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Abstract. A popular framework for the interpretation of image se-
quences is the layers or sprite model, see e.g. [1], [2]. Jojic and Frey
[3] provide a generative probabilistic model framework for this task, but
their algorithm is slow as it needs to search over discretized transforma-
tions (e.g. translations, or affines) for each layer simultaneously. Exact
computation with this model scales exponentially with the number of
objects, so Jojic and Frey used an approximate variational algorithm
to speed up inference. Williams and Titsias [4] proposed an alternative
sequential algorithm for the extraction of objects one at a time using a
robust statistical method, thus avoiding the combinatorial explosion.
In this chapter we elaborate on our sequential algorithm in the following
ways: Firstly, we describe a method to speed up the computation of the
transformations based on approximate tracking of the multiple objects
in the scene. Secondly, for sequences where the motion of an object is
large so that different views (or aspects) of the object are visible at dif-
ferent times in the sequence, we learn appearance models of the different
aspects. We demonstrate our method on four video sequences, including
a sequence where we learn articulated parts of a human body.

1 Introduction

A powerful framework for modelling video sequences is the layer-based approach which
models an image as a composite of 2D layers, each one representing an object in terms
of its appearance and region of support or mask, see e.g. Wang and Adelson [1] and
Irani et al. [2]. A layered representation explicitly accounts for occlusion between the
objects, permits motion segmentation in a general multiple-frame setting rather than
in pairs of frames, and provides appearance models for the underlying objects. These
properties can allow layered models to be useful for a number of different purposes
such as video compression, video summarization, background substitution (e.g. alpha
matting applications), object recognition (e.g. learning an object recognition system
from video clips without needing human annotation) and others.

Jojic and Frey [3] provided a principled generative probabilistic framework for
learning a layered model allowing transparency between the layers. Williams and Titsias
[4] developed a similar model where layers strictly combine by occlusion. Learning these
models using an exact EM algorithm faces the problem that as the number of objects
increases, there is a combinatorial explosion of the number of configurations that need
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to be considered. If there are L possible objects, and there are J transformations
that any one object can undergo, then we will need to consider O(JL) combinations
to explain any image. Jojic and Frey [3] tackled this problem by using a variational
inference scheme searching over all transformations simultaneously, while Williams and
Titsias [4] developed a sequential approach using robust statistics which searches over
the transformations of one object at each time. Both these methods do not require a
video sequence and can work on unordered sets of images. In this case, training can
be very slow as it is necessary to search over all possible transformations of at least a
single object on every image. However, for video sequences we could considerably speed
up the training by first localizing each object based on a recursive processing of the
consecutive frames. Recursive localization can approximate the underlying sequence
of transformations of an object in the frames and thus learning can be carried out
with a very focused search over the neighbourhood of these transformations or without
search at all when the approximation is accurate. We refer to the recursive localization
procedure as object tracking.

In this chapter we describe two developments of the above model. Firstly, assuming
video data and based on tracking we speed up the method of Williams and Titsias [4].
First, the moving background is tracked and then its appearance is learned, while
moving foreground objects are found at later stages. The tracking algorithm itself
recursively updates an appearance model of the tracked object and approximates the
transformations by matching this model to the frames through the sequence.

Secondly, in order to account for variation in object appearance due to changes
in the 3D pose of the object and self occlusion, we model different visual aspects or
views of each foreground object. This is achieved by introducing a set of mask and
appearance pairs, each one associated with a different view of the object. To learn
different viewpoint object models we use approximate tracking, so that we first estimate
the 2D or planar transformations of each foreground object in all frames and then given
these transformations we stabilize the video and learn the viewpoint models for that
object using a mixture modelling approach.

The structure of the remainder of the chapter is as follows: In section 2 we describe
the layered generative model which assumes multiple views for each foreground object.
Section 3 describes learning the model from a video sequence, while section 4 discusses
related work. Section 5 gives experimental results and we conclude with a discussion
in section 6.

2 Generative layered model

For simplicity we will present the generative model assuming that there are two layers,
i.e. a foreground object and a static background. Later in this section we will discuss
the case of arbitrary number of foreground layers and a moving background.

Let b denote the appearance image of the background arranged as a vector. As-
suming that the background is static, b will have the same size as the data image size
(although note that for moving backgrounds, b will need to be larger than the image
size). Each entry bi stores the ith pixel value which can either be a grayscale intensity
value or a colour value. In our implementation we allow coloured images where bi is a
three-dimensional vector in the RGB space. However, for notational convenience below
we assume that bi is a scalar representing a grayscale value.

In contrast to the background, the foreground object occupies some region of the
image and thus to describe this layer we need both an appearance f and mask π. The
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foreground is allowed to move so there is an underlying transformation with index j that
e.g. corresponds to translational or affine motion and a corresponding transformation
matrix so that Tjf and Tjπ is the transformed foreground and mask, respectively. A
pixel in an observed image is either foreground or background. This is expressed by a
vector of binary latent variables s, one for each pixel drawn from the distribution

P (s|j) =

P
Y

i=1

(Tjπ)si

i (1− Tjπ)1−si

i , (1)

where 1 denotes the vector of ones. Each variable si is drawn independently so that
for pixel i, if (Tjπ)i ≃ 0, then the pixel will be ascribed to the background with
high probability, and if (Tjπ)i ≃ 1, it will be ascribed to the foreground with high
probability. Note that s is the binary mask of the foreground object in an example
image, while π is the prior untransformed mask that captures roughly the shape of the
object stored in f .

Selecting a transformation index j, using prior Pj over J possible values with
PJ

j=1
Pj = 1, and a binary mask s, an image x is drawn from the Gaussian

p(x|j, s) =
P

Y

i=1

N(xi; (Tjf)i, σ
2
f )siN(xi; bi, σ

2
b )1−si , (2)

where each pixel is drawn independently from the above conditional density. To express
the likelihood of an observed image p(x) we marginalise out the latent variables, which
are the transformation j and the binary mask s. Particularly, we first sum out s using
(1) and (2) and obtain

p(x|j) =

P
Y

i=1

(Tjπ)iN(xi; (Tjf)i, σ
2
f ) + (1− Tjπ)iN(xi; bi, σ

2
b ). (3)

Using now the prior Pj over the transformation j, the probability of an observed
image x is p(x) =

PJ

j=1
Pjp(x|j). Given a set of images {x1, . . . ,xN} we can adapt the

parameters θ = {b, f , π, σ2
f , σ2

b} to maximize the log likelihood using the EM algorithm.

The above model can be extended so as to have a moving background and L fore-
ground objects [4]. For example, for two foreground layers with parameters (f1, π1, σ

2
1)

and (f2, π2, σ
2
2) and also a moving background, the analogue of equation (3) is

p(x|j1, j2, jb) =
P

Y

i=1

(Tj1π1)iN(xi; (Tj1 f1)i, σ
2
1) + (1− Tj1π1)i×

ˆ

(Tj2π2)iN(xi; (Tj2 f2)i, σ
2
2) + (1− Tj2π2)iN(xi; (Tbb)i, σ

2
b )

˜

, (4)

where j1, j2 and jb denote the transformation of the first foreground object, the second
foreground object and the background, respectively.

Furthermore, we can allow for an arbitrary occlusion ordering between the fore-
ground objects, so that it can vary in different images, by introducing an additional
hidden variable that takes as values all L! possible permutations of the foreground
layers.
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2.1 Incorporating multiple viewpoints

The layered model presented above assumes that the foreground object varies due to a
2D (or planar) transformation. However, in many video sequences this assumption will
not be true e.g. a foreground object can undergo 3D rotation so that at different times
we may see different views (or aspects) of the object. For example, Figure 3 shows
three frames of a sequence capturing a man walking; clearly the man’s pose changes
substantially during time. Next we generalize the layered model so that the appearance
of a foreground object can be chosen from a set of possible appearances associated with
different viewpoints.

Assume again that there are two layers: one static background and one moving
foreground object. We introduce a discrete latent variable v, that can obtain V possible
values indexed by integers from 1 to V . For each value v we introduce a separate pair
of appearance fv and mask π

v defined as in section 2. Each pair (fv , πv) models a
particular view of the object.

To generate an image x we first select a transformation j and a view v using
prior probabilities Pj and Pv, respectively. Then we select a binary mask s from the
distribution P (s|j, v) =

QP

i=1
(Tjπ

v)si

i (1 − Tjπ
v)1−si

i , and draw an image x from the

Gausssian p(x|j, v, s) =
QP

i=1
N(xi; (Tjf

v)i, σ
2
f )siN(xi; bi, σ

2
b )1−si . Note the similarity

of the above expressions with equations (1) and (2). The only difference is that now
the appearance f and mask π are indexed by v to reflect the fact that we have also
chosen a view for the foreground object.

To express the probability distribution according to which an image is generated
given the transformation, we sum out the binary mask and the view variable and obtain

p(x|j) =

V
X

v=1

Pvp(x|j, v), (5)

where p(x|j, v) is given as in (3) with f and π indexed by v. Notice how the equation
(5) relates to equation (3). Clearly now p(x|j) is a mixture model of the type of model
given in (3) so that each mixture component is associated with a visual aspect. For
example, if we choose to have a single view the latter expression reduces to the former
one.

It is straightforward to extend the above model to the case of L foreground layers
with varying viewpoints. In this case we need a separate view variable vℓ for each fore-
ground object and a set of appearance and mask pairs: (f

vℓ

ℓ , π
vℓ

ℓ ), vℓ = 1, . . . , Vℓ. For
example, when we have two foreground objects and a moving background the condi-
tional p(x|j1, j2, jb, v1, v2) is given exactly as in (4) by introducing suitable indexes to
the foreground appearances and masks that indicate the choices made for the viewpoint
variables.

3 Learning

Given the set of possibly unordered images {x1, . . . ,xN} a principled way to learn the
parameters θ = ({fv1

1 , πv1

1 , σ2
1,v1
}V1

v1=1, . . . , {f
vL

L , π
vl

L , σ2
L,vL
}VL

vL=1,b, σ2
b ) is by maximiz-

ing the log likelihood L(θ) =
PN

n=1
log p(xn|θ) using the EM algorithm. However, an

exact EM algorithm is intractable. If the foreground objects and the background can
undergo J transformations and assuming V views for each foreground object, the time
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needed to carry out the E-step for a training image is O(JL+1V LL!). Clearly, this com-
putation is infeasible as it grows exponentially with L. A variational EM algorithm can
be used to simultaneously infer the parameters, the transformations and the viewpoint
variables in all images in time linear with L. However such algorithm can face two
problems: (i) it will be very slow as the number of all transformations J can be very
large (e.g. for translations and rotations can be of order of hundred of thousands) and
(ii) simultaneous search over all the unknown quantities can be prone to severe local
maxima, e.g. there is a clear danger of confusion the aspects of one object and the
corresponding aspects of a different object.

Our learning algorithm works for video data and proceeds in stages so that, roughly
speaking, each stage deals with a different set of unknown variables. Table 1 illustrates
all the different steps of the algorithm. At Stage 1, we ignore the search needed to
compute the occlusion ordering of the foreground objects and we focus on approximat-
ing the transformations {jn

1 , jn
2 , . . . , jn

L, jn
b }

N
n=1 and inferring the viewpoint variables

{vn
1 , . . . , vn

L}
N
n=1 for all training images. In this stage also we obtain good initial esti-

mates for the parameters of all objects. At Stage 2 we compute the occlusion order-
ings and we jointly refine all the parameters by optimizing the complete likelihood of
the model where all the transformations, view variables and occlusion orderings have
been “filled in” using their approximate values

Stage 1 is the intensive part of the learning process and is divided in sub-stages.
Particularly, the object parameters and their associated transformations are estimated
in a greedy fashion so as to deal with one object at a time. Particularly, we first track the
background in order to approximate the transformations (j1

b , . . . , jN
b ) and then given

these transformations we learn the background appearance. Then for each foreground
object sequentially we track it and learn all of its different views.

– Stage 1:

1. Track the background to compute the transformations (j1
b , . . . , jN

b ). Then learn the
background parameters (b, σ2

b ).
2. Suppressall thepixels that have been classified as part of thebackgroundin each train-

ing image, so that wn
1 indicates the remaining non-background pixels in the imagexn.

3. for ℓ = 1 to L

(a) Using the wn
ℓ vectors track the ℓth object to compute the transformations

(j1
ℓ , . . . , jN

ℓ ). Then learn the parameters {fvℓ

ℓ , πvℓ

ℓ , σ2
ℓ,vℓ
}Vℓ

vℓ=1.
(b) If ℓ = L go to Stage 2. Otherwise, construct the vectors wn

ℓ+1 from wn
ℓ so

that all the pixels classified as part of the ℓth object in all i mages are additionally
suppressed.

– Stage 2: Using the inferred values of the parameters θ from Stage 1, the transforma-
tions, and the view variables, compute the occlusion ordering of the foreground layers in
each image. Then using these occlusion orderings refine the parameters of the objects.

Table 1. The steps of the learning algorithm.

The next three sections explain in detail all the steps of the learning algorithm.
Particularly, section 3.1 discusses learning the background (step 1 in Stage 1), sec-
tion 3.2 describes learning the foreground objects (steps 2 and 3 in Stage 1) and
section 3.3 discusses computation of the occlusion ordering of the foreground objects



590 Titsias, Williams

and refinement of the parameters (Stage 2). A preliminary version of this algorithm
was presented in [5].

3.1 Learning thebackground

Assume that we have approximated the transformations {j1
b , . . . , jN

b } of the background
in each frame of the video. We will discuss shortly how to obtain such approximation
using tracking. Using these transformations we wish to learn the background appear-
ance.

At this stage we consider images that contain a background and many foreground
objects. However, we concentrate on learning only the background. This goal can be
achieved by introducing a likelihood model for the images that only accounts for the
background while the presence of the foreground objects will be explained by an outlier
process. For a background pixel, the foreground objects are interposed between the
camera and the background, thus perturbing the pixel value. This can be modelled with
a mixture distribution as pb(xi; bi) = αbN(xi; bi, σ

2
b ) + (1− αb)U(xi), where αb is the

fraction of times a background pixel is not occluded, and the robustifying component
U(xi) is a uniform distribution common for all image pixels. When the background
pixel is occluded it should be explained by the uniform component. Such robust models
have been used for image matching tasks by a number of authors, notably Black and
colleagues [6].

The background can be learned by maximizing the log likelihood
Lb =

PN

n=1
log p(xn|jn

b ) where

p(x|jb) =
P

Y

i=1

αbN(xi; (Tjb
b)i, σ

2
b ) + (1− αb)U(xi). (6)

The maximization of the likelihood over (b, σ2
b ) can be achieved by using the EM

algorithm to deal with the pixel outlier process. For example, the update equation of
the background b is

b←
N

X

n=1

[T T
jn

b
(rn(jn

b ) ∗ x
n)]./

N
X

n=1

[T T
jn

b
r

n(jn
b )], (7)

where y∗z and y./z denote the element-wise product and element-wise division between
two vectors y and z, respectively. In (7) the vector r(jb) stores the value

ri(jb) =
αbN(xi; (Tjb

b)i, σ
2
b )

αbN(xi; (Tjb
b)i, σ2

b ) + (1− αb)U(xi)
(8)

for each image pixel i, which is the probability that the ith image pixel is part of the
background (and not some outlier due to occlusion) given jb.

The update for the background appearance b is very intuitive. For each image
xn, the pixels which are ascribed to non-occluded background (i.e. rn

i (jn
b ) ≃ 1) are

transformed by T T
jn

b

, which reverses the effect of the transformation by mapping the
image xn into the larger and stabilized background image b so that xn is located within
b in the position specified by jn

b . Thus, the non-occluded pixels found in each training
image are located properly into the big panorama image and averaged to produce b.
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Tracking thebackground. We now discuss how we can quickly approximate the trans-
formations {j1

b , . . . , jN
b } using tracking. To introduce the idea of our tracking algorithm

assume that we know the appearance of the background b as well as the transformation
j1
b that associates b with the first frame. Since motion between successive frames is

expected to be relatively small we can determine the transformation j2
b for the second

frame by searching over a small discrete set of neighbouring transformations centered at
j1
b and inferring the most probable one (i.e. the one giving the highest likelihood given

by equation (6), assuming a uniform prior). This procedure can be applied recursively
to determine the sequence of transformations in the entire video.

However, the background b is not known in advance, but we can still apply roughly
the same tracking algorithm by suitably initializing and updating the background b

as we process the frames. More specifically, we initialize b so that the centered part
of it will be the first frame x1 in the sequence. The remaining values of b take zero
values and are considered as yet not-initialized which is indicated by a mask m of
the same size as b that takes the value 1 for initialized pixels and 0 otherwise. The
transformation of the first frame j1

b is the identity, which means that the first frame
is untransformed. The transformation of the second frame and in general any frame
n + 1, n ≥ 1, is determined by evaluating the posterior probability

R(jb) ∝ exp

(

PP

i=1
(Tjb

mn)i log pb(x
n+1

i ; (Tjb
bn)i)

PP

i=1
(Tjb

mn)i

)

, (9)

over the set of possible jb values around the neighbourhood of jn
b . The approximate

transformation jn+1

b for the frame is chosen to be jn+1

b = j∗b , where j∗b maximizes the
above posterior probability. Note that (9) is similar to the likelihood (6), with the only
difference being that pixels of the background that are not initialized yet are removed
from consideration and the score is normalized (by

PP

i=1
(Tjb

mn)i) so that the number
of not-yet-initialized pixels (which can vary with jb) does not affect the total score.
Once we know jn+1

b , we use all the frames up to the frame xn+1 (i.e. {x1, . . . ,xn+1})
to update b according to equation (7) where the vectors rt(jt

b) with t = 1, . . . , n + 1
have been have been updated according to equation (8) for the old value bn of the
background. The mask m is also updated so that it always indicates the pixels of b

that are explored so far.
The effect of these updates is that as we process the frames the background model

b is adjusted so that any occluding foreground object is blurred out, revealing the
background behind. Having tracked the background, we can then learn its full structure
as described earlier in this section.

3.2 Learning the foreground objects

Imagine that the background b and its most probable transformations in all training
images have been approximated. What we wish to do next is to learn the foreground
objects. We are going to learn the foreground objects one at each time. Particularly,
we assume again that we have approximated the transformations {j1

ℓ , . . . , jN
ℓ } of the

ℓth foreground object in all frames. This approximation can be obtained quickly using
a tracking algorithm (see later in this section), that is repeatedly applied to the video
sequence and each time outputs the transformations associated with a different object.

Learning of the ℓth foreground object will be based on a likelihood model for the
images that only accounts for that foreground object and the background, while the
presence of the other foreground objects is explained by an outlier process. Particularly,
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the other foreground objects can occlude both the ℓth foreground object and the back-
ground. Thus, we robustify the foreground and background pixel densities so that the
Gaussians in equation (2) are replaced by pf (xi; fi) = αfN(xi; fi, σ

2
f ) + (1−αf )U(xi)

and pb(xi; bi) = αbN(xi; bi, σ
2
b ) + (1 − αb)U(xi) respectively, where U(xi) is an uni-

form distribution in the range of all possible pixel values and αf and αb express prior
probabilities that a foreground (resp. background) pixel is not occluded. Any time
a foreground or background pixel is occluded this can be explained by the uniform
component U(xi).

Based on this robustification, we can learn the parameters associated with all dif-
ferent aspects of the object by maximizing the log likelihood

Lℓ =

N
X

n=1

log

Vℓ
X

vℓ=1

Pvℓ

P
Y

i=1

˘

(Tjn

ℓ
π

vℓ

ℓ )ipf (xn
i ; (Tjn

ℓ
f

vℓ

ℓ )i) + (1− Tjn

ℓ
π

vℓ

ℓ )ipb(x
n
i ; (Tjn

b
b)i)

¯

,

(10)
where pf (xn

i ; (Tjn

ℓ
f

vℓ

ℓ )i) and pb(x
n
i ; (Tjn

b
b)i) have been robustified as explained above.

This maximization is carried out by EM where in the E-step the quantities, Qn(vℓ),
rn(jℓ) and sn(jℓ) are computed as follows. Qn(vℓ) denotes the probability p(vℓ|x

n, jn
b , jn

ℓ )
and is obtained by

Qn(vℓ) =
Pvℓ

p(xn|jn
b , jn

ℓ , vℓ)
PVℓ

vℓ=1
Pvℓ

p(xn|jn
b , jn

ℓ , vℓ)
, (11)

while the vectors sn(jℓ) and rn
i (jn

1 ) store the values

sn
i (vℓ) =

(Tjn

ℓ
π

vℓ

ℓ )ipfℓ
(xn

i ; (Tjn

ℓ
f

vℓ

ℓ )i)

(Tjn

ℓ
π

vℓ

ℓ )ipfℓ
(xn

i ; (Tjn

ℓ
f

vℓ

ℓ )i) + (1− Tjn

ℓ
π

vℓ

ℓ )ipb(xn
i ; (Tjn

b
b)i)

, (12)

and

rn
i (vℓ) =

αfN(xn
i ; (Tjn

1
f

vℓ

ℓ )i, σ
2
1)

αfN(xn
i ; (Tjn

1
f

vℓ

ℓ )i, σ2
1) + (1− αf )U(xn

i )
, (13)

for each image pixel i. In the M-step we update the parameters {fvℓ

ℓ , πvℓ

ℓ , σ2
ℓ,vℓ
}Vℓ

vℓ=1.
For example the updates of π

vℓ

ℓ and f
vℓ

ℓ are

π
vℓ

ℓ ←

N
X

n=1

Qn(vℓ)T
T
jn

ℓ
[sn(vℓ)]./

N
X

n=1

Qn(vℓ)[T
T
jn

ℓ
1], (14)

f
vℓ

ℓ ←

N
X

n=1

Qn(vℓ)T
T
jn

ℓ
[sn(vℓ) ∗ r

n(vℓ) ∗ x
n]./

N
X

n=1

Qn(vℓ)T
T
jn

ℓ
[sn(vℓ) ∗ r

n(vℓ)]. (15)

The above updates are very intuitive. Consider, for example, the appearance f
vℓ

ℓ . For
pixels which are ascribed to the ℓth foreground and are not occluded (i.e. (sn(vℓ) ∗
rn(vℓ))i ≃ 1), the values in xn are transformed by T T

jn

ℓ
which reverses the effect of

the transformation. This allows the foreground pixels found in each training image to
be mapped in a stabilized frame and then be averaged (weighted by the viewpoint
posterior probabilities Qn(vℓ)) to produce f

vℓ

ℓ .

Tracking the foreground objects. The appearance of each foreground object can
vary significantly through the video due to large pose changes. Thus, our algorithm
should be able to cope with such variation. Below we describe a tracking algorithm that
each time matches a mask πℓ and appearance fℓ to the current frame. Large viewpoint
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variation is handled by on-line updating πℓ and fℓ so that each time they will fit the
shape and appearance of the object in the current frame.

We first discuss how to track the first foreground object, so we assume that ℓ = 1.
The pixels which are explained by the background in each image xn are flagged by the
background responsibilities rn(jn

b ) computed according to equation (8). Clearly, the
mask rn(jn

b ) = 1 − rn(jn
b ) roughly indicates all the pixels of frame xn that belong to

the foreground objects. By focusing only on these pixels, we wish to start tracking one
of the foreground objects through the entire video sequence and ignore for the moment
the rest foreground objects.

Our algorithm tracks the first object by matching to the current frame and then
updating in an on-line fashion a mask π1 and appearance f1 of that object. The mask
and the appearance are initialized so that π

1
1 = 0.5 ∗ r1(j1

b ) and f1
1 = x1, where

0.5 denotes the vector with 0.5 values1. Due to this initialization we know that the
first frame is untransformed, i.e. j1

1 is the identity transformation. To determine the
transformation of the second frame and in general the transformation jn+1

1 , with n ≥ 1,
of the frame xn+1 we evaluate the posterior probability

R(j1) ∝ exp

(

P
X

i=1

(wn+1

1 )i log
“

(Tj1π
n
1 )i×

pf (xn+1

i ; (Tj1 f
n
1 )i)+(1− Tj1π

n
1 )i(1− αb)U(xn+1

i )
”

)

, (16)

where pf (xn+1

i ; (T
j

n+1
1

fn
1 )i) is robustified as explained earlier, j1 takes values around

the neighbourhood of jn
1 and wn+1

1 = rn+1(jn+1

b ). R(j1) measures the goodness of the
match at those pixels of frame xn+1 which are not explained by the background. Note
that as the objects will, in general, be of different sizes, the probability R(j1) over
the transformation variable will have greater mass on transformations relating to the
largest object. The transformation jn+1

1 is set to be equal to j∗1 , where j∗1 maximizes
the above posterior probability. Once we determine jn+1

1 we update both the mask π1

and appearance f1. The mask is updated according to

π
n+1

1 =
“

βπ
n
1 + T T

j
n+1

1

[sn+1]
”

./
“

β1 + T T

j
n+1

1

[1]
”

, (17)

where β is a positive number. The vector sn+1 expresses a soft segmentation of the
object in the frame xn+1 and is computed similarly to equation (12). The update
(17) defines the new mask as a weighted average of the stabilized segmentation in the
current frame (i.e. T T

j
n+1

1

[sn+1(jn+1

1 )]) and the current value of the mask. β determines

the relative weight between these two terms. In all our experiments we have set β = 0.5.
Similarly, the update for the foreground appearance f1 is given by

f
n+1

1 =
“

βf
n
1 + T T

j
n+1
1

[sn+1 ∗ rn+1 ∗ x
n+1]

”

./
“

β1 + T T

j
n+1
1

[sn+1 ∗ r
n+1]

”

. (18)

The vector rn+1 is defined similarly to equation (13). Again the above update is very
intuitive. For pixels which are ascribed to the foreground (i.e. sn+1 ∗ rn+1 ≃ 1), the
values in xn+1 are transformed by T T

j
n+1

1

into the stabilized frame which allows the

1 Thevalueof 0.5 ischosen to expressour uncertainty about whether thesepixelswill ultimately
be in the foregroundmask or not.
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foreground pixels found in the current frame to be averaged with the old value fn

in order to produce fn+1. Note that the updates given by (17) and (18) are on-line
versions of the respective batch updates of the EM algorithm for maximizing the log
likelihood (6) assuming that V1 = 1.

The above tracking algorithm is a modification of the method presented in [5] with
the difference that the batch updates of (f1, π1) used there have been replaced by on-
line counterparts that allow tracking the object when the appearance can significantly
change from frame to frame.

Once the first object has been tracked we learn the different viewpoint models
for that object by maximizing (10). When these models has been learned we can go
through the images to find which pixels are explained by this object. Then we can
remove these pixels from consideration by properly updating each wn vector which
allows tracking a different object on the next stage. Particularly, we compute the vector
ρ

n
1 =

PV1

v1=1
Qn(v1)(Tjn

1
π

v1

1 ) ∗ rn(vn
1 ). ρ

n
1 will give values close to 1 only for the non-

occluded object pixels of image xn, and these are the pixels that we wish to remove
from consideration. We can now run the same tracking algorithm again by updating
wn

ℓ+1 (ℓ ≥ 1) as by wn
ℓ+1 = (1− ρ

n
ℓ ) ∗wn

ℓ which allows tracking a different object on
the ℓ + 1th iteration. Note also that the new mask πℓ+1 is initialized to 0.5 ∗ wn

ℓ+1

while the appearance fℓ+1 is always initialized to the first frame x1.

3.3 Specification of theocclusion ordering and refinement of the object models

Once we run the greedy algorithm (Stage 1 in Table 1), we obtain an estimate of
all model parameters, an approximation of the object transformation in each training
image as well as the probabilities Qn(vℓ) which express our posterior belief that image
xn was generated by the view vℓ of model ℓ. Using now these quantities we wish
to compute the occlusion ordering of the foreground objects in each training image.
This is necessary since even when the occlusion ordering remains fixed across all video
frames, the algorithm might not extract the objects in accordance with this ordering,
i.e. discovering first the nearest object to the camera, then the second nearest object
etc. The order the objects are found is determined by the tracking algorithm and
typically the largest objects that occupy more pixels than others are more likely to be
tracked first.

A way to infer the occlusion ordering of the foreground objects or layers in an image
xn is to consider all possible permutations of these layers and choose the permutation
that gives the maximum likelihood. The simplest case is to have two foreground objects
with parameters {πv1

1 , fv1

1 , σ2
1,v1
}V1

v1=1 and {πv2

2 , fv2

2 , σ2
2,v2
}V2

v2=1, respectively. From the
posterior probabilities Qn(v1) and Qn(v2) corresponding to image xn we choose the
most probable views vn

1 and vn
2 . Conditioned on these estimated views as well as the

transformations, the log likelihood values of the two possible orderings are

Ln
kl =

P
X

i=1

log
n

(Tjn

k
π

vn

k

k )ipfk
(xn

i ; (Tjn

k
f

vn

k

k )i) + (1− Tjn

k
π

vn

k

k )i ×

[(Tjn

l
π

vn

l

l )ipfl
(xn

i ; (Tjn

l
f

vn

l

l )i) + (1− Tjn

l
π

vn

l

l )ipb(x
n
i ; (Tjn

b
b)i)]

o

, (19)

where k = 1, l = 2 or k = 2, l = 1. The selected occlusion ordering for the image
xn is the one with the largest log likelihood. When we have L foreground objects we
work exactly analogously as above by expressing all L! permutations of the foreground
layers and selecting the one with the largest likelihood.
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The above computation of the occlusion ordering takes L! time and it can be used
only when we have few foreground objects. However, in most of the cases we can further
speed up this computation and estimate the occlusion ordering for large number of
objects. The idea is that an object ℓ usually does not overlap (either occludes or is
occluded) with all the other L − 1 objects, but only with some of them. Thus, if for
each object we identify the overlapping objects, the complexity in the worse case will
be O(G!) where G is the largest number of objects that simultaneously overlap with
each other. Details of this algorithm together with illustrative examples are given in
section B.3 in [7].

Once the occlusion ordering has been specified for each training image, we can
maximize the complete log likelihood for the model described in section 2 (using the
approximated transformations, viewpoints and the occlusion orderings) and refine the
appearances and masks of the objects. Note that for this maximization we need the
EM algorithm in order to deal with the fact that each pixel follows a L +1-component
mixture distribution (for L = 2 see equation (4)). However, this EM runs quickly since
all the transformations, viewpoints and occlusion orderings have been “filled in” with
the approximated values provided at previous stages of the learning process.

4 Related work

There is a huge literature on motion analysis and tracking in computer vision, and
there is indeed much relevant prior work. Particularly, Wang and Adelson [1] estimate
object motions in successive frames and track them through the sequence by computing
optical flow vectors, fit affine motion models to these vectors, and then cluster the
motion parameters into a number of objects using k-means. Darrell and Pentland [8],
and Sawhney and Ayer [9] used similar approaches based on optical flow estimation
between successive frames and apply the MDL principle for selecting the number of
objects. Note that a major limitation of optical-flow based methods concerns regions of
low texture where flow information can be sparse, and when there is large inter-frame
motion. The method of Irani et al. [2] is much more relevant to ours. They do motion
estimation using optical flow by matching the current frame against an accumulative
appearance image of the tracked object. The appearance of a tracked object develops
though time, although they do not take into account issues of occlusion, so that if a
tracked object becomes occluded for some frames, it may be lost.

The work of Tao et al. [10] is also relevant in that it deals with a background model
and object models defined in terms of masks and appearances. However, note that in
their work the mask is assumed to be of elliptical shape (parameterised as a Gaussian)
rather than a general mask. The mask and appearance models are dynamically updated.
However, the initialization of each model is handled by a “separate module”, and is
not obtained automatically. For the aerial surveillance example given in the paper
initialization of the objects can be obtained by simple background subtraction, but
that is not sufficient for the examples we consider. Later work by Jepson et al. [11]
uses a polybone model for the mask instead of the Gaussian, but this still has limited
representational capacity in comparison to our general mask. Jepson et al. also use
more complex tracking methods which include the birth and death of polybones in
time, as well as temporal tracking proposals.

The idea of focusing search when carrying our transformation-invariant clustering
has also been used before, e.g. by Fitzgibbon and Zisserman [12] in their work on
automatic cast listing of movies. However, in that case prior knowledge that faces were
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being searched for meant that a face detector could be run on the images to produce
candidate locations, while this is not possible in our case as we do not know what
objects we are looking for apriori.

As well as methods based on masks and appearances, there are also feature-based
methods for tracking objects in image sequences, see e.g. [13], [14]. These attempt
to track features through a sequence and cluster these tracks using different motion
models. Allan et al. [15] describe a feature-based algorithm for computing the trans-
formations of multiple objects in a video by simultaneously clustering features of all
frames into objects. The obtained transformations are then used to learn a layered
generative model for the video.

Currently in our method we ignore the spatial continuity in the segmentation labels
of the pixels. This might result in noisy segmentations at some cases. A method for
learning layers that incorporates spatial continuity has been recently considered by [14]
and [16]. They use a layered model with a MRF prior for the pixel labels and make use
of the graph cuts algorithm for efficient updating of the masks. Note that within our
framework we could also incorporate a MRF for the pixel labels at the cost of increased
computation.

Finally, the mechanism for dealing with multiple viewpoints using mixture models
has been considered before in [17]. However, in this work they consider one object
present in the images against a cluttered background, and only the appearance images
of different poses of the object are learned (not masks). Also they do not apply tracking
and they consider a global search over transformations. In contrast, our method can be
applied to images with multiple objects and learns the background as well as different
poses for the foreground objects. An important aspect of our method is the use of
tracking (applied prior to learning) which stabilizes an object and then efficiently learns
its views.

5 Experiments

We consider four video sequences: the Frey-Jojic (FJ) sequence (Figure 1) available
from http://www.psi.toronto.edu/layers.html, the arms-torso video sequence
showing a moving human upper body (Figure 2), the man-walking sequence (Figure 3)
and the Groundhog day van sequence2 (Figure 4). We will also assume that the number
of different views that we wish to learn for each foreground object is known.

The FJ sequence consists of 44 118×248 images (excluding the black border). This
sequence can be well modelled by assuming a single view for each of the foreground
objects, thus we set V = 1 for both objects. During tracking we used a 15×15 window of
translations in units of one pixel during the tracking stage. The learning stage requires
EM which converged in about 30 iterations. Figure 1a shows the evolution of the initial
mask and appearance (t = 1) through frames 10 and 20 as we track the first object
(Frey). Notice that as we process the frames the mask focuses on only one of the two
objects and the appearance remains sharp only for this object. The real running time
of our MATLAB implementation for processing the whole sequence was 3 minutes. The
computer used for all the experiments reported here was a 3GHz Pentium. Figure 1b
shows the results after Stage 1 of the algorithm is completed. Figure 1c shows the final
appearances of the foreground objects after the computation of the occlusion ordering
and the joint refinement of all the parameters. Comparing Figure 1b with Figure 1c,

2 Wethank the Visual Geometry Groupat Oxford for providing the Groundhog day van data.
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t = 1 t = 10 t = 20
(a)

(b)

(c)

Fig.1. Panel (a) shows the evolution of the mask π1 (top row) and the appearance f1 (bottom
row) at times 1, 10 and 20as we track the first object (Frey). Again notice how the mask be-
comes focused on one of theobjects (Frey) and how the appearanceremainsclear andsharp only
for Frey. Panel (b) shows the mask and the element-wise product of the mask and appearance
model (π ∗ f ) learned for Frey (first column from the left) and Jojic (secondcolumn) using the
greedy algorithm (after Stage 1; seeTable 1). Panel (c) displays the corresponding masks and
appearances of the objects after the refinement step.
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(a)

(b)

Fig.2. Panel (a) shows three frames of the arms-torso video sequence. Panel (b) displays the
masks and appearances of the parts of the arms-torso video sequence. Particularly, the plots in
the first column show the learn mask (top row) and the element-wise product of the mask and
appearance(bottom row) for thehead/torso. Any pair of panels in theother two columnsprovides
the same information for the two arms.

Fig.3. The panels in the first row show threeframes of the man-walking sequence. The panels in
the last two rows show the element-wiseproduct of themask (thresholded to 0.5) andappearance
(showing against a grey background) for all six viewpoint models.
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we can visually inspect the improvement over the appearances of the objects, e.g. the
ghosts in the masks of Figure 1b have disappeared in Figure 1c.

When we carry out the refinement step, we always initialize the background and the
foreground appearances and masks using the values provided by the greedy algorithm.
The variances are reinitialized to a large value to help escape from local maxima. Note
also that for this maximization we maintain the robustification of the background and
foreground pixel densities (αb and αf are set to 0.9) in order to deal with possible
variability of the objects, e.g. local clothing deformation, or changes of the lighting
conditions. The EM algorithm used for the above maximization converges in few iter-
ations (e.g. less than 20). This is because the objects’ appearances obtained from the
greedy algorithm are already close to their final values, and all the transformations of
the objects have been “filled in” with the approximated values provided by the greedy
algorithm.

We demonstrate our method for learning parts of human body using the arms-torso
sequence that consists of 79 76× 151 images. Three frames of this sequence are shown
in Figure 2a. To learn the articulated parts we use translations and rotations so that
the transformation matrix Tjℓ

that applies to πℓ and fℓ implements an combination
of translation and rotation. We implemented this using the MATLAB function tfor-

marray.m and nearest neighbour interpolation. Note that we set the number of views
Vℓ = 1 for all foreground objects. The tracking method searches over a window of 10×10
translations and 15 rotations (at 2o spacing) so that it searches over 1500 transforma-
tions in total. Figures 2b shows the three parts discovered by the algorithm i.e. the
head/torso and the two arms. Note that the ambiguity of the masks and appearances
around the joints of the two arms with the torso which is due to the deformability of
the clothing in these areas. The total real running time for learning this sequence was
roughly one hour. Note that when we learn object parts we should also learn a joint
distribution over the parts; a method for computing such a distribution is described in
[7].

The man-walking sequence consists of 85 72× 176 colour images. Figure 3 displays
three frames of that sequence and also the learned visual aspects (the element-wise
product of each appearance and mask pair). We assumed that the number of different
views is six, i.e. V1 = 6. When we applied the tracking algorithm we used a window of
15× 15 translations in units of one pixel. Processing the whole video took 5 minutes.

In our fourth experiment, we used 46 144 × 176 frames of the Groundhog day
van sequence. Figure 4a displays three frames of that sequence. During tracking we
assumed a window of 15× 15 translations in units of one pixel, plus 5 scalings for each
of the two axes spaced at a 1% change in the image size, and 5 rotations at 2o spacing.
We assumed that the number of different views of the foreground object that we wish
to learn is three, i.e. V1 = 3. Figure 4b shows the learned prior mask (πv1

1 ) and the
element-wise product of the appearance (fv1

1 ) and the mask for each view. Figure 4c
shows the background that is also learned. Clearly, each appearance has modelled a
different view of the van. However, the masks are a bit noisy; we believe this could be
improved by using spatial continuity constraints. Processing the whole video took 6
hours, where the most of the time was spent during tracking.

6 Discussion

Above we have presented a general framework for learning a layered model from a video
sequence. The important feature of this method is tracking the background and the
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(a)

(b)

(c)

Fig.4. Panel (a) shows threeframes of the van sequence. Panel (b) shows the pairs of mask and
the element-wise product of the mask and appearance (showing against a grey background) for
all different viewpoints. Note that the element-wise products are produced by making the masks
binary (thresholded to 0.5). Panel (c) displays the background.
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foreground objects sequentially so as to deal with one object and the associated trans-
formations at each time. Additionally, we have combined this tracking method with
allowing multiple views for each foreground object so as to deal with large viewpoint
variation. These models are learned using a mixture modelling approach. Tracking
the object before knowing its full structure allows for efficient learning of the object
viewpoint models.

Some issues for the future are to automatically identify how many views are needed
to efficiently model the appearance of each object, to determine the number of objects,
and to deal with objects/parts that have internal variability. Another issue is to au-
tomatically identify when a detected model is a part or an independent object. This
might be achieved by using a mutual information measure, since we expect parts of
the same object to have significant statistical dependence.
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