.

Some stages in �tting models to data are shown in Figure 3. In this example the best data

�t energy was achieved by the three model, but the �ve model managed to provide a creative

10

If we had performed the non linear minimization then E

tot

would be guaranteed not to increase during

the second stage of the M-step.
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explanation of the data. However, in doing so it had to pay a high deformation cost. For

this image, none of the other eight models had better �ts and so if the model with the lowest

E

tot

(equation 6) is chosen, then the conclusion is that the data is most likely to have been

generated by the three-model.

The search technique almost always avoids local minima when �tting models to isolated

digits. In the few cases where local minima are encountered they can usually be overcome

by starting with a di�erent guess for the initial a�ne transformation. If the image is not

recognized with su�cient con�dence as explained in section VI, we try four other initial

guesses corresponding to positions translated right, above, left and below the original one

and choose the �t with the lowest E

tot

.

Figure 3: Some stages of �tting models to an image of a 3. The image is displayed in the

top row. In subsequent rows, the circles represent the beads. The radius has been set to one

standard deviation of the circular Gaussian distribution. Because the bead variance shrinks

to approximate the stroke thickness during the �tting process, the beads would become

invisible towards the end of the search. Consequently in this and subsequent �gures, we thin

the data along its centre line. We emphasize that this is done only for display purposes in

order to make the beads visible. The middle row show the three-model being �tted while

the bottom row illustrates the process for the �ve-model. The left column shows the initial

con�guration, with eight beads equally spaced along the spline. The second column is an

intermediate �t as the model rotates and deforms in order to improve the log likelihood of

the data. The �nal �t is shown in right column.
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Our generative models also include a noise model. Each inked pixel may be generated either

by the digit-model or a noise process. We have chosen the most simple type, a uniform noise

process (see equation (8)). The addition of this noise model improves the performance of

the system, even though a uniform distribution is a poor model of the highly correlated,

structured noise typically found in digit images. Figure 4 illustrates how the addition of the

noise model improves the ability of the digit models to correctly segment out the data from

the noise in the image; in e�ect the system is performing model-driven image segmentation.

The �t without the noise model (�

n

= 0:0) is totally unacceptable.

Figure 4: Illustration of how the noise model helps in model driven segmentation. The top

row shows an image of a nine with a portion of its left neighbour. The initial con�guration

of the nine-model is also shown. The remaining rows show the con�gurations of the model

part way in the settling (second row) and the �nal settled con�guration. The three columns

show di�erent mixing proportions of the noise. (a) �

n

= 0:0 (b) �

n

= 0:2 (c) �

n

= 0:45. The

�nal standard deviation of the beads from the correct �tting model better approximates the

stroke thickness than the standard deviation from incorrect �tting models. The data have

been thinned for the reasons mentioned in �gure 3.
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IV. Learning the Models

Each elastic model is parameterized by a vector of mean or home locations and a covariance

matrix (see (3)). These model parameters can be learned from training data. Starting with

hand crafted digit models we adjust the home control point locations so that each model

maximizes the likelihood of generating instances of that digit in a training set. Maximization

is performed iteratively using EM updates. This yields a simple algorithm: the updated

home location of each control point (in the object-based frame) is the average location of

that control point in the �nal �ts. Learning proceeds rapidly with models learning their �nal

con�gurations after only a few passes through the training set (�gure 5), probably because

we start o� with good models.

-87000

-86500

-86000

-85500

-85000

-84500

-84000

-83500

-83000

0 1 2 3 4 5 6 7

E

Iteration Number

Figure 5: Training the two-model. The ordinate shows the sum E =

P

I

E

tot

(I) over all

two-images in the training set. The model has essentially completed its learning after the

second pass through the training set.

An alternative to maximizing the likelihood of the image given the digit is to maximize

the mutual information between the correct digit class and the probabilities assigned to the

various classes by the digit models. The maximummutual information criterion emphasizes

correct discrimination rather than correct modeling of the image data, and it generally leads

to better discriminative performance [42], although the advantage of discriminative learning

vanishes if the generative model is correct and the �tting process produces the true proba-

bility of the data given the model [43]. Early experiments showed that, for our generative

models, maximum likelihood learning was just as e�ective as discriminative learning, per-

haps because the generative models are a reasonable approximation to the way in which the

data is generated. Maximum likelihood learning is much quicker because there is no need to

�t the incorrect digit models to each of the training digit images.

Neglecting the Hessian term in equation (5), the sample covariance matrix is estimated from
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N

T

training examples using:

� =

1

N

T

(X �H)(X �H)

T

: (15)

In our experiments we used 700 training examples for each model. Having a limited amount

of data requires that some precautions be taken to prevent those principal modes with

small variance from \blowing up" when inverting �. It turns out that for all models the

principal modes tend to group into a signi�cant (large eigenvalues) and an insigni�cant

(small eigenvalue) cluster. The modes corresponding to the large eigenvalues are generally

intuitively obvious. For example, in the two-model the largest mode of variation corresponds

to opening/closing of the loop. To prevent the insigni�cant modes from being problematic

when inverting �, we regularized � by clamping all eigenvalues in the insigni�cant cluster to

10

�2

of the largest eigenvalue. Generally we had to clamp about one third of the eigenvalues.

V. Re�ning the model

A. Variants on the deformation energy

An instance of the elastic model in the object frame can be speci�ed by giving only the

(x; y) locations of n control points. Therefore any particular occurrence of the model can be

thought of as a point in R

2n

and the population of models would form a distribution in R

2n

.

In equation (2) we have chosen to describe this distribution as a Gaussian hyper-ellipsoid.

For a typical model with 8 control points this characterization requires speci�cation of a

16 � 16 covariance matrix. It is interesting to investigate di�erent simpli�cations.

The obvious �rst approximation is a diagonal covariance matrix. We tried the most simple

of these and set

� = �

2

I (16)

where I is the identity matrix. The control points then all have identical, independent radial

Gaussian distributions. The deformation energy simpli�es to:

E

def

=

kX �Hk

2

2�

2

+ n log 2��

2

(17)

This characterization of the distribution by a single generic model can result in poor ap-

proximations to the true distribution. Figure 6 illustrates a situation in 2 dimensions. For
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Figure 6: An arbitrary 2-dimensional distribution represented by the shaded region could

be modeled by a a single Gaussian with large variance as illustrated by the large circle. A

better approximation would be to use a mixture of Gaussians each with a smaller variance.

Under the single Gaussian approximation point A would be incorrectly considered to be

more likely than point B.

example, under a single Gaussian approximation to the distribution, point A would have

higher probability than point B, which is clearly incorrect.

An alternate way to approximate a distribution, which also has an interesting interpretation

for digit recognition, is to use a mixture of L local models, each of which is of the form (17).

Under this approximation the distribution of models is given by:

11

P (X) =

L

X

l=1

�

l

(2��

2

l

)

n

expf�

kX�H

l

k

2

2�

2

l

g (18)

where �

l

is the mixing proportion for the l

th

local model in the mixture with

P

L

l=1

�

l

= 1.

The centresH

l

and variances (�

2

l

) are computed using EM to maximize the log likelihood of

a training set under the mixture distribution (18). Figure 7 shows the 10 local models that

were automatically extracted from the training data of images of 2s. The mixture has been

able to capture dominant styles. For example, variations in the presence and size of the loop

have been well represented.

The obvious way to use this mixture is to �t each of the local models to an image. This has

the disadvantage of increasing the recognition time by a factor of L. Fortunately we found

that a single generic model nearly always �ts correctly to the image. So we �t the single

generic model, but after �tting, the deformation energy is evaluated using the log probability

under the mixture distribution (18) instead of using E

def

as in (17). This strategy is much

more e�cient since the most computation intensive portion, the �tting of the model to the

11

We have experimented with more complex variations such as allowing each mixture component to have

its own adaptive variance, or kernel density estimation, but found no improvement in performance over the

simpler characterization.
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Figure 7: Local models in the mixture for the 2 model. The generic model is shown in the

bottom right corner.

data, is done only once. Evaluating the distance of the �nal �t from each of the local

models in the distribution only involves computing 2n squared distances and so is negligible

compared to the amount of computation required for �tting.

Figure 8 illustrates the added classi�cation power obtained using the mixture of local models.

There is considerable overlap between the distributions of E

def

for correct and incorrect

classi�cation when only a single generic model is used. Much better separation is achieved

with a mixture distribution.

There is an interesting interpretation to these local models. One may think of each local

model as capturing a speci�c writing style in the population. A particular instantiation of

the digit can then be classi�ed in terms of style. This may prove to be useful in strings of

digits, where we would expect di�erent instances of the same digit to have similar styles (see

section VII). There may even be mutual information between the pairings of local models

for di�erent digits (e.g. between a 4 and a 6) [44].

B. Generating both the inked and uninked pixels

A signi�cant drawback of our generative model is that it does not treat the uninked pixels

as evidence. It maximizes the likelihood of generating the inked pixels, but it does not pay

a su�ciently severe penalty for assigning high probabilities of ink to uninked pixels

12

. As a

12

There is a small implicit penalty in that beads far from inked pixels are not available for accounting for

inked pixels.
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Figure 8: The solid line is the E

def

distribution of models when �tted to example images

containing the correct digit (e.g.. a three model �tted to an image of a 3). The dotted

curve is the E

def

distribution of the models when �tted to incorrect data. (a) Using a single

generic model. (b) Using a mixture of local models. (Many instances of �tting to incorrect

data in panel (b) had very large E

def

. For display purposes all these were assigned the value

50, accounting for the \spike" at the right edge of panel (b))

result, a model can �t the data well even if some of its beads are a long way from the nearest

inked pixel. For example in �gure 3, the �ve model has accounted for all the inked pixels,

but the �nal �t has left its centre bar far from any inked pixels. We call this the \beads in

white space" problem. A computationally simpler approach to this problem is discussed in

section VI.

We assume that the image is generated from the spline by a two-stage stochastic process.

The �rst stage computes the probability P

k

(p = 0) that each pixel in the image would not

be inked if multiple samples were taken from the probability distribution de�ned by the

beads and the uniform noise process (see equation (8)). We take N

m

13

samples from this

distribution. The probability that none of these samples landed within a particular pixel is:

^

P

k

(p = 0) = P (not inked by model)

= (1 � P

k

)

N

m

The predicted probability of a pixel being inked,

^

P

k

(p = 1), is simply the complement.

^

P

k

(p = 1) = 1 �

^

P

k

(p = 0) (19)

13

To maximize the likelihood of generating the image we should ideally take more samples than there are

inked pixels because several samples may fall on the same pixel. However, the penalty incurred by using the

wrong number of samples is unlikely to a�ect the relative goodness of �t of di�erent models.

19



Figure 9: The left panel shows an image of a 7. The �t of a four using the generative model

which produces only inked pixels is shown in the centre panel. Under this formulation the

centre bar of the four model would not be penalized for lying in white space. The right most

panel shows the image weighted by the probabilities of the full generative model with areas

of low probability shaded dark. For display purposes, the noise model was set to zero when

evaluating the full generative model so to prevent the background from turning grey.

Given these predicted probabilities, the second stage computes the probability of generating

all the pixels in image I. This can also be viewed as the cost of encoding the actual image

data using the predicted probabilities to do the encoding.

logP (Ijm) =

X

k 2 inked

pixels

log

^

P

k

(p = 1) +

X

j 2 uninked

pixels

log

^

P

j

(p = 0) (20)

In �gure 9 we show a model of a four settled on the image of a seven using the generative

model of section III. The right most panel �gure shows the probabilities generated by (20).

Areas of low probability are shaded dark. The portion of the centre bar of the four spanning

white space becomes expensive under the full generative model. The dark fringes around the

edges of the model arise because the beads have a standard deviation approximately equal

to the stroke thickness and hence it predicts fuzzier edges than are present in the image.

(The image was originally binary but has been shrunk to a quarter of it original area and so

still retains its abrupt edges.)

It is interesting to examine how this model behaves when the beads have high variance.

Assuming a relatively low noise level, all pixels will have a low predicted probability of

being inked and hence (20) will be dominated by the cost of generating inked pixels. Using

(1 + �x)

n

' 1 + n�x, we see that at high variance:
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log P (Ijm) '

X

k 2 inked

pixels

log

^

P

k

(p = 1)

=

X

k 2 inked

pixels

log(1� (1� P

k

)

N

m

)

'

X

k 2 inked

pixels

log(P

k

) +N

m

logN

m

Note that the second term involving N

m

will be the same for all models, and hence at high

variance this generative model is approximately the same as the one described in section III

(see equation 10).

At low variance, the two generative models are very di�erent in the way they penalize

di�erent �ts. In particular, the second generative model makes it much more expensive for

parts of an instantiated digit model to lie in white space. One might therefore consider

using this model to escape from a local minimum, in which parts of the model span white

space, obtained using the simpler model of section III. However, this would fail because at

low variance the model is unable to substantially change its con�guration because the beads

cannot \see" data more than a few standard deviations away. The model would therefore

probably be most useful at intermediate bead variances. Unfortunately this is also the most

computationally expensive situation and so we have not used it during the �tting process.

We have used (20) to evaluate the data-�t of the settled con�gurations obtained by running

the simpler model of section III and found no improvement over the approach of section VI.

C. Speeding up the search

In order to classify an image of a single digit, 10 models

14

must be allowed to settle on the

image. Each iteration of the settling of a model involves a computational burden proportional

to the product of the number of beads and number of pixels. As the model settles onto the

image the bead variance generally decreases with a concomitant rise in the number of beads

(section III.D) and so the number of oating point operations per iteration of the EM search

increases towards the end of the search. However, at low variance, there will only be a few

beads that have signi�cant probability of generating each pixel. It is clear that one way to

dramatically speed up the search is to eliminate all computations that are used to update the

14

If multiple models are contemplated per digit the computation burden becomes more acute. For example

we may choose to have a separate model for the \crossed seven" or the \two circles eight".
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responsibilities of beads that are many standard deviations from a pixel. We could simply

freeze these responsibilities at their current low values. In other words, during the E-step

of the settling algorithm (step 3 of �gure 2), we only update the relative responsibilities of

those beads that have a signi�cant probability of generating the pixel. After performing a

number of EM iterations with the responsibilities frozen for distant bead-pixel pairs, they

are unfrozen and a few full EM iterations are be performed. In this way we would hope to

achieve the same maximization of (6) with much less computation.

Conventionally the EM algorithm is seen as a way of maximizing the log likelihood, L(�) =

logP (Ij�), of a model parameterized by �, for some observed data, I. Usually not all the

data necessary to do the maximization is directly observed and so the �rst (E) step estimates

a \unobserved" variable � and maximization is achieved with the help of �. With this view

of the EM algorithm, it is not immediately obvious that partial implementation of the

expectation step is justi�ed. However in an alternative interpretation of the EM algorithm

[45], the EM algorithm can be viewed as maximizing a joint function, F (P (�);�) of the

distribution of the unobserved data and model parameters. If � is chosen to be the optimal

distribution, �

�

�

, that maximizes F for the current value of �, then F = L(�). At the t

th

iteration, the �rst step of the standard EM algorithm chooses P

t

(�) to maximize F (P;�)

and the second sets � to maximize F (P

t

;�). However, it is not necessary to compute the

optimal distribution of � in the E step. Any change in � that reduces the Kullback-Liebler

distance between � and �

�

�

is guaranteed to improve F . In the elastic model the unobserved

variables, �, are bead responsibilities. Our method of freezing a subset of the responsibilities

and recomputing the optimal distribution of relative responsibilities for the remaining beads

is guaranteed to improve F .

VI. Results on isolated digits

The performance of the elastic net in recognizing isolated digits has been evaluated on data

from the CEDAR CDROM 1 database of Cities, States, ZIP Codes, Digits, and Alphabetic

Characters [46]. The br training set of binary segmented digits was subdivided into 3 training

sets of size 2000, 7000 and 2000 respectively. A validation set of 2000 examples was also

generated from the br training set to allow us to investigate di�erent con�gurations of the

post-processing neural network. The sets were constructed by drawing images in the order

presented in the database so as to ensure equal representation of all digits in each set. The

elastic models were trained (section IV) on the �rst set, the mixture of local models on the
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second and the post-processing net on the third set. The CEDAR database also includes 2

test sets. The goodbs (2213 images) set is a subset of the bs (2711 images) set containing

only well segmented digits. It is interesting to note that br training data were segmented

with the same diligence as the goodbs test data [46].

After �tting all the models to a particular image, we wish to evaluate which of the models

best \explains" the data. The natural measure is the sum of E

fit

and E

def

that is minimized

during the �tting process. However, we found that performance is improved by including

�ve additional terms which are easily obtained from the �nal �ts of the model to the image.

Motivated by research on \snakes" [30], a simple approach to the beads in white space

problem (section V.B), is to de�ne another energy term, E

w

to penalize beads spanning

white space. This term is similar to the \support measure" [31] or the symmetric matching

used in [21] and [22].

E

w

= �

B

X

b=1

log

N

I

X

k=1

P

kb

(21)

A bead only makes a large contribution to this cost when all inked pixels are far from the

bead. This energy term could be easily incorporated into the �tting procedure, but in the

present system we simply use it as an additional term when evaluating the �nal �ts. The

model presented in section V.B is a more principled approach to the uninked pixels, but is

computationally much more demanding.

While �tting to an image, a model can adopt any a�ne transformation without penalty.

After �tting, the �nal a�ne transformation may contain some information which is relevant

in evaluating the �t. For example we may want to reject an explanation which requires a

model to be highly rotated, sheared or elongated. An arbitrary a�ne transformation matrix

may be written in the form:

A =

0

B

@

S

x

cos�

x

�S

y

sin�

y

S

x

sin�

x

S

y

cos�

y

1

C

A

We included fsin

2

�

y

; sin

2

(�

x

� �

y

); S

y

=S

x

g as measures of rotation, shear and elongation

of the a�ne transformation as additional information into the �nal determination of class

membership.

The last term used is the �nal variance of the beads in each model. This term is included

because it has an e�ect on E

fit

(see (9). Also, when a model correctly explains the strokes
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in an image, the standard deviation of the beads is about half the stroke thickness, while for

incorrect �t it tends to be larger (see �gures 4 and 11).

It is hard to decide in a principled way on the correct weightings for all of these terms in the

evaluation function, and it is not even clear that the relative weightings should be the same

for the di�erent digit models. So we estimate the weightings from the data by training a

simple postprocessing neural network. It should be emphasized that this network is simply

a convenient method for linearly weighting the di�erent measures; it is unlike conventional

neural net classi�ers because it does not build internal representations of the input.

If 10 models are �tted to an image then there are 70 inputs to the net. These types of

networks are much easier to train if all inputs are approximately of the same magnitude, i.e.

it is good practice to subtract out any constant o�sets and scale the input data. The E

fit

term has a large o�set, so we used the di�erence

~

E

k

fit

= E

k

fit

� E

min

fit

as the data �t term

for the k

th

model, where E

min

fit

is the minimum data �t obtained by any of the models for

the current image. A similar transformation is used for the �nal bead variance, while the

remaining inputs are simply scaled.

Each of the seven input terms for a model is directly connected to the output unit for that

model. The output units compete using the \softmax" function [47] which guarantees that

the 10 output values form a probability distribution. Including biases on the output units

15

,

the network has 80 weights and is trained using conjugate gradient to minimize a cross-

entropy error function. After training we classify an image according to which of the output

units has the largest activation. We reject classi�cations in which the maximum output

activation is below some threshold T .

We tried a variety of architectures for this \post-processing" network. For example, a digit

recognition system developed by Hastie and Tibshirani [48] suggested that discrimination

would be much better if the net was totally connected so that the output unit that represents

one digit receives detailed information about the way in which other digit models �t the data.

However, we found that discrimination was just as good if each output unit only received

connections from the six inputs representing terms describing the �t of that digit model.

Including a hidden layer did not improve performance. Incorporating a local approximation

to the Hessian (equation (5)) also did not improve performance.

To summarize, recognition of a single image consists of the following steps::

1. The image is down sampled to reduce the number of pixels to one quarter (i.e. the

15

The bias on each output unit can be thought of as the volume factor for each model in equation 5.
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Validation goodbs bs

Set test set test set

Full Covariance 2.00 1.85 3.58

Matrix

Diagonal Covariance 1.75 1.53 3.43

Matrix

Mixture of 1.00 1.50 3.14

local models

Table 1: Percentage of images incorrectly classi�ed by the elastic net with no rejections. In

comparing our error rates with others published for the same data, it is important to allow

for the fact that some studies looked at the images in the test set or even used the test set to

determine some parameters of their system. We have been very careful to avoid this and have

never looked at the test set or at the speci�c errors we make on it. The poorly segmented

digits in the bs test set are not characteristic of the training data, so big improvements in

performance should be obtained by tuning systems on it.

number of rows and columns were both halved). This was done primarily to reduce

the number of operations required per image.

2. For each of the ten models, an initial a�ne is computed so as to position the model

over the enclosing rectangle of all the inked pixels in the image.

3. The models are allowed to settle with the iterative algorithm summarized in �gure 2.

The fractional change in E

tot

is monitored and when it falls below 0:001, the number

of beads are adjusted (section III.D). This is repeated about 6 times for each model.

4. Energies and a�ne transformation values are fed into the neural network to produce

a classi�cation of the image.

5. The winning output is tested against a threshold and if not su�ciently large all models

are resettled from four other initial positions. After all positions have been tried, the

best settled state for each model is selected as input to the post-processing network.

About 6% of the validation set images and 8% of the bs test set images invoked this

restart procedure.

Table 1 shows the performance of the elastic net when the rejection threshold was set to zero.

The �rst line in the table shows results when �

�1

(see (3)) was estimated from the data. The

second row shows results obtained when all models had the same diagonal covariance matrix
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1

�

2

I with �

2

= 0:01. The �nal line is the performance when the models were settled with the

same diagonal covariance matrix as in line 2, but E

def

was evaluated using the mixture of

local models discussed in section V. As a simple comparison, if all images are normalized to

16 � 16, then k-nearest neighbour

16

has a raw error rate of 4.7% on the validation set and

7.08 % on the bs test set. An in depth study by Lee and Srihari [10]

17

evaluated 8 algorithms

and 5 combination schemes on the bs test set. The results in table 1 are better than 7 out

the 8 individual classi�ers they used. Their best single algorithm has a raw error rate of

2.99% while the best combination scheme has a 2.51% error rate. Ha and Bunke [49] report

error rates of 0:9 � 2:3% on the goodbs data set using 5 schemes. Unfortunately it is not

clear which data was used to �nesse the many empirical constants involved.

The confusion matrix of errors for the bs set is shown in table 2. The most striking feature

is the confusion of a 7 as a 9 { mainly cases of crossed 7s (�gure (9)). Varying the rejection

threshold in the post-processing neural network allows us to trade o� errors against rejects.

Figure 10 shows error-rejection curves obtained on the validation and test sets. To achieve

a 1% error we have to reject 6-10% on the bs test set. Lee and Srihari's [10] curves indicate

that they have to reject 2.5-12% to achieve the same rate, but these curves are for a di�erent

test set.

0 1 2 3 4 5 6 7 8 9

0 0 0 0 1 2 2 3 1 1 1

1 1 0 1 0 0 0 2 2 0 0

2 2 0 0 1 0 2 1 1 2 3

3 2 0 3 0 0 1 0 2 0 0

4 0 1 1 0 0 3 1 2 0 1

5 1 0 0 5 0 0 1 0 0 0

6 0 0 1 2 0 2 0 1 1 0

7 0 1 3 2 4 0 0 0 0 5

8 1 0 1 0 0 0 2 0 0 1

9 0 0 0 0 2 1 0 2 0 0

Table 2: Confusion matrix. Error counts on the bs test set for the mixture of local models.

The true identity is indicated by the row index.

VII. DISCUSSION

We have described a generative model approach to handwritten digit recognition. The major

motivation for building this system was to investigate potential advantages of using stochas-

16

k=2 chosen on the basis of the validation set.

17

Also available from ftp://mirach.cs.bu�alo.edu/pub/cdrom1/bs digit results/README.
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Figure 10: Error-rejection relationships. Full covariance matrix - solid curve. Diagonal

covariance matrix - dotted curve. Mixture model - dashed curve.

tic generative models for object recognition in a realistic domain. While its classi�cation

performance is comparable to other state-of-the-art classi�ers [10], [50] it is signi�cantly

more computationally intensive. With our simulation code running on a R4000 based work-

station, a model settles on a typical image in about 1:1 seconds, resulting in a classi�cation

rate of about 5:5 images/minute. This is about two orders of magnitude slower than current

practical classi�ers. We have not investigated speedup methods in detail, but there are a

number of simple approaches which could achieve dramatic improvements. Parallelizing the

search across digit models is the simplest approach. Using total elapsed time to test the set

of 2; 000 validation digits on a 6 processor workstation resulted in a speedup of 5.1. More

elaborate schemes could involve computing the probabilities (equation (9)) in parallel. Also,

we have observed that for most images it is apparent early in the search that some models do

not explain the image well. For example a 9 model has to undergo unusual deformations to

�t to an image of a 2. So this suggests another simple method; detect these poor performing

models and terminate their searches after just a few iterations. Providing a good starting

point for the search can also speedup the search. For example, a doubling of processing

speed was achieved [51] using the multi-layered backpropagation network described below.

An examination of the errors made on the validation set reveals that almost all mis-classi�cations

can be attributed to two problems: local minima in the search space and modeling di�culties.

When the beads have low variance, the search space has many local minima. By annealing

the variance our search method manages to avoid nearly all of these, but occasionally (about

1% of cases) becomes trapped. The obvious solution is to start the search closer to the global

27



minimum. In the current system, very little information from the image is used to pick initial

model instantiation parameters. The deformations, are set to zero and the a�ne parameters

are chosen to simply position an upright rectangle over the entire inked portion of the image.

Any method which picks better initial instantiation parameters should improve the search.

The restart procedure described in section VI is a very simple attempt to do this, but still

does not use any more information from the image.

Using the rich set of instantiation parameters supplied by the correct elastic model after it

has been �tted, we can train a conventional supervised multi-layer neural network to predict

model instantiation parameters from the image [51]. Given an input image

18

, the network

predicts the locations of the control points in image space for each of the 10 digit models.

Running the second stage of the M-step of our �tting procedure gives the control point lo-

cations in the object frame. We would expect this type of network to be less susceptible

to over-�tting than conventional neural network recognizers [7], [8], [52]. In conventional

networks, each training example only provides log

2

10 bits of constraint on the weights of

the network because that is the number of bits required to specify the largest output. A net-

work trained to predict instantiation parameters provides much more constraint per training

example.

The other di�culty that elastic models experience is caused by a special kind of variability

present in handwritten digits. Although spline models are good at capturing most common

variations (see �gure 1) they cannot easily model large embellishments to the basic shape.

Figure 11 illustrates an extreme example. The 3-model (middle panel) has correctly modeled

the main body of the image but does not have su�cient exibility to explain the ourish

portion. On the other hand, the 2-model has successfully modeled the ourish but has

missed the perceptually important cusp portion. Increasing the exibility of the models is

not a solution since they are then able to model other digits. One possibility is to examine

the residual image, i.e. the portion of the image left unexplained by the model. Currently

the residual image is accounted for by a simple uniform noise process (equation (8)). An

improvement would be to use a more structured noise model. Another possibility is to model

the residual images using \ourish models" [36]. Before leaving this topic, it should be noted

that some regional stylistic peculiarities, for example the middle bar on \crossed" sevens or

the top and bottom of European style ones, may be modeled in this manner. We did not try

this as in our study as we used a North American database in which the frequency of these

styles was very low.

18

In this scheme, images would have to be normalized to �t into the �xed length input space of the network.
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Figure 11: The di�culty of ourishes. The middle panel show the �t of the three model

while the right panel shows how the model of a two captured the entire ourish. Notice how

the three model did not shrink its variance to the same degree as the two-model because it

used the large variance to compensate for its inability to model the ourish portion. The

data has been thinned in the last two panels for the same reasons explained in �gure 3.

Our study of generative models as applied to handwritten digit recognition has highlighted

a number of bene�ts. These relate to the search space and the type of information that can

be extracted.

The images we have used vary in size frommany hundred to tens of thousands of pixels. Thus

the search space is high-dimensional and therefore requires an e�cient search strategy. The

search method we have developed has two advantages. Firstly, as an EM method it is faster

than a gradient following technique. Secondly, it implements a coarse to �ne search strategy

(see �gure 3). It starts with a few large beads which has the e�ect of viewing the data at

a very coarse scale, and so the models can concentrate on adjusting the a�ne parameters,

particularly translations and orientations. Only later in the search do they begin to model

the details, for example the middle cusp in �gure 3. A related bene�t of the approach is the

model driven segmentation illustrated in �gure 4.

It is interesting to consider the intrinsic dimensionality of the manifold, in pixel space, that

contains all the di�erent instances of the same handwritten digit. Clearly the manifold has

lower dimensionality than the number of pixels. For example, simply increasing the size of an

image should not increase the dimensionality of the manifold. Almost all OCR approaches

recognize the existence of a lower dimensional manifold by extracting a small feature vector

from the high dimensional pixel space. The generative models are especially frugal, using at

most 22 degrees of freedom (8 control points plus 6 degrees of freedom for the a�ne). While

making no claim that this is the appropriate dimension, the models appear to make good

use of the available degrees of freedom and because of the relatively low dimension and prior

information available they are quickly and easily trained (see �gure 5). This is in contrast
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to the thousands of free parameters and multiple passes over the training data required by

a typical neural net recognizer [7].

We have claimed that one advantage of generative models for handwritten character recogni-

tion is that instantiation information from one character should be useful for other characters

written by the same author. For example knowing that a writer draws a 2 with a large loop

should assist in recognizing other examples from the same author. The mixture of local

models presented in section V can be thought of as quantizing the style space for digits.

One natural way of quantifying the amount of information from style is to use the mutual

information measure. For two random variables x and y, the mutual information I(x; y)

conveys the uncertainty in one of the variables that can be accounted for by the other. Using

repeated digits within a zip code, the mutual information present in say 2 sixes written by

the same author can be computed. To check if this quantity is signi�cant, we used the same

set of images but randomly assigned pairs, i.e. so that it is very unlikely that paired digits

came from the same author. This was repeated 100 times for each digit to give a mean and

standard deviation. The results are shown in �gure 12.

Except for ones, there is a signi�cant amount of mutual information (0.15-0.85 bits

19

) in

this simple style measure. It is interesting that for digits having obvious style attributes, for

example the size of loops in twos and sixes, the mutual information is larger than for digits

which do not have much style variability, for example ones. The latter were modeled using

only three control points and generally the images were a simple stroke

20

, which does not

allow for much style variation. One simple way to incorporate this type of a style information

in the task of recognizing strings of digits (eg. zip codes) is to modify the mixing proportions,

�

l

, in (18) for each digit using the styles of previously recognized instances of that digit in

the string.

VIII. CONCLUSION

We have explored generative models as a technique for object recognition. Unconstrained

handwritten digit recognition was chosen as the test domain because it is an important

two-dimensional problem which shares some of the complications found in three-dimensional

object recognition. Although we achieved recognition rates comparable to current well tuned

19

The task of classifying a digit as one out of 10 takes about 3.3 bits

20

The similarity transformation could account for slope variation and so this could not be considered a

style under our present method of measurement.
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shown are means and error bars of mutual information computed when images are randomly
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state of the art recognizers, we do not propose this method as a replacement for such methods,

mainly because of its high computational demands. It may however be considered as a

veri�cation stage for faster recognizers. Because our method is so di�erent from these other

methods, we expect to have a low correlation between the errors made by the two types of

recognizers and so it may be possible to obtain enhanced performance by combining it with

other recognizers.

The study has shown that relatively complicated generative models can be �tted to real

data using a method that almost always avoids poor local minima. We also demonstrated

that generative models can extract extra information from images that can be useful for

model-driven segmentation and for capturing the constraints between the styles of the digits

within one zip code.
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