
Identifying the Units of Measurement in Tabular
Data

Taha Ceritli1,2[0000−0002−5059−8421] and
Christopher K. I. Williams1,2[0000−0002−6270−4703]

1 School of Informatics, University of Edinburgh, UK
2 Alan Turing Institute, London, UK

Abstract. We consider the problem of identifying the units of mea-
surement in a data column that contains both numeric values and unit
symbols in each row, e.g., “5.2 l”, “7 pints”. In this case we seek to identify
the dimension of the column (e.g. volume) and relate the unit symbols
to valid units (e.g. litre, pint) obtained from a knowledge graph. Below
we present PUC, a Probabilistic Unit Canonicalizer that can accurately
identify the units of measurement, extract semantic descriptions of quan-
titative data columns and canonicalize their entries. We present the first
messy real-world tabular datasets annotated for units of measurement,
which can enable and accelerate the research in this area. Our exper-
iments on these datasets show that PUC achieves better results than
existing solutions.

Keywords: Data mining · Data understanding · Data cleaning.

1 Introduction

In a typical data analytics project, a large amount of time and effort is spent on
understanding and cleaning the data. A particular task, which is often performed
manually, is to understand how measurements are encoded in quantitative data
columns. A measurement is a combination of a numeric value and a unit (e.g.,
litre), which can be encoded by several possible unit symbols for that unit (e.g.,
l and L).

Consider the following example: Suppose we are given the quantitative data
column3 in Figure 1(a), which denotes the volume of freezers in various house-
holds. The value of each data entry is a measurement encoded by a unit symbol,
except the last entry which does not have any unit symbol (we refer to the ab-
sence of a unit symbol in an entry as the missing unit). As shown in Figure 1(b),
the measurements are encoded with two distinct units (litres and cubic feet) and
six different unit symbols, some of which including ltrs, and Cu can be consid-
ered as anomalous unit symbols as they do not follow the standard encodings of
3 The data is sampled from the “Freezer_volume” column of the Household Electricity
Survey (HES) dataset which can be accessed by registering at https://tinyurl.com/
ybbqu3n3.

https://tinyurl.com/ybbqu3n3
https://tinyurl.com/ybbqu3n3

2 Taha Ceritli and Christopher K. I. Williams

units. Moreover, a unit (e.g., litre) can be informative about the dimension of
a measurement (in this case volume), which is defined as an expression of the
dependence of a physical quantity on mutually independent components called
base quantities in the International Vocabulary of Metrology4.

Numeric
Value

Unit
Symbol

Unit

12 LTS Litre
7 CUFT Cubic foot
120 ltrs Litre
84 L Litre
105 Cu Cubic foot
7 Cf Cubic foot
42 NA NA

Freezer_volume

12LTS
7 CUFT
120ltrs
84L
105Cu
7cf
42

Header: Freezer_volume
Dimension: Volume
Unit: Litre
12
198.22
120
84
2973.27
198.22
NA

a) Raw data b) Intermediate steps c) Final clean data

Fig. 1: A motivating real-world example that represents our pipeline. a) shows
the samples of a raw dataset. b) indicates the intermediate steps required to
transform the column. c) denotes the final data column obtained by applying
the transformations.

We define Unit Canonicalization (UC) as the task of identifying the dimen-
sion of a data column and the units of all its entries so that the data entries can
be canonicalized (i.e., so they all are expressed in the same units). See Figure
1(c) for an example. To address the UC problem, one needs to apply transfor-
mations such as parsing and identifying the units in the entries, inferring the
common unit for the column which is placed in the metadata (e.g., the header),
making the entries numeric and scaling the entries where needed. To the best
of our knowledge, the UC problem is not addressed by any existing work in
the literature (see Sec. 3 for a detailed discussion). In this work, we propose a
probabilistic approach to the UC problem. Our contributions are as follows:

– We propose a probabilistic model which allows us to extract semantic in-
formation about a given data column containing unit symbols (such as its
dimension and unit) and canonicalize its entries (Section 2).

– We make the first quantitative comparison of the existing methods on the
unit identification task in real-world tabular data (Section 4).

– We present the first set of real-world datasets annotated for the units of
measurement, to accelerate research in this area.

4 The document is accessible at https://www.bipm.org/documents/20126/2071204/
JCGM_200_2012.pdf/f0e1ad45-d337-bbeb-53a6-15fe649d0ff1

https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf/f0e1ad45-d337-bbeb-53a6-15fe649d0ff1
https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf/f0e1ad45-d337-bbeb-53a6-15fe649d0ff1

Identifying the Units of Measurement in Tabular Data 3

2 Methodology

Representing Units: We represent units by extending a dictionary of units cu-
rated from Wikipedia5 with information from WikiData [19] and QUDT (Quan-
tities, Units, Dimensions and Data Types Ontology)6. We associate each unit
with a dimension and a list of unit symbols. See Appendix A for a detailed
description.

The Proposed Model: We assume that a column of data y = {yi}Ni=1 consist-
ing of N rows has been read in, where each yi denotes the characters in the ith
row. Each yi is parsed using regular expressions (see Appendix C.2) to a numeric
value vi and a unit symbol xi, which may be missing for some entries, i.e., xi
may be null. Our focus here is on the unit symbol xi obtained. Denoting the
number of possible dimensions for a column by K, our model has the following
generative process:

column dimension t ∼ U(1,K),

row unit ui ∼ p(ui|t),

row label zi =


ui with probability wui

ui
,

m with probability wm
ui
,

a with probability wa
ui
,

row symbol xi ∼ p(xi|zi),

where U denotes a discrete Uniform distribution, and p(ui|t) denotes how likely
it is that a row unit ui represents the dimension t. We model p(ui|t) with an
indicator function that assigns a non-zero score only when a unit is a known unit
of a dimension. Each row label zi can be either the same as ui, m or a according
to the mixing proportions denoted by W , where m and a respectively denote a
missing or anomalous unit. Here the mixing proportions wui

ui
+wm

ui
+wa

ui
= 1 for

each row unit ui. Since entries are often expected to be of a regular row label
rather than the missing or anomalous labels, we favour regular labels during
inference by using lower coefficients for the missing and anomalous labels, i.e.
wm

ui
< wui

ui
and wa

ui
< wui

ui
. These mixing proportions W are assumed to be

fixed and known. Even though one could also learn the mixing proportions, this
may not be vital as long as the coefficients of the regular labels are larger than
the others. Finally, p(xi|zi) denotes our observation model which is explained
below. Note that the above model is based on ptype [2], but extended to address
unit canonicalization by incorporating semantic information about the units of
measurements.

We build the observation model p(xi|zi) upon three functions. First, we de-
velop a Categorical distribution for row unit ui where the categories correspond

5 Accessible at https://github.com/marcolagi/quantulum/blob/master/quantulum/
units.json

6 https://www.qudt.org/

https://github.com/marcolagi/quantulum/blob/master/quantulum/units.json
https://github.com/marcolagi/quantulum/blob/master/quantulum/units.json

4 Taha Ceritli and Christopher K. I. Williams

to the possible unit symbols for that unit, i.e., p(xi|zi = ui) = Cat(xi, πui
) where∑Sui

s=1 π
s
ui

= 1. Here, πs
ui

denotes the probability of observing the sth unit symbol
for a unit ui, while Sui denotes the number of known unit symbols for that unit.
Secondly, we model missing units with an indicator function, which assigns a
non-zero probability only when a unit symbol is missing. Lastly, we adapt the
anomaly type in ptype, which is built based on the idea of an X-factor pro-
posed by [14], to model anomalous unit symbols. Here, we introduce a likelihood
function that assigns low but non-zero probabilities to any data value, which in
turn allows the model to detect anomalous unit symbols which do not fit any
known unit. Note that our model is fed with unit symbols, which are parsed
using regular expressions. See Appendix C.2 for the details about our parsing
step.

Inference: Given the row symbols x in a data column, the initial task is to
infer the column dimension t, which is cast to as the problem of calculating the
posterior distribution of t given x, namely p(t|x). We then compute a posterior
distribution over each row label conditioned on the dimension and the observed
value, i.e., p(zi|t, xi). Next, we determine the row units by calculating the pos-
terior distribution of each row unit ui given t, zi and xi, which is also used to
predict the column unit. Lastly, we map a unit symbol labelled as anomalous
to a known unit symbol and perform unit canonicalization. The derivations are
presented for reproducibility in Appendix C.3.

3 Related Work

We are not aware of existing work specifically on the unit canonicalization prob-
lem. The closest related works are described below:

[18,9,16] use semantic web technologies to annotate quantitative data columns
in terms of units. However, their annotations are based on ontological classes in
domain-specific ontologies rather than the dimensions considered in this work.
For example, [16] define the “High-Systolic-Blood-Pressure-Measurement” class
with kilopascal as its unit. Given a data column and its ontological class,
their goal is to represent all entries with the same predefined unit of the cor-
responding ontological class. [3] consider the task of annotating data entries in
spreadsheets rather than tabular data. The authors split the label in a header
(e.g., “Total Gallons”) into separate words (e.g., “Total” and “Gallons”), remove
word inflections (e.g., obtaining “Gallon” from “Gallons”) and map word stems
into known units and dimensions (e.g., “Gallon” and “volume”). Although their
approach can be useful when information is explicitly given in a label, it would
not work when the information is given implicitly, as in the label of “Credit Card
Charges” which implicitly implies that the dimension is currency.

Regular expressions have been used for parsing and identifying units in text
and unit conversion [8,21]. However, they are designed neither to annotate quan-
titative data columns with dimensions nor to canonicalize the units of their

Identifying the Units of Measurement in Tabular Data 5

entries. They do not even take the input as a data column, except for the pro-
fessional version of Wolfram|Alpha which is not freely available. [17] develop a
rule-based system named CCUT which maps unit symbols in tabular data to an
ontology so that the data entries can be annotated with semantic information,
which can be useful for table understanding. Unlike us, the authors do not use
the contextual information in the entries of a data column, i.e., the unit symbols
in the entries of a data column may be related to each other through the column
dimension. Moreover, they do not consider the task of annotating quantitative
data columns with dimensions.

Quantulum [11] use an ML model to disambiguate unit symbols in unstruc-
tured text (e.g., whether “pound” in a sentence refers to currency or mass). How-
ever, the entries of a data column consist of only numeric values and unit sym-
bols, unlike long sentences where additional information is available through the
other words. Similarly, [6] propose an ML framework named Grobid-Quantities
(GQ) for processing text documents such as PDF files. However, identifying units
in general tabular data can be more challenging since units in the scientific papers
are more likely to follow standard notations. [20] apply simple ML techniques
for dimension inference (e.g., the cosine similarities between word-embeddings
representations of the header and the units), and then assign the most frequent
unit for the inferred dimension as the column unit. Although this approach can
be useful for dimension inference, it may be misleading for column unit inference
as less frequent units can also be used to encode measurements in data columns.
Lastly, dimension inference could benefit from Named Entity Recognition (NER)
models. However, the set of tags supported by existing NER models are typically
limited, e.g., Stanford NER includes only currency and time7.

4 Experiments

Experimental Setup: Here, we briefly describe the datasets, baseline methods
and evaluation metrics used in our experiments. See Appendix B for a detailed
description. The datasets, their sources and our annotations for dimensions and
units can be accessed via https://tinyurl.com/ay44c62r. The code to reproduce
the experiments are publicly available at https://github.com/tahaceritli/puc.

We conduct experiments on 24 data columns obtained from 16 CSV data
files, each of which contains at least one column where the measurements are
encoded by units of measurement. Their dimensions were annotated by hand
for these sets, resulting in 2 currency, 2 data storage, 6 mass, 3 volume and 11
length columns. We also annotated each data entry in terms of its numeric value
and unit symbol. We construct baselines for dimension inference by adapting
CCUT, Grobid-Quantities (GQ), Pint, Stanford NER (S-NER) and Quantulum.
On dimension inference, we compare our method with CCUT, GQ, Pint and
Quantulum. To assess dimension inference, we use the overall accuracy and the
Jaccard index. See [2] for a detailed description of these metrics and how they
7 See https://nlp.stanford.edu/software/CRF-NER.shtml for a complete list of the
supported tags.

https://tinyurl.com/ay44c62r
https://github.com/tahaceritli/puc
https://nlp.stanford.edu/software/CRF-NER.shtml

6 Taha Ceritli and Christopher K. I. Williams

are used for type inference. Additionally, we evaluate the runtime of each method
per data column (see Figure 3 in Supp. Mat.). To measure the performance on
the unit identification task, we report the accuracies of the methods per dataset
and apply paired t-tests to determine whether the predictions of the competitor
methods are significantly different from the predictions of our method.

Results: Table 1 presents the performance of the methods on the column di-
mension inference task. The overall accuracies show that PUC performs better
than the competitor methods. We observe a similar trend with the performance
per dimension, quantified through the Jaccard index. These improvements are
due to our model’s extensive knowledge about units, and its structure that takes
into account the context shared among data rows. Note that the Jaccard index
becomes zero when a method incorrectly labels all the data columns of a par-
ticular dimension (e.g., CCUT, GQ and Pint lead to zero Jaccard index for the
currency dimension because they do not support currency symbols such as $ and
£ which occur in the entries of the “Currency" column of the Zomato dataset).

``````````````Dimension
Method CCUT GQ Pint S-NER Quantulum PUC

Currency 0.00 0.00 0.00 0.67 0.50 1.00
Data storage 0.00 0.00 0.00 0.00 0.50 1.00
Length 0.27 0.45 0.67 0.62 0.58 0.91
Mass 0.00 0.67 0.57 0.67 1.00 1.00
Volume 0.00 0.00 0.00 0.33 0.67 1.00

Overall 0.12 0.38 0.50 0.71 0.71 0.96Accuracy

Table 1: Performance of the methods for dimension inference using the Jaccard
index and overall accuracy. We highlight the best score in each row by making
the highest score bold.

Dataset CCUT GQ Pint Quant. PUC

Arabica 0.77 0.17 0.66 1.00 0.70
HES 0.18 0.00 0.27 0.64 0.98
Huffman 0.06 0.53 1.00 1.00 1.00
Maize 1.00 0.30 1.00 1.00 1.00
MBA 0.00 0.00 0.00 0.84 0.95
Open Units 0.00 0.00 1.00 0.00 1.00
PHM 0.99 0.95 0.99 1.00 1.00
query_2 0.00 0.00 1.00 0.00 1.00
query_4 0.00 0.00 1.00 0.00 1.00
Robusta 0.71 0.43 1.00 1.00 1.00
Zomato 0.00 0.00 0.00 0.00 0.60
143. . . 23 0.00 0.69 0.00 0.00 0.97
143. . . 62 0.58 0.00 0.00 0.95 0.95
228. . . 96 1.00 0.00 1.00 1.00 1.00
3b5. . . ff 0.60 0.00 0.00 1.00 1.00

Overall 0.39 0.20 0.59 0.62 0.94Accuracy

Table 2: Accuracy of the methods on
unit identification. We highlight the
best score in each row by making the
highest score bold. Quantulum is ab-
breviated as Quant.

Table 2 presents the accuracy of each
method on each dataset (aggregated over
columns) and the overall accuracy (aver-
aging over all datasets). PUC performs
consistently better than the competitor
methods, although they are competitive
with our method on some of the datasets.
The performance of PUC on the Arabica
and Zomato datasets are discussed in Ap-
pendix D. Note that accuracy becomes
zero when a method fails to identify the
unit of any data entry of a dataset (e.g.,
Pint cannot recognize the unit symbols in
the MBA dataset such as LB and OZ which
respectively denote the pound and ounce
units). Finally, paired t-tests confirm that
PUC is significantly different than each
competitor method at the 0.05 level.



Identifying the Units of Measurement in Tabular Data 7

References

1. Brown, G.: pyqudt (2019), https://pypi.org/project/pyqudt/ [Accessed on
06/02/2020]

2. Ceritli, T., Williams, C.K.I., Geddes, J.: ptype: Probabilistic type inference. Data
Mining and Knowledge Discovery 34(3), 870—-904 (2020)

3. Chambers, C., Erwig, M.: Reasoning about spreadsheets with labels and dimen-
sions. Journal of Visual Languages & Computing 21(5), 249–262 (2010)

4. Edwards, A.L.: Note on the "correction for continuity" in testing the significance
of the difference between correlated proportions. Psychometrika 13(3), 185–187
(1948)

5. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by Gibbs sampling. In: Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics. pp. 363–370. Asso-
ciation for Computational Linguistics (2005)

6. Foppiano, L., Romary, L., Ishii, M., Tanifuji, M.: Automatic identification and
normalisation of physical measurements in scientific literature. In: Proceedings of
the ACM Symposium on Document Engineering 2019. p. 24. ACM (2019)

7. Goldsmith, J.: wikipedia (2016), https://pypi.org/project/wikipedia/ [Accessed on
06/02/2020]

8. Grecco, H.E.: pint Documentation Release 0.10.dev0 (2019), https://buildmedia.
readthedocs.org/media/pdf/pint/latest/pint.pdf [Accessed on 05/08/2019]

9. Hignette, G., Buche, P., Dibie-Barthélemy, J., Haemmerlé, O.: Fuzzy annotation
of web data tables driven by a domain ontology. In: European Semantic Web
Conference. pp. 638–653. Springer Berlin Heidelberg (2009)

10. Keil, J.M., Schindler, S.: Comparison and evaluation of ontologies for units of mea-
surement. Semantic Web 10, 1–19 (08 2018). https://doi.org/10.3233/SW-180310

11. Lagi, M.: Quantulum (2016), https://github.com/marcolagi/quantulum [Accessed
on 05/08/2019]

12. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. In: Soviet Physics Doklady. vol. 10, pp. 707–710 (1966)

13. Minhee, H.: Wikidata (2017), https://pypi.org/project/wikipedia/ [Accessed on
06/02/2020]

14. Quinn, J.A., Williams, C.K.I., McIntosh, N.: Factorial switching linear dynamical
systems applied to physiological condition monitoring. IEEE Trans. Pattern Anal.
Mach. Intell. 31(9), 1537–1551 (2009)

15. Rijgersberg, H., Van Assem, M., Top, J.: Ontology of units of measure and related
concepts. Semantic Web 4(1), 3–13 (2013)

16. Samadian, S., McManus, B., Wilkinson, M.D.: Automatic detection and resolution
of measurement-unit conflicts in aggregated data. BMC Medical Genomics 7(1),
S12 (2014)

17. Shbita, B., Rajendran, A., Pujara, J., Knoblock, C.A.: Parsing, representing and
transforming units of measure. Modeling the World’s Systems (2019)

18. Van Assem, M., Rijgersberg, H., Wigham, M., Top, J.: Converting and annotating
quantitative data tables. In: International Semantic Web Conference. pp. 16–31.
Springer Berlin Heidelberg (2010)

19. Vrandečić, D., Krötzsch, M.: Wikidata: A free collaborative knowl-
edgebase. Communications of the ACM 57(10), 78–85 (09 2014).
https://doi.org/10.1145/2629489, http://doi.acm.org/10.1145/2629489,
https://query.wikidata.org/ [Accessed on 25/11/2019]

https://pypi.org/project/pyqudt/
https://pypi.org/project/wikipedia/
https://buildmedia.readthedocs.org/media/pdf/pint/latest/pint.pdf
https://buildmedia.readthedocs.org/media/pdf/pint/latest/pint.pdf
https://doi.org/10.3233/SW-180310
https://github.com/marcolagi/quantulum
https://pypi.org/project/wikipedia/
https://doi.org/10.1145/2629489
http://doi.acm.org/10.1145/2629489
https://query.wikidata.org/


8 Taha Ceritli and Christopher K. I. Williams

20. Williams, J., Negreanu, C., Gordon, A.D., Sarkar, A.: Understanding and inferring
units in spreadsheets. In: 2020 IEEE Symposium on Visual Languages and Human-
Centric Computing. pp. 1–9 (2020)

21. Wolfram|Alpha: Units Overview-Wolfram Language Documentation (2019),
https://reference.wolfram.com/language/tutorial/UnitsOverview.html [Accessed
on 05/08/2019]

https://reference.wolfram.com/language/tutorial/UnitsOverview.html


Identifying the Units of Measurement in Tabular Data 9

Supplemental Materials
Below, we give additional information about our knowledge graph of units (Ap-
pendix A), describe our experimental setup (Appendix B), provide additional
information about our method (Appendix C) and discuss our experimental re-
sults further (Appendix D).

A Additional Information about Our Knowledge Graph

We represent units by extending a dictionary of units curated from Wikipedia8

with information from WikiData [19] and QUDT (Quantities, Units, Dimensions
and Data Types Ontology)9. [10] show that WikiData is the most comprehensive
knowledge graph for units and that QUDT contains additional information to
WikiData. By extending the existing dictionary, we increase the number of units
from 284 to 1080 (we only consider the units in English, although extensions to
other languages are straightforward).

Table 3 presents two instances that respectively represent the units of litre
and gram. The instances in the original dictionary can have six attributes: name,
surfaces, entity, URI, dimensions, and symbols. Note that the “surfaces” attribute
denotes a list of strings that refer to a unit, whereas the “symbols” attribute is
a list of possible symbols and abbreviations for that unit.

name surfaces entity URI dimensions symbols

litre cubic decimetre, litre, volume .../wiki/Litre {’base’: ’decimetre’, l, L, ltr
cubic decimeter, liter ’power’: 3}

gram gram, gramme mass .../wiki/Gram— g, gm

Table 3: Two elements of the unit dictionary. Note that URIs begin with https:
//en.wikipedia.org/.

For each instance we extract a dimension, a unit and a list of unit symbols.
The name and entity attributes of the instances in Table 3 are respectively used
as units and their dimensions. Note that the naming convention used in the
dictionary differs from our terminology in that it refers to dimension as entity
and uses the “dimensions" attribute to encode the relationship between units.
The “surfaces” and “symbols” attributes are combined to build a set of unit
symbols. To search for additional symbols of a unit, we query WikiData using
the URI attribute. Additionally, the QUDT reference ID, when available in the
response obtained from WikiData, is used to query QUDT.

8 Accessible at https://github.com/marcolagi/quantulum/blob/master/quantulum/
units.json

9 https://www.qudt.org/

https://en.wikipedia.org/
https://en.wikipedia.org/
https://github.com/marcolagi/quantulum/blob/master/quantulum/units.json
https://github.com/marcolagi/quantulum/blob/master/quantulum/units.json


10 Taha Ceritli and Christopher K. I. Williams

We support the following dimensions: acceleration, amount of substance, an-
gle, area, capacitance, catalytic activity, charge, currency, current, data storage,
data transfer rate, dimensionless, dynamic viscosity, electric potential, electrical
conductance, electrical resistance, energy, flux density, force, frequency, illumi-
nance, inductance, instance frequency, irradiance, kinematic viscosity, length,
linear mass density, luminance, luminous flux, luminous intensity, magnetic field,
magnetic flux, magnetomotive force, mass, mass flow, power, pressure, radiation
absorbed dose, radiation exposure, radioactivity, sound level, speed, tempera-
ture, time, torque, typographical element, volume, volume (lumber), volumetric
flow.

To query WikiData, Wikipedia and QUDT, we respectively use wikidata [13],
wikipedia [7] and pyqudt [1].

B Additional Information about Our Experimental Setup

Datasets We conduct experiments on 24 data columns obtained from 16 CSV
data files, each of which contains at least one column where the measurements
are encoded by units of measurement. The datasets used can be briefly described
as follows:

– Arabica, Robusta: a collection of reviews about coffee beans.
– HES (Household Electricity Survey): time series measurements of the elec-

tricity use of domestic appliances (to gain access to the data, please register
at https://tinyurl.com/ybbqu3n3).

– Huffman: the Huffman Prairie flight trials in 1904, which is available through
the U.S. Centennial of Flight Commission.

– Maize Meal: a list of maize meal products.
– MBA: a list of products in a grocery shop.
– Open Units: a list of 1,000 standard servings of branded drinks and their

alcohol content.
– PHM Collection: information on the collection of Powerhouse Museum Syd-

ney, including textual descriptions, physical, temporal, and spatial data as
well as, where possible, thumbnail images.

– 143. . . 6, 143. . . 23 and 228. . . 96: a set of data Web tables from T2Dv2 Gold
Standard to evaluate matching systems on the task of matching Web tables
to the DBpedia knowledge base.

– query_2, query_4: a set of tables extracted from WikiData using the prop-
erties of height or weight.

– Zomato: information about restaurants extracted from Zomato.

The dimensions of the data columns were annotated by hand for these sets,
resulting in 2 currency, 2 data storage, 6 mass, 3 volume and 11 length columns.
We also annotated each data entry in terms of its numeric value and unit symbol.
Note that numeric values are missing in 5 data columns, i.e., only unit symbols
are observed in the entries. For example, the “Quantity Units" column of the
Open Units dataset consists of three unique values. These are ml, pint and cl,

https://tinyurl.com/ybbqu3n3


Identifying the Units of Measurement in Tabular Data 11

which respectively denote the units of millilitres, pint and centiltres. Table 4
presents the number of entries, unique entries, units and unit symbols per data
column. The number of unit symbols per data column varies between 2 and 11.

dataset column # non-missing entries # unique entries # units # unit symbols

Arabica Bag W. . . 1,283 51 2 2
Arabica Altitude 132 81 2 11
HES Freezer. . . 50 47 2 11
HES Refrig. . . 38 37 2 9
Huffman DIST. . . 71 68 2 2
Maize PACK . . . 30 10 2 2
MBA CURR. . . 43 19 3 6
Open U. . . Quanti. . . 1,082 3 3 3
PHM Height 30,312 1,313 3 5
PHM Weight 179 135 2 3
PHM Width 36,330 1,282 3 5
PHM Depth 19,400 1,073 3 4
PHM Diameter 2,106 377 2 2
Robusta Bag W. . . 28 4 2 2
Robusta Altitude 8 3 1 2
query_2 unitH. . . 22 3 3 3
query_2 unitW. . . 22 3 3 3
query_4 unitH. . . 22 3 3 3
Zomato currency 6,386 9 9 9
143. . . 62 FORMAT 123 19 2 3
143. . . 23 Size 3,855 1,667 2 2
228. . . 96 Size 377 256 2 2
3b5. . . ff amount 5 5 2 2

Table 4: Size of the datasets used and the number of units and unit symbols in
each data column.

Baselines As we describe in Sec. 3, the methods proposed in [18,9,16,17,6,8,11,5]
do not address the unit canonicalization task. However, we can construct base-
lines to be used in our experiments by adapting some of these methods, namely
CCUT [17], Grobid-Quantities (GQ) [6], Pint [8], Stanford NER (S-NER, [5])
and Quantulum [11]. All these methods take as input a sentence (e.g., “. . . 2
litres of water.”) and annotate the words that refer to quantities (e.g., 2 litres)
with their dimensions (e.g., volume), except S-NER which needs to be trained
again for the dimension prediction. Here, we use the data values of the entries
as inputs to these methods.

We construct baselines for dimension inference as follows. We first identify
the dimensions of the entries of a data column using a competitor method and
then predict the column dimension through majority voting, i.e., assigning the
most common dimension as the column dimension. The baseline method based
on the S-NER is obtained by training the pre-trained model with pairs of unit



12 Taha Ceritli and Christopher K. I. Williams

symbols and their dimensions (e.g., metres - length). The resulting model then
generates a tag for each data entry of a data column and can be used to assign
a dimension to that column through majority voting.

On the unit identification task, we evaluate whether the unit of a data entry
can be correctly identified, e.g., 1 cm as 1 and centimetre. For this, we compare
our method with CCUT, GQ, Pint and Quantulum, which are developed for
identifying units in textual documents.

Evaluation Metrics We use different sets of metrics for dimension inference
and unit identification. For dimension inference, we use the overall accuracy
and the Jaccard index. See [2] for a detailed description of these metrics and
how they are used for type inference. To measure the performance on the unit
identification task, we report the accuracies of the methods per dataset and apply
paired t-tests to determine whether the predictions of the competitor methods
are significantly different from the predictions of our method. Note that the
accuracy on the unit identification task measures the ratio of number of entries
in a dataset for which the unit is correctly predicted over the number of entries
in a dataset.

C Additional Information about Our Method

C.1 Notation

Table 5 presents a summary of our notation.

Symbol Description

t the column dimension
ui the unit of the ith row
zi the label of the ith row
vi the numeric value of the ith row
xi the unit symbol of the ith row
yi the characters of the ith row
K the number of possible dimensions
Lt the number of possible units for dimension t
Sui the number of possible unit symbols for unit ui

Table 5: A summary of the notation used by PUC.

We assume that a column of data y = {yi}Ni=1 consisting of N rows has been
read in, where each yi denotes the characters in the ith row. Additionally, each
yi is assumed to be parsed to a numeric value vi and a unit symbol xi, which
may be missing for some entries, i.e., xi may be null. We propose a generative
model with a set of latent variables t, u = {ui}Ni=1 and z = {zi}Ni=1, where t
denotes the dimension of a column, ui the unit and zi the label of its ith row.



Identifying the Units of Measurement in Tabular Data 13

The missing and anomalous labels, denoted by m and a respectively, are used to
model the data entries where the unit symbols are missing or anomalous. Thus,
each zi can be m or a as well as a row unit that fit the column dimension, i.e.
zi ∈ {Litre,Cubic foot, ...,m, a} given that t is volume. With this noise model,
we make our inference procedure robust against missing and anomalous unit
symbols.

C.2 Parsing Unit Symbols

Unit symbols are usually positioned after quantities as in 1 L, with some excep-
tions where the conventions are different. For example, they are usually placed
before quantities to represent monetary amounts, e.g., $159000 and $85810.
When abbreviations are used, however, unit symbols are placed after numeric
parts, e.g., 70 USD, 19.68 AUD. Monetary amounts can also be represented in
various non-standard formats. For example, whitespace may be placed between
symbols and amounts, e.g., $ 1012, $ 964. We develop regular expressions by
taking into account possible positions of unit symbols. In particular, we can
parse a numeric value expressed as a fraction, or an integer or a float, followed
by whitespace, then a string. Additionally, we remove leading and trailing whites-
pace as well as trailing dots. We use the following regular expression to parse a
unit symbol from a given text:

import re
numeric_with_string_const_pattern = r"""

[-+]? # optional sign
(

(?: \d+ \/ \d+ ) # 1/4 etc
|
(?: \d* [.,] \d+ ) # .1 .12 .123 etc 9.1 etc 98.1 etc
|
(?: \d+ \.? ) # 1. 12. 123. etc 1 12 123 etc

) ?
# whitespace as separator
(?: [\s]*) ?

# followed by optional characters (alphanumeric, whitespace, some punctuation marks
([\w\s.!?\\-]*) ?
"""

rx = re.compile(numeric_with_string_const_pattern, re.VERBOSE)

C.3 Derivations for Inference

Column Dimension: Assuming that the entries of a data column are condi-
tionally independent given the column dimension, we obtain the posterior distri-
bution of column dimension t by marginalizing over row unit and label variables



14 Taha Ceritli and Christopher K. I. Williams

u and z as follows:

p(t = k|x) ∝ p(t = k,x),

= p(t = k)

N∏
i=1

p(xi|t = k),

= p(t = k)

N∏
i=1

 Lk∑
ui=1

∑
zi∈{ui,m,a}

p(xi, zi, ui|t = k)

 ,
= p(t = k)

N∏
i=1

[
Lk∑

ui=1

p(ui|t = k)
(
wk

ui
p(xi|zi = ui)

+wm
ui
p(xi|zi = m) + wa

ui
p(xi|zi = a)

)]
. (1)

Eq. 1 can be used to estimate the column dimension t, since the one with
maximum posterior probability is the most likely dimension corresponding to
the column x. As per the equation, the model estimates the column dimension
by considering all the data rows, i.e. having missing or anomalous unit symbols
does not confuse the dimension inference. Note that such entries would have
similar likelihoods for each column dimension, which allows the model to choose
the dominant dimension for regular entries.

Row Label: Following the inference of column dimension, the posterior prob-
abilities of each row label zi given t = k and xi is obtained by marginalizing the
latent unit variable ui as follows:

p(zi = j|t = k, xi) =
p(zi = j, xi|t = k)∑

`∈{ui,m,a} p(zi = `, xi|t = k)
,

where p(zi = j, xi|t = k) can be calculated as follows:

p(zi = j, xi|t = k) =

Lk∑
l=1

p(ui = l, zi = j, xi|t = k),

=

Lk∑
l=1

p(ui = l|t = k)wj
l p(xi|zi = j). (2)

Row Unit: Given t = k, zi = j and xi, the posterior distribution of row unit
ui is obtained as:

p(ui = l|t = k, zi = j, xi) =
p(ui = l, xi|t = k, zi = j)∑Lk

ui=1 p(ui = l, xi|t = k, zi = j)
,

where p(ui = l, xi|t = k, zi = j) can be calculated as follows:

= p(ui = l|t = k)p(xi|t = k, ui = l, zi = j),

= p(ui = l|t = k)p(xi|zi = j).



Identifying the Units of Measurement in Tabular Data 15

Column Unit: Following the column dimension inference, we set the column
unit l∗ as follows:

l∗ = argmax
l

N∑
i=1

p(ui = l|t = k, xi), (3)

where l ∈ {1, . . . , Lt} denotes a possible unit for dimension t.

p(ui = l|t = k, xi) ∝ p(ui = l|t = k) p(xi|ui = l, t = k),

= p(ui = l|t = k)

[ ∑
`∈{ui,m,a}

(
p(xi, zi = `|ui = l, t = k)

)]
,

= p(ui = l|t = k)

[ ∑
`∈{ui,m,a}

(
p(zi = `|ui = l) p(xi|zi = `)

)]
.

Correcting Anomalous Unit Symbols: Row label inference annotates each
data entry either as a unit, missing or anomalous. We assume that the units
of anomalous entries are encoded by anomalous unit symbols (e.g., ltrs for
litres) and can be identified by mapping anomalous unit symbols (e.g., ltrs) to
known unit symbols (e.g., lt) based on the edit-distance [12]. The edit-distance
measures the minimum number of operations (addition, deletion or substitu-
tion) that needs to be done to transform a string to another, and can handle
misspellings and non-standard abbreviations. Note that we restrict the set of
unit symbols to be compared with according to the column dimension, i.e., we
compare ltrs with known unit symbols that encode units of volume when the
column dimension is inferred as volume.

Canonicalizing Units: Following the inference of the row units and the column
unit, we are now interested in representing each row with the same unit by
scaling its numerical value (e.g., converting the data entry 1 m to 100 cm when
the column and row units are respectively centimetres and metres). Currently,
we convert units via an existing tool named Pint [8]. See Sec. 3 for a detailed
discussion of Pint.

D Additional Experimental Results

D.1 Dimension Inference

PUC correctly predicts the dimensions of all data columns, except one data
column for which all the competitor methods also fail. These failures result
from the inability to parse the data values such as 5'10" where ' and " denote
respectively feet and inches. We could improve our regular expression to parse
such formats, which we have not done in order not to optimise on test datasets.
On the other hand, the leading competitor methods are S-NER and Quantulum,



16 Taha Ceritli and Christopher K. I. Williams

which achieve the same overall accuracy. They both fail to identify the column
dimensions of seven data columns. To compare our method with these baselines,
we present their normalised confusion matrices in Fig. 2, normalised so that a
column sums to 1.

(a) Quantulum (b) S-NER (c) PUC

Fig. 2: Normalized confusion matrices for (a) Quantulum, (b) S-NER and (c)
PUC plotted as Hinton diagrams, where the area of a square is proportional to
the magnitude of the entry.

Fig. 2(b) shows that S-NER tends to infer the column dimension as length.
These failures can be explained by the differences in the number of characters of
unit symbols. S-NER performs better on longer unit symbols, which may not be
surprising as it uses n-grams for feature extraction. For example, the confusions
between volume and length occur on the HES dataset, where the dimensions
of units symbols for cubic foot (e.g., cuft, cu.ft) are correctly predicted as
volume. Nevertheless, the dimensions of unit symbols for litre (e.g., l, L) are
predicted as length instead of volume, which result in incorrect predictions since
they are more frequent in the data. Character-level features (e.g., n-grams) could
be useful to handle variations in the data such as misspellings; however, they
may lead to limited performance on short unit symbols. This result indicates
the advantage of incorporating knowledge about unit symbols directly into the
model, as in PUC.

As we discuss above, Quantulum cannot parse measurements such as 5'10"
and fails to identify the dimension of the corresponding data column. The con-
fusion between length and data storage occurs in a data column where kilobyte
and megabyte are respectively encoded by K and M. Here, Quantulum mislabels
M as metre and does not generate a prediction for K. A detailed inspection of
the remaining five columns shows that numeric values are missing in the entries,
which cannot be handled by Quantulum.

To determine whether the column dimension predictions of PUC and the
leading competitor methods (namely S-NER and Quantulum) are significantly
different, we apply a variation of the McNemar’s test as the number of sam-



Identifying the Units of Measurement in Tabular Data 17

ples is low (see e.g., [4]). This test assumes that the two methods should have
the same error rate under the null hypothesis. We compute the exact p-value
2
∑n01

i=n10

(
n
i

)
0.5i(1−0.5)n−i where n = n01+n10 with n01 and n10 which respec-

tively denote the number of columns misclassified by only a competitor method,
and by only PUC. The test to compare PUC and S-NER results in a p-value of
0.03 since n01 and n10 are respectively equal to 6 and 0. These results reject the
null hypothesis that the means are equal and confirm that they are significantly
different at the 0.05 level. We obtain the same result from the test between PUC
and Quantulum, as n01 and n10 are the same as S-NER, which confirms that
they are significantly different at the 0.05 level.

Lastly, we have evaluated the runtime of each method per data column.
Figure 3 shows that S-NER is the slowest method, whereas PUC is the fastest
on average. The leading competitor method is Pint; however, the variation in
its runtime is higher than PUC. Note that we have not explicitly optimised our
method for speed, which may improve further its scalability.

Fig. 3: Runtime violin plots denote the time in seconds taken to infer dimen-
sions per column. The dot, box, and whiskers respectively denote the median,
interquartile range, and 95% confidence interval.

D.2 Unit Identification

PUC outperforms the competitor methods by a large margin on 4 datasets
(143. . . 23, HES, MBA and Zomato) out of the 15. Note that we exclude the
Taser dataset from the evaluations since none of the methods could parse its
values such as 5'10" where ' and " denote respectively feet and inches. On the
remaining 11 datasets, there is at least one competitor method competitive with
ours.



18 Taha Ceritli and Christopher K. I. Williams

The performance gap between PUC and the competitor methods reflects
the importance of mapping anomalous unit symbols to known symbols through
string-similarity. For example, on the HES dataset, the competitor methods
could accurately identify only a few unit symbols, whereas our method could
successfully identify almost all of the unit symbols. Out of 14 unique unit sym-
bols, CCUT identified L and cuft, and Pint identified L, l and litres. In ad-
dition to these three unit symbols, Quantulum identified Litres. Surprisingly,
GQ, which is one of the state-of-the-art methods in identifying units in text doc-
uments, could not identify any of these unit symbols. PUC, on the other hand,
could identify 12 unit symbols correctly, with only two unidentified unit symbols
(Cu and cf).

We observe that Quantulum performs better than PUC on the Arabica
dataset. This result is mainly due to the Altitude column where metre is encoded
by M, which is a known symbol for mile. Consequently, our method predicts the
units of such entries as mile rather than metre. We could avoid this confusion by
making row units dependent, so that the presence of unit symbols (e.g., m, me-
tres) in the other data entries that encode the same unit (e.g., metre) is treated
as an indicator of M being a symbol for metre rather than mile. Here, we do not
adapt our model accordingly so that it is not optimised on test datasets.

On the Zomato dataset, PUC performs better than the competitor methods.
However, it still cannot identify 4 symbols out of 10 currency symbols and maps
them to incorrect units based on string similarities. For example, PUC identifies
QR (a symbol for Qatari Riyal) as an anomalous unit symbol. As QR is an out-
of-dictionary unit symbol, it is mapped by PUC to the known BRL, which is
a symbol for the South African Rand. Although this mapping mechanism can
improve performance in certain cases (e.g., the HES dataset), it can sometimes
fail.

To determine whether the performances of PUC and Pint are significantly
different, we have applied a paired t-test on the differences of the accuracies,
i.e., Accuracy(PUC) - Accuracy(competitor method). We have calculated the
t-statistic of 4.85 and the p-value of 0.0002 for CCUT, the t-statistic of 8.61 and
the p-value of 0.000001 for GQ, the t-statistic of 2.74 and the p-value of 0.01
for Pint and the t-statistic of 2.55 and the p-value of 0.02 for Quantulum. These
results reject the null hypothesis that the means are equal and confirm that they
are significantly different at the 0.05 level.

Lastly, Table 2 indicates that Pint and Quantulum perform best among the
competitor methods. We have compared their performances through a paired t-
test, i.e., Accuracy(Quantulum) - Accuracy(Pint), which suggests that they are
not significantly different at the 0.05 level (the t-statistics of 0.18 and the p-value
of 0.86). This result suggests that neither method is comprehensive enough to
handle various unit symbols observed in different datasets.


	Identifying the Units of Measurement in Tabular Data

