
ptype-cat: Inferring the Type and Values of
Categorical Variables

Taha Ceritli1,2[0000−0002−5059−8421] and
Christopher K. I. Williams1,2[0000−0002−6270−4703]

1 School of Informatics, University of Edinburgh, UK
2 Alan Turing Institute, London, UK

Abstract. Type inference is the task of identifying the type of values in
a data column and has been studied extensively in the literature. Most
existing type inference methods support data types such as Boolean,
date, float, integer and string. However, these methods do not consider
non-Boolean categorical variables, where there are more than two pos-
sible values encoded by integers or strings. Therefore, such columns are
annotated either as integer or string rather than categorical, and need
to be transformed into categorical manually by the user. In this pa-
per, we propose a probabilistic type inference method that can identify
the general categorical data type (including non-Boolean variables). Ad-
ditionally, we identify the possible values of each categorical variable
by adapting the existing type inference method ptype. Combining these
methods, we present ptype-cat which achieves better results than existing
applicable solutions.

Keywords: Data dictionary · Type inference · Categorical variables

1 Introduction

A data dictionary is defined as “a centralized repository of information about
data such as meaning, relationships to other data, origin, usage, and format” [9].
By supporting the analyst in gaining insights into the data, the data dictionary
plays a central role in the entire process of data analytics. A core component
commonly reported in data dictionaries is the data type which specifies the type
of values in a data column. The data type (such as integer or string) is one of
the fundamental properties of a data column that needs to be understood before
further analysis. In this work, we consider five main data types: categorical, date,
float, integer and string (see Appendix A for a detailed description of these data
types) and tackle the task of associating a column of data with one of these
types.

Automatic identification of the categorical type from the data in a column is
particularly challenging because the values may be encoded as strings or integers.
For example, in a data table about clothing, a variable “Class Name” could be
a categorical variable taking on values such as Jackets, Dresses and Pants,

2 Taha Ceritli and Christopher K. I. Williams

while a variable “Rating” may take on values in a fixed range 1 through 5.3

To the best of our knowledge, these issues are not addressed by any existing
work in the literature, except Bot (proposed by Majoor and Vanschoren [1]),
OpenML and Weka which tackle the type inference based on heuristics such as
labeling a column as categorical when the number of unique values is lower than
a threshold (see Sec. 3 for a detailed discussion). In this work, we use machine
learning rather than heuristics to infer the type of a data column, and show that
our probabilistic approach can be more flexible than hard-choices made with
heuristics. Our contributions can be summarized as follows:

– We propose a predictor that can identify the data type (categorical, date,
float, integer and string) for each column of a dataset (Section 2).

– We define inference of categorical values as the task of identifying the possible
values a categorical variable can take on. We address this task by adapting
ptype [3] which can robustly determine the possible values of a categorical
variable by identifying missing data and anomalies in a data column (Section
2).

– We show that the our methods outperform the existing methods using a
large number of datasets (Section 4).

2 Methodology

Background: In this work, we extend the probabilistic type inference method
called ptype [3]. Assuming that the data entries are read as strings, ptype
allows us to infer a plausible column type (Boolean, date, float, integer or
string) for a data column, and, conditioned on that type, identify any values
which are deemed missing or anomalous. ptype uses Probabilistic Finite-State
Machines (PFSMs) to model data types including known column types, miss-
ing and anomaly types. Combining these PFSMs, it provides a type inference
method that outperforms the existing methods by its ability to detect missing
and anomalous entries in a data column. Given a data column, ptype can be
used to calculate the posterior distribution of the column type, where the max-
imum posterior probability denotes the most likely data type for that column.
We could näıvely apply ptype to our task by mapping the Boolean type to the
categorical type, but this would not correctly handle non-Boolean categorical
variables.

Our Proposed Model: Our goal here is to obtain the posterior probability
distribution of column type over the categorical, date, float, integer and string
types, which is achieved in two steps. Initially, assuming that a column of data
x = {xi}Ni=1 has been read in where each xi denotes the characters in the ith

row and N is the number of rows in a data column, we calculate the posterior
probability distribution p(t|x) of column type t over the date, float, integer and

3 We include ordinal variables (as in this example) as categorical variables, although
it may be useful to distinguish them further in subsequent analysis.

ptype-cat: Inferring the Type and Values of Categorical Variables 3

string types by running a modified form of ptype that excludes the Boolean
type. If a data column is labelled with the date or float type according to this
posterior probability distribution, we assume that the posterior probability for
the categorical type is zero and use the distribution as it is. Otherwise, if a data
column is labelled with the integer or string type, we employ a separate binary
classifier to determine the posterior probability for the categorical type, where
the initial posterior probabilities for the four types are treated as features. The
resulting method is called ptype-cat.

Note that we discard the Boolean feature used in the default setting of ptype
as it leads to a limited capability to detect the categorical type. Instead, we pro-
pose four new features to characterize the categorical type. Two of our proposed
features are the number of unique values in a data column and the uniqueness
ratio, which are respectively denoted by U and R where R is defined as U/N .
We extract the same features by taking into account the “clean” entries of a
data column rather than all the data entries. Note that the clean entries refer
to the data entries which are neither missing nor anomalous. These features are
respectively denoted by Uc and Rc, where Rc is defined as Uc/Nc. Therefore, we
obtain 8 features after combining ptype features with ours.

When a data column is labelled with the integer or string type, we deter-
mine the posterior probability for the categorical type by re-distributing the
probability mass for the integer or string type according to a trained model,
e.g., if the data type is initially inferred as integer, we divide the posterior
probability for the integer type between the integer and categorical types ac-
cording to a trained model as shown in Fig. 3 (Supp. Mat.). To train the binary
classifier for categorical/not-categorical classification, we use data columns an-
notated as integer, string and categorical. Mapping the integer and string labels
to not-categorical, we train a binary Logistic Regression via 5-fold nested cross-
validation, where we estimate its hyperparameters through grid-search. Note
that the hyperparameter of Logistic Regression and the corresponding range of
values used in the grid-search are reported in Appendix D.

Identification of Categorical Values: The task here is to infer the possible
values a given categorical data column can take on. A näıve approach would
be to treat all the unique values in a column as the corresponding categorical
values. However, this method, which we call Unique, would fail when the data
contains missing and anomalous values, as such values would be labeled as valid
categorical values rather than being discarded. To address this problem, we
employ ptype which labels the entries of a data column that are not missing
and anomalous as “clean”. We treat these clean entries as the categorical values
of a data column. ptype can be used to calculate the corresponding posterior
probability of row type being “clean” for each unique entry.

3 Related Work

Existing type inference methods, including F# [10], hypoparsr [6], messytables
[8], PADS [7], ptype [3], readr [13], Test-Driven Data Analysis (TDDA) [11] and

4 Taha Ceritli and Christopher K. I. Williams

Trifacta [12], do not support non-Boolean categorical variables and therefore
would have limited performance on our task.

The closest related work to ours is Bot proposed by Majoor and Vanschoren
[1]. Bot reads the data by using the Pandas.read csv() function and applies a set
of heuristics to map the inferred data types to the types considered in this work.
For example, a data column initially labelled as integer is treated as a categorical
variable when one of the following conditions is satisfied: (i) if the number of
unique values is less than 11 and (ii) if the number of unique values is between 10
and a pre-defined value and the average of absolute distances between integers
is lower than the average of integers. These heuristics would help to identify
categorical variables in certain scenarios. However, a trained machine learning
model can offer a more flexible solution by learning the relationship between
data features and the types.

An alternative to Bot is the methods used to convert Comma-separated val-
ues (CSV) files to the Attribute Relation File Format (ARFF)4. For example,
csv2arff5 is used in OpenML to identify ARFF data types (date, nominal, nu-
meric and string) and categorical values. It uses the Pandas library to parse a
data file and employs a rule-based approach that is similar to Bot. Therefore,
this method also offers limited capability compared to a trained probabilistic
model. Weka6 provides another rule-based approach for CSV to ARFF conver-
sion, which suffers from similar issues as OpenML’s converter.

4 Experiments

We first describe our experimental setup (Sec. 4.1) and then present quantitative
results on type inference and identification of categorical values (Sec. 4.2).

4.1 Experimental Setup

We briefly describe the datasets, evaluation metrics and methods used in our
experiments below. See Appendix C for a detailed description.

Datasets: For type inference, we have used 86 datasets obtained from various
sources such as Kaggle7, OpenML8 (randomly selected through the API) and
UCI9. We have annotated each dataset in terms of data types and categorical
values by hand, based on the available meta-data and the unique values in each
data column. The data files, their sources and our annotations can be accessed

4 The details are available at https://waikato.github.io/weka-wiki/formats and pro-
cessing/arff stable/ [Accessed on 05/12/2020]

5 The code is available at https://github.com/openml/ARFF-tools/blob/master/

csv-to-arff.py [Accessed on 09/11/2020]
6 The details are at https://waikato.github.io/weka-wiki/formats_and_

processing/converting_csv_to_arff/[Accessed on 05/12/2020].
7 https://www.kaggle.com/datasets [Accessed on 18/11/2020]
8 https://www.openml.org/search?type=data [Accessed on 18/11/2020]
9 https://archive.ics.uci.edu/ml/datasets.php [Accessed on 18/11/2020]

https://github.com/openml/ARFF-tools/blob/master/csv-to-arff.py
https://github.com/openml/ARFF-tools/blob/master/csv-to-arff.py
https://waikato.github.io/weka-wiki/formats_and_processing/converting_csv_to_arff/
https://waikato.github.io/weka-wiki/formats_and_processing/converting_csv_to_arff/
https://www.kaggle.com/datasets
https://www.openml.org/search?type=data
https://archive.ics.uci.edu/ml/datasets.php

ptype-cat: Inferring the Type and Values of Categorical Variables 5

via https://bit.ly/2Ra2Vu7. As we mention in Sec. 2, we apply nested cross-
validation for hyperparameter selection, which is summarized in Algorithm 1
(Supp. Mat.). Once the datasets are split using 5-fold nested cross-validation,
we collect their columns in the corresponding folds. Note that we split at the
dataset level in order to avoid bias in test data. Our datasets contain a total
number of 2989 columns (900 categorical, 49 date, 1462 float, 513 integer and
65 string). The number of categorical values in a column is between 1 and 80.

Evaluation Metrics: To assess type inference, we use the metrics which are
used to evaluate ptype, namely overall accuracy and the Jaccard index. Addi-
tionally, we plot the Precision Recall (PR) curve for each method and report
the Average Precision (AP) of each curve. To assess identification of categori-
cal values, we first evaluate the methods using overall accuracy. In addition, we
calculate the Jaccard index per data column J(A,B) defined as |A∩B|/|A∪B|
where A and B respectively denote the sets of annotated and predicted categor-
ical values, and report their average over columns.

Methods: We compare ptype-cat with Bot, OpenML and Weka. As OpenML
and Weka use the numeric type in the ARFF format, they do not distinguish
integers and floats. To compare with ptype-cat and Bot below, we enhance them
with ptype’s functionality to make this call. In addition, we construct a baseline
called Unique for inferring categorical values. Unique treats all unique values
in a column as categorical values. Our code is publicly available at https://

github.com/tahaceritli/ptype-cat-experiments for reproducibility.

4.2 Results

Type Inference: Table 1 presents the performance of the methods in terms of
overall accuracy and Jaccard index. These results indicate that ptype-cat con-
sistently outperforms the competitor methods, except for the float type where
it performs very similarly to Weka. These improvements are generally thanks to
the flexibility of our probabilistic approach, i.e., we train a probabilistic model
to learn the relationship between data features and types, whereas the others
employ certain heuristics to identify types (see Sec. 3 for a detailed discussion).

Method

Bot OpenML Weka ptype-cat

Overall
0.84 0.88 0.79 0.93

Accuracy

Categorical 0.68 0.81 0.43 0.85
Date 0.08 0.00 0.00 0.51
Float 0.83 0.95 0.97 0.97
Integer 0.64 0.59 0.49 0.70
String 0.29 0.20 0.06 0.52

Table 1: Performance of the methods us-
ing the overall accuracy and per-class
Jaccard index, for the Categorical, Date,
Float, Integer and String types. Fig. 1: PR curves for the methods.

https://bit.ly/2Ra2Vu7
https://github.com/tahaceritli/ptype-cat-experiments
https://github.com/tahaceritli/ptype-cat-experiments

6 Taha Ceritli and Christopher K. I. Williams

Fig. 1 presents the PR curves obtained by the methods, which indicates a
similar trend as above in that ptype-cat performs better than the other methods.
Note that the competitor methods provide only either 0 or 1 as a score for
each data type. In contrast, ptype-cat generates more fine-grained scores valued
between 0 and 1.

The leading competitor method on type inference is OpenML. Comparied
to OpenML, our method correctly classifies an additional 141 data columns (62
categorical, 27 date, 39 float, 8 integer and 5 string). The main difference is that
ptype-cat correctly classifies 51 categorical columns which are misclassified as
integer by OpenML. We explain these differences in Appendix D. In addition,
McNemar’s test (see e.g., [5]) applied to the column type predictions of ptype
and OpenML confirms that the methods are statistically significantly different
from each other (see Appendix D for the details).

Identification of Categorical Values: Table 2 presents the performance of the
methods on identification of categorical values. These results indicate that ptype-
cat outperforms the competitor methods in terms of both metrics, and the lead-
ing competitor method is OpenML. We also observe that Unique performs better
than Bot and WEKA, which produce similar results.

Method
Bot OpenML Weka Unique ptype-cat

Overall Accuracy 0.33 0.83 0.38 0.64 0.90
Average Jaccard 0.40 0.87 0.42 0.87 0.92

Table 2: Performance of the models on inference of categorical values.

The accuracies indicate that OpenML identifies all categorical values cor-
rectly for a higher number of data columns than Unique. The difference in their
overall accuracies results from the inability of Unique to detect missing data.
For example, the “Chemox” column of the CleanEHR dataset has three unique
values: 0, 1 and NULL. Here, the annotated categorical values are 0 and 1, and
NULL encodes missing data. While OpenML correctly labels 0 and 1 as the cat-
egorical values, Unique treats NULL as another categorical value. On the other
hand, the Average Jaccard score shows that they provide similar coverage of
categorical values per column. The main reason is that only a few data values
are misclassified per column by Unique, which does not lead to large gaps in
their performances.

Next we test whether the competitor methods produce statistically different
Jaccard indices per column than our method. Paired t-tests confirm that they are
significantly different (see Appendix D for the details). Additionally, we discuss
the limitations of our method and how they can be mitigated in Appendix B.

ptype-cat: Inferring the Type and Values of Categorical Variables 7

References

1. Angelo Majoor, J.V.: Auto-cleaning dirty data: The data encoding bot. Tech-
nical report, Technical University of Eindoven (2018), https://github.com/

openml/ARFF-tools/blob/master/Data_Encoding_bot_Report.pdf [Accessed on
06/08/2020]

2. Cerda, P., Varoquaux, G., Kégl, B.: Similarity encoding for learning with dirty
categorical variables. Machine Learning 107(8), 1477–1494 (2018)

3. Ceritli, T., Williams, C.K.I., Geddes, J.: ptype: Probabilistic type inference. Data
Mining and Knowledge Discovery 34(3), 870—-904 (2020)

4. Chen, J., Jiménez-Ruiz, E., Horrocks, I., Sutton, C.: Colnet: Embedding the se-
mantics of web tables for column type prediction. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 33, pp. 29–36 (2019)

5. Dietterich, T.G.: Approximate statistical tests for comparing supervised classifica-
tion learning algorithms. Neural Computation 10(7), 1895–1923 (1998)

6. Döhmen, T., Mühleisen, H., Boncz, P.: Multi-Hypothesis CSV Parsing. In: Pro-
ceedings of the 29th SSDBM (2017)

7. Fisher, K., Gruber, R.: PADS: A domain-specific language for processing ad hoc
data. In: Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation (PLDI’05). vol. 40(6), pp. 295–304. ACM
(2005)

8. Lindenberg, F.: messytables Documentation Release 0.3 (2017), https://

media.readthedocs.org/pdf/messytables/latest/messytables.pdf [Accessed
on 07/12/2020]

9. McDaniel, G.: IBM Dictionary of Computing, p. 21. McGraw-Hill, Inc. (1994),
https://www.ibm.com/ibm/history/documents/pdf/glossary.pdf [Accessed on
11/06/2020]

10. Petricek, T., Guerra, G., Syme, D.: Types from data: Making structured data
first-class citizens in F#. In: Proceedings of Conference on PLDI (2016)

11. Stochastic Solutions: Test-Driven Data Analysis (2018), https://tdda.

readthedocs.io/en/tdda-1.0.23/constraints.html [Accessed on 07/12/2020]

12. Trifacta: Trifacta Wrangler (2018), https://www.trifacta.com/ [Accessed on
07/12/2020]

13. Wickham, H., Hester, J., Francois, R., Jylänki, J., Jørgensen, M.: readr 1.1.1
(2017), https://cran.r-project.org/web/packages/readr/readr.pdf [Ac-
cessed on 07/12/2020]

14. Yates, D.S., Moore, D.S., Starnes, D.S.: The practice of statistics: TI-83/89 graph-
ing calculator enhanced. W.H Freeman, 3 edn. (2002)

https://github.com/openml/ARFF-tools/blob/master/Data_Encoding_bot_Report.pdf
https://github.com/openml/ARFF-tools/blob/master/Data_Encoding_bot_Report.pdf
https://media.readthedocs.org/pdf/messytables/latest/messytables.pdf
https://media.readthedocs.org/pdf/messytables/latest/messytables.pdf
https://www.ibm.com/ibm/history/documents/pdf/glossary.pdf
https://tdda.readthedocs.io/en/tdda-1.0.23/constraints.html
https://tdda.readthedocs.io/en/tdda-1.0.23/constraints.html
https://www.trifacta.com/
https://cran.r-project.org/web/packages/readr/readr.pdf

8 Taha Ceritli and Christopher K. I. Williams

Supplemental Materials
In this Supplemental Materials, we describe five data types (Appendix A),

and provide additional information about our model (Appendix B) and our
experimental setup (Appendix C). Finally, we present additional discussion of
the experimental results (Appendix D).

A Definitions of Data Types

The five main data types are described below:

– Categorical. A categorical variable can take on one of a limited, and usually
fixed, number of possible values [14]. A subtype is a Boolean variable, where
there are only two possible values. The blood type of a person (A, B, AB or
O) is an example of a non-Boolean categorical variable.
A problem for the identification of the categorical type from the data in a
column is that the values may be encoded in different ways. For the blood
type example these are encoded as strings, but the values might also be
encoded as integers, e.g., 1, 2, 3, 4. However, in both cases the limited
number of possible values taken on by a categorical variable is the key to
its identification. This problem may be eased if we have semantic knowledge
about the variable (e.g., that it represents a blood type).
In this classification we include ordinal variables (e.g., poor, fair, good, ex-
cellent) as categorical variables, even though it may be useful to distinguish
them further in subsequent analysis.

– Date: The column contains date or date:time entries. Considerable format
variability is possible, e.g., from the ISO-8601 format of
YYYY-MM-DDThh:mm:ss to e.g., 24 July 1969.

– Float : The column contains floating-point numbers.
– Integer : The column contains integers. Note that we would regard the age

of a person in years as an integer variable, but that the integer encoding of
say blood type as 1, 2, 3 or 4 should be identified as a categorical variable.

– String : The string type is very general, and accommodates data that do not
fit into the four types above. It might contain notes about a person, e.g.,
“Works Mon-Wed mornings”, or a string such as an IP address. However, a
string encoding of a categorical variable (e.g., blood types A, B, AB and O)
should be identified as being of categorical, not string type.

B Additional Information about Our Model

Following the notation used for ptype, we assume that a column of data x =
{xi}Ni=1 has been read in as strings, where each xi denotes the characters in the
ith row. ptype is a generative model with a set of latent variables t ∈ {1, 2, ...,K}
and z = {zi}Ni=1, where t and zi respectively denote the data type of a column
and its ith row. Here, N is the number of rows in a data column and K is the

ptype-cat: Inferring the Type and Values of Categorical Variables 9

number of possible data types for a column. The additional missing and anomaly
types are respectively denoted by m and a. Note that zi can be of type m or a
alongside a regular data type, i.e. zi ∈ {1, 2, ...,K,m, a}. This noisy observation
model allows a type inference procedure robustified for missing and anomalous
data values.

ptype-cat can enable the automatic construction of data dictionaries in the
well-known Attribute Relation File Format (ARFF), which has been used no-
tably to describe OpenML datasets including the UCI datasets (see Fig. 2 for
an example).

Class Name Review Text Age Rating
Jackets This beauty … 37 5
Dresses I’ll start by … 29 3

Pants I took these … 47 4
… … … …

…

@ATTRIBUTE Class Name {Jackets, Dresses, …}

@ATTRIBUTE Review Text STRING

@ATTRIBUTE Age NUMERIC

@ATTRIBUTE Rating {1,2,3,4,5}

…

1

Fig. 2: A dataset and a section of the corresponding ARFF file.

Fig. 3 illustrates how the posterior probability for the integer type is divided
between the integer and categorical types when the data type is initially inferred
as integer.

0.0
0.2
0.7
0.1

Date
Float
Integer
String

0.5
0.0
0.2
0.2
0.1

Categorical
Date
Float
Integer
String

Fig. 3: A graphical representation of the re-distribution step where we split the
probability mass for the integer type between the integer and categorical types.

Limitations of Our Model Below we discuss two limitations of our model
and how they can be mitigated. Firstly, ptype-cat does not take into account
the semantics of the categorical values, which can be important for data un-
derstanding. However, there is already a large number of works in the semantic
web community that focus on extracting the semantics of the data, see e.g., [4].
We believe that one could apply such methods once the categorical values are
identified using our method.

Secondly, our focus in this work has been the identification of the categorical
values; however, a natural next step is to encode the categorical values for subse-

10 Taha Ceritli and Christopher K. I. Williams

quent analysis. In this regard, ptype-cat cannot deal with “dirty categories” that
occur due to string variability issues (e.g., MySQL and mysql would be labeled
as two separate categorical values). We plan to resolve such issues through user
interaction by letting the user merge dirty categories, although an alternative
approach would be to directly encode them as vectors as in dirty-cat [2], where
categorical values are encoded by taking into account string similarities.

C Additional Information about Experimental Setup

We describe the datasets, evaluation metrics and methods used in our experi-
ments below:

Datasets For type inference, we have used 86 datasets obtained from various
sources such as Kaggle10, OpenML11 (randomly selected through the API) and
UCI12. We have annotated each dataset in terms of data types and categorical
values by hand, based on the available meta-data and the unique values in each
data column. The datasets are split using 5-fold nested cross-validation. Once
the datasets are split, we collect their columns in the corresponding folds. Note
that we split at the dataset level in order to avoid bias in test data. Our datasets
contain a total number of 2989 columns (900 categorical, 49 date, 1462 float,
513 integer and 65 string). For the identification of categorical values task, we
are interested in the 900 categorical data columns. Although 690 columns con-
tain less than 6 unique categorical values, the number of categorical values in a
column is between 1 and 80 (the data column with 80 categorical values, which
is obtained from the CleanEHR dataset13, denotes the reason for a patient’s
admission following the ICNARC Coding Method14).

Evaluation Metrics We use different sets of metrics for type inference and
identification of categorical values. For type inference, we use the metrics which
are used to evaluate ptype, namely overall accuracy and the Jaccard index.
Note that Jaccard index allows us to measure the performance separately for
each type following a one-vs-rest approach. See [3] for a detailed description of
these metrics and how they are used for type inference. Additionally, we plot the
Precision Recall (PR) curve for each method and report the Average Precision
(AP) of each curve. These curves are obtained by micro-averaging over folds,
meaning that the output probabilities of a method are concatenated across five
outer folds of the nested cross-validation, and across the samples in each fold.

10 https://www.kaggle.com/datasets [Accessed on 18/11/2020]
11 https://https://www.openml.org/search?type=data [Accessed on 18/11/2020]
12 https://archive.ics.uci.edu/ml/datasets.php [Accessed on 18/11/2020]
13 The data is accessible via https://github.com/ropensci/cleanEHR/tree/master/

data [Accessed on 04/12/2020].
14 The details are available at https://www.icnarc.org/Our-Audit/Audits/Cmp/

Resources/Icm-Icnarc-Coding-Method[Accessed on 04/12/2020].

https://www.kaggle.com/datasets
https://https://www.openml.org/search?type=data
https://archive.ics.uci.edu/ml/datasets.php
https://github.com/ropensci/cleanEHR/tree/master/data
https://github.com/ropensci/cleanEHR/tree/master/data
https://www.icnarc.org/Our-Audit/Audits/Cmp/Resources/Icm-Icnarc-Coding-Method
https://www.icnarc.org/Our-Audit/Audits/Cmp/Resources/Icm-Icnarc-Coding-Method

ptype-cat: Inferring the Type and Values of Categorical Variables 11

Data : X
Model : M
Parameters : P, K
for i = 1 to K do

Split X into Xtraining
i , Xtest

i

for j = 1 to K do

Split Xtraining
i into Xtraining

ij , Xtest
ij

foreach p ∈ P do

Train M on Xtraining
ij

Calculate Error Etest
ijp

end

end
Calculate Average Error Etest

ip

Select p∗ where Etest
ip is minimum

Train M∗ on Xtraining
i

Calculate Error Etest
i

end
Calculate Average Error Etest

Algorithm 1: K-Fold Nested Cross-Validation

For identification of categorical values, we first evaluate the methods using
overall accuracy. The accuracy is 1 when the set of annotated categorical values
is equal to the set of predicted categorical values and 0 otherwise. In order to take
into account the partial matches between two sets, we calculate the Jaccard index
per data column J(A,B) defined as |A∩B|/|A∪B|, where A and B respectively
denote the sets of annotated and predicted categorical values. Then we report
their average over columns.

Methods On type inference, we compare ptype-cat with Bot, OpenML and
Weka. For Bot [1], we use the original implementation at https://github.com/
openml/ARFF-tools/blob/master/1030843_TheDataEncodingBot.ipynb. Note
that by default Bot considers only a subsample of a data column for computa-
tional efficiency. Here, we feed all the entries into the method in order to elim-
inate any bias. Additionally, we treat the pre-defined threshold for the number
of unique values, which is 100 by default, as a hyperparameter. We use two dif-
ferent hyperparameters for the integer and string types to allow a wider search
space since the lower thresholds are respectively 10 and 25. We estimate these
parameters via nested cross-validation using a grid-search over the intervals of
{10, 20, . . . , 120} and {25, 35, . . . , 125}.

For ptype-cat, we use Logistic Regression with an L2 penalty with the regu-
larization strength parameter selected in the interval of {10−4, . . . , 104}.

As we mention in Sec. 3, the CSV to ARFF conversion methods used in
OpenML and Weka are not directly applicable to our task. However, we adapt
these methods by using ptype. We use ptype’s prediction when a data column

https://github.com/openml/ARFF-tools/blob/master/1030843_TheDataEncodingBot.ipynb
https://github.com/openml/ARFF-tools/blob/master/1030843_TheDataEncodingBot.ipynb

12 Taha Ceritli and Christopher K. I. Williams

is labelled with the ARFF label numeric to classify the column either as float
or integer. For OpenML’s csv2arff method, we use the original implementation at
https://github.com/openml/ARFF-tools/blob/master/csv-to-arff.py and
treat the number of unique values as a hyperparameter. Although its default
value is 10, we estimate this parameter via nested cross-validation using a grid-
search over the interval of {10, 20, . . . , 120}. For Weka’s method, we use the origi-
nal implementation at https://waikato.github.io/weka-wiki/formats_and_
processing/converting_csv_to_arff/ which does not have any hyperparam-
eters.

The methods adapted from OpenML and Weka can also be used for the
identification of categorical values. Similarly, we adapt Bot to this task with a
simple modification. Bot discards the data values that occur less than a threshold
and does not treat them as categorical values. Here, we treat this threshold as a
hyperparameter and estimate it via nested cross-validation using a grid-search
over the interval of {5, 10, 20, . . . , 80}. In addition, we construct a baseline
called Unique for inferring categorical values. Unique treats all unique values in
a column as categorical values and is compared with ptype to demonstrate how
much we can improve by eliminating missing and anomalous data.

D Additional Discussion about Experimental Results

Type Inference: We obtain the hyperparameters of Bot as 10 and 25 respec-
tively for the integer and string types and OpenML’s unique values hyperpa-
rameter as 10 across test folds.

Fig. 4 presents the normalized confusion matrices for the methods, normal-
ized so that each column sums to 1. All methods lead to confusions by classifying
columns as categorical rather than as integer or string. These failures are not
surprising to some extent since categorical values are either encoded by integers
or strings. However, ptype-cat has fewer such confusions than the others.

(a) Bot. (b) OpenML. (c) Weka. (d) ptype-cat.

Fig. 4: Hinton plots of the normalized confusion matrices.

ptype-cat performs better than the competitor methods for the date type,
which can be explained by several reasons. The main reason for Bot is that it
does not support date formats with time information. Instead, data columns

https://github.com/openml/ARFF-tools/blob/master/csv-to-arff.py
https://waikato.github.io/weka-wiki/formats_and_processing/converting_csv_to_arff/
https://waikato.github.io/weka-wiki/formats_and_processing/converting_csv_to_arff/

ptype-cat: Inferring the Type and Values of Categorical Variables 13

in such formats are treated either as categorical or string, depending on the
number of unique values. Additionally, Bot does not consider textual dates such
as months and 4-digit formatted years, and results in misclassifications of cat-
egorical since the number of unique values is typically low. Weka considers the
time information; however, it supports only the ISO-8601 format of “yyyy-MM-
ddTHH:mm:ss”, unless the user specifies differently. Our method supports a
more extensive set of formats including certain non-standard date formats thanks
to the features obtained from ptype. OpenML completely discards the date type.

Unlike the other methods, Bot misclassifies a high number of categorical
variables as floats. These failures occur when the Pandas library fails to parse a
given dataset correctly. For example, the “Active Sport” column of the Young
People Survey dataset—a categorical variable which ranks how active a young
person is from 1 to 5—is labelled with the float type by the Pandas library and
consequently all integers are converted to their floating-point representations
(e.g., 1.0 to 5.0). Therefore, Bot is fed with these floating-point numbers rather
than integers resulting in confusions.

There are two main reasons to explain this difference between OpenML and
ptype-cat. First, OpenML predicts the data type as integer when the number of
unique values is higher than 10 (e.g., most columns of the Poker Hand dataset
contain 13 categorical values encoded by integers). Secondly, OpenML does not
properly handle missing data when the categorical values are encoded by strings.
To correctly label such columns, it requires all the entries to be converted to
string by using the Python’s isistance function which fails when the Pandas
library detects missing data and encodes them as np.nan. For example, OpenML
initially labels the “HCMEST” column of the cleanEHR dataset (which contains
values Y, N and NULL) as numeric rather than categorical. A forced choice between
integer and float in ptype then results in equal posterior probabilities for these
two types, as ptype must set its row latent variables to “anomaly” to explain
the non-NULL data.

To determine whether the column type predictions of ptype and OpenML
are significantly different, we apply McNemar’s test (see e.g., [5]), which assumes
that the two methods should have the same error rate under the null hypothesis.
We compute the test statistic (|n01 − n10|)2)/(n01 + n10), where n01 and n10

denote the number of test columns misclassified by only OpenML, and by only
ptype respectively. In our case, n01 and n10 are respectively equal to 185 and
44, which results in a statistic of 85.6. If the null hypothesis is correct, then
the probability that this statistic is greater than 3.84 is less than 0.05 [5]. Thus
this result provides evidence to reject the null hypothesis and confirms that the
methods are statistically significantly different from each other.

A common pattern in failure cases of all methods is that the assumption
about the number of unique values does not always hold, i.e., there can be data
columns of type integer or string with a low number of unique values. Consider
the “State” column of the Geoplaces dataset which contains data values such
as Morelos, S.L.P. and San Luis Potosi. The data column contains only 13
unique values out of 130 entries, which causes the methods to misclassify it as

14 Taha Ceritli and Christopher K. I. Williams

categorical (note that this data column is assumed to be of type string rather
than categorical since the data is collected as free text). OpenML handles such
cases slightly better than the others based on the heuristics used. However, its
overall performance for the string type is poor as it classifies quite a high number
of columns as integer rather than string due to the presence of missing data.

Identification of Categorical Values: We obtain the hyperparameters of Bot
as 5 across test folds.

Bot obtains the worst performance, which is not surprising as it relies on the
number of occurrences of data values for detecting categorical values. Using the
number of occurrences can become misleading for Bot. For example, it treats
missing or anomalous data observed more than a pre-defined threshold in the
data as categorical values. Similarly, it cannot identify categorical values that
occur less than the same threshold.

Weka performs slightly better than Bot; however, its performance is still poor
compared to the remaining methods. This is mainly because when it misclassifies
a categorical variable, it generates an empty list for the corresponding categorical
values, which causes both the accuracy and the Jaccard index to be zero.

In addition to the Average Jaccard score, we test whether methods produce
statistically different Jaccard indices per column. We apply a paired t-test on
the list of Jaccard indices obtained by Unique and ptype-cat (in the same or-
der). Similarly, we obtain the p-values by OpenML-ptype-cat, Bot-ptype-cat and
Weka-ptype-cat comparisions. We find that all the p-values are lower than 0.001.
These results reject the null hypothesis that the means are equal and confirm
that they are significantly different.

	ptype-cat: Inferring the Type and Values of Categorical Variables

